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General Techniques in Computer Algebra

I Some methods are not stable under perturbation: Gröbner
basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)

Drawbacks:

In applications, where the aim is to develop efficient methods
which are stable under perturbations. Starting with a
perturbation of the input, do we get nearby output ?

I Some methods are stable under perturbation:

Resultants, Cartan 1945; Kuranishi 1957;

Border basis: Mourrain, Trébuchet: 1999 -2008; and Kehrein,
Kreuzer, Robbiano: 2005-2008.
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0-dim. A-algebras with monomial basis B

I Let B be set of µ monomials in x = (x1, . . . , xn). We identify B
with a set of Nn.
I We assume that B is stable by division, (or connected to 1 ( for

xα ∈ B, there is i : xα/xi ∈ B).
I Denote B+ = x1B ∪ · · · ∪ xnB ∪ B and ∂B = B+ − B.
I Let A be a ring, RA the ring A[x1, . . . , xn] and let A be a

quotient algebra of A[x1, . . . , xn] such that A is a free A-module
with basis B.
I For any α ∈ ∂B, the monomial xα is a linear combination in A

of the monomials of B. For any α ∈ ∂B, there exists zα,β ∈ A
(β ∈ B) s.t.

hz
α(x) := xα −

∑
β∈B

zα,β xβ ≡ 0

. The hz
α(x) will be called, the border relations of A w.r.t. B.

I Border relations, are re-writing rules
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Define a “normal form” , Nz

For β ∈ B, Nz(xβ) = xβ ,

For α ∈ ∂B. Nz(xα) = xα − hz
α(x) =

∑
β∈B zα,β xβ

I The tables of multiplication Mz
xi

: 〈B 〉 → 〈B 〉 are constructed
using Mz

xi
(xβ) = Nz(xix

β) for β ∈ B. These operators of
multiplication commute.
I Notice that the coefficients of the matrix of Mz

xi
in the basis B

are linear in the coefficients z’s.

M.E. Alonso
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Border equations

I Conversely, if we are interested in characterizing the coefficients
z := (zα,β)α∈∂B,β∈B such that the polynomials (hz

α(x))α∈B are the
border relations of some free A-algebra Az = A[x1, . . . , xn]/I with
basis B.

Mourrain ’99, and Kreuzer-Robbiano’08 proved

Theorem

Let B be a set of µ monomials connected to 1. The polynomials
hz
α(x), z ∈ A, are the border relations of some free quotient algebra
A of A[x1, ..., xn] of basis B iff

Mz
xi
◦Mz

xj
−Mz

xj
◦Mz

xi
= 0 for 1 6 i < j 6 n. (1)

HB := {z = (zα,β) ∈ K∂B×B ;Mz
xi
◦Mz

xj
−Mz

xj
◦Mz

xi
= 0 16i<j6n}

M.E. Alonso
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Perturbing equations

I Start with algebraic equations defining a finite set of points
f0 ∈ K[x1, . . . , xn]s , let I0 = (f0) the 0-dim ideal and A0 = K[x]/I0.
I Let B be a set of monomials that is also a K-basis for A0.
I Let us perturb the system f = f0 + ε f1 + · · · , and let
A = K[[ε]], Rε = K[[ε]][x] = A[x], A := Rε/I and, (f) = I with I0

describing the initial finite zero-set.Obstructions for flatness of

K[[ε]]→ A

Flatness means the monomial basis B is still a basis of A as
K[[ε]] module (assumed A is finite K[[ε]]– module)

M.E. Alonso
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”isolated, embedded points, points going to infinite”

Flatness means the monomial basis B is still a basis of A as
K[[ε]] module (assumed A is finite K[[ε]]– module)
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Flatness criterion

I More generally, let (A,m,K) be a henselian ring. Start with a
deformed situation f ∈ A[x]s , f = f0 + ε f1 + · · · ; ε ∈ m, denote by
I = (f)A[x] , I0 = (f0)K[x] and A := A[x]/I and the residual
(initial) situation A0 = K[x]/I0.

I Consider the multiplicative set
S = {g(x) ∈ A[x ] : g(x) mod m = 1}
I Let Aa := S−1A = S−1A[x]/I.

The effect of taking the extended ring is to keep only “the
points to finite distance” The ring S−1A is a finite
A-module.
QUESTION:
Conditions for A = A[x]/I (resp. Aa = S−1(A[x]/I) to be a flat
(hence free) A module?What can we say of a border basis of A (or
Aa), assuming one knows a border basis mod. m?
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Flatness criterion (conti..)

Starting with border relations for the residual algebra A0

h0
β := xβ −

∑
z0
αβ xα ; z0

αβ ∈ K

We can lift h0
β to A, getting new elements fβ, for β ∈ ∂B s.t.

fβ ∈ I. Then, let
h̃β = xβ −

∑
˜zαβxα

for β ∈ ∂B and α ∈ B, where ˜zαβ are unknowns, that that we try
to determine as elements of A s.t. zαβ mod .m = z0

αβ

We reduce the generators fβ’s with the h̃β’s (β ∈ ∂B ,and we
impose the condition that the remainder must be zero .
Obtaining a Hensel system with a unique solution zαβ ∈ A, lifting
z0
αβ.Write hβ = xβ −

∑
zαβxα and set

H := ((hβ)β∈∂B)S−1A[x] ⊂ IS−1A[x]

M.E. Alonso
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Flatness criterion (conti..)

H := ((hβ)β∈∂B)S−1A[x] ⊂ IS−1A[x]

WE GET FLATNESS, iff the lifted border relations:

I i) verify the equations of commutativity, in order to be border
basis of A[x]/(hαβ), and
I ii) generate the ideal of the beginning: I S−1A[x] = H

(generators of I reduce to zero mod. the lifted equations)
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Example
We consider the perturbation
f ε1 = x2 − εx , f ε2 = xy − εx , f ε3 = xy − εy , f ε4 = y2 − εy , f ε5 = εx − ε2,
f ε6 = εy − ε2.
I We have I0 = (x2, xy, y2) and I = (fε1 , . . . , f

ε
6 ).

I The set B = {1, x , y} is a basis of R/I0 and the border relations are h0
x2 = x2,

h0
xy = xy , h0

y2 = y2. As h0
x2 = f 0

1 , h0
xy = f 0

2 , h0
y2 = f 0

4 , these border relations lift in

h̃εx2 = f ε1 = x2 − εx ,

h̃εxy = f ε2 = xy − εx ,

h̃εy2 = f ε4 = y2 − εy .

I After reduction by the formal border relations and resolution of the
corresponding (linear) system , we have hεm = h̃εm, so that I S−1A[x] = H.
I Only need to chek that the multiplication operators by x and y commute, so

that the polynomials hεx2 , hεxy , h
ε
y2 are border relations for B.

M.E. Alonso
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Example: “The importance of being flat” ( O. Wild)

Example:
f1 := y2 + tyx2 + t, f2 := x3 + yx2 − t2

I I0 = (y2, x3 + yx2) and I = (f1, f2)S−1K[[t]][x, y]
I h0

y2 = y2, h0
y2x = y2x , h0

y2x2 = y2x2,h0
x3 = x3 + x2y,h0

x3y
=

red(yh0
x3) = x3y is a border basis for K[x , y ]/I0,

∂B = {1, x , y , x2, xy , x2y}
I We introduce the h̃’s:

h̃y2 := y2 + a0 + a1 x + a2 x
2 + a3 y + a4 yx + a5 yx

2

h̃x3 := x3 + b0 + b1 x + b2 x
2 + b3 y + b4 yx + b5 yx

2

˜hx3y := x3y + c0 + c1 x + c2 x
2 + c3 y + c4 xy + c5 x

2y

I reduce f1, f2’s with h̃’s, obtaining some Hensel equations
a1 = a2 = a3 = a4 = 0, b1 = b2 = b3 = b4 = 0

a0 = t, b0 = −t2, a5 = t, b5 = 1,

M.E. Alonso
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c2 =
t (1 + tc5 )2

−1− 3 tc5 − 3 t2c5 2 − t3c5 3 + t5

c0 =
t3c2

1 + tc5
, c1 =

t4c2

(1 + tc5)2
, c3 =

−t2

1 + tc5
, c4 =

−t3

(1 + tc5)2

−t6 c7
5 − 6t5 c6

5 − 15t4 c5
5 + (−20t3 + t8 + t6) c4

5 + (−15t2 + 4t5 + 2t7) c3
5

+(6t4 − 6t) c2
5 + (−1− 2t5 + 4t3) c5 + (t2 + t9 − t4) = 0

I We approximate till o(t10) with Newton method the rational
functions, and the “unique” solution of the last equation near zero

t2 − t4 + 4 t5 − 6 t7 + 16 t8 + 3 t9 + O
(
t10
)

t2 − t4 − 2 t5 + 6 t7 + 7 t8 − 3 t9 + O
(
t10
)

t2 − t4 − 2 t5 + 6 t7 + 7 t8 − 3 t9−
35t10 − 30 t11 + 45 t12 + 210 t13 + 128 t14 + O

(
t15
)

I Using c5 = t2 − t4 − 2 t5, or c5 = t2, leads to the two following
(approximating) matrices for the multiplication by y in the basis of
monomials under the staircase:

M.E. Alonso
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aprMy :=



0 0 −t 0 −t3 − t5 −t4 + 2 t7

0 0 0 0 −t − t6 −t5

1 0 0 0 −t3 + t6 t5 − t7

0 0 0 0 −t2 + t5 −t + t4 − 2 t6 − 3 t7

0 1 0 0 −t4 + 2 t7 −t3 + 2 t6

0 0 −t 1 t3 − t5 − 2 t6 t2 − t4 − 2 t5 + 4 t7



AprMy :=



0 0 −t 0 −t3 −t4

0 0 0 0 −t −t5

1 0 0 0 −t3 t5

0 0 0 0 −t2 −t

0 1 0 0 −t4 −t3

0 0 −t 1 t3 t2


M.E. Alonso
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We may use the characteristic polynomial of one of these matrices.
For small values of t, say | t |≤ 10−2, the second one is sufficient:

Gy = y6 +
(
−t2 + t4

)
y5 +

(
t6 + 3 t

)
y4 +

(
t7 + t8 + t10 − 2 t3

)
y3

+
(
t7 + 3 t2

)
y2 +

(
−t6 + 2 t9 − t4

)
y + (t3 − t8)

Computing with 12 digits we get correct answers up to many digits for
the cluster of six roots. The same computation, when using a floating
point Gröbner basis computation needs arround 200 digits of precision.
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Construction Hilbµ(Pn)

HilbµPn = The Hilbert functor of Pn relative to µ ∈ Z+

C = Schemes of finite type over K =⇒ Sets

X 7→ {flat familiesZ ⊂ X×Pn with fibers having Hilbert polynomial µ}

I If X = Spec(A), A is a K–algebra of finite type, and the
homogeneous ring SA = A[x0, . . . , xn] (SA =: S for short)

HilbµPn(X ) = {I ⊂ SA homog. sat. ideal :

SA
d /Id is A locally free mod. of rank µ ∀d >> 0}

I One can cover the functor HilbµPn with an open covering of
affine representable subfunctors namely HB

u ( B a set of µ
monomials of degree, stable by division and u ∈ S1; s.t. HB

u is
represented by Spec(K[(zα,β)α∈δB,β∈B ]/R), where R is the ideal
of commutating relations.
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Plucker coordinates
We assume A is a local ring.

Let X = Spec(A), and
GrµS∗d

(X ) = {∆ : ∆ = Sd/Id : A free module of rank µ}
GrµS∗d

(X ) ↪→ P(∧µ(SA
d )∗)

:Consider the Plucker coordinates in in P(∧µ(SA
d )∗):

Let ∆ = Sd/Id ∈ GrµS∗d
(X ), and (δ1, . . . , δµ) in be any basis of

the dual space ∆∗ (also a free A-module of rank µ).

Plücker coordinates of ∆ as an element of P(∧µS∗d ) are given
by:

∆β1,...,βµ =

∣∣∣∣∣∣∣
δ1(xβ1) · · · δ1(xβµ)

...
...

δµ(xβ1) · · · δµ(xβµ)

∣∣∣∣∣∣∣
for βi ∈ Nn+1, |βi | = d and β1 < · · · < βµ.
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Plücker coordinates of ∆ as an element of P(∧µS∗d ) are given
by:

∆β1,...,βµ =

∣∣∣∣∣∣∣
δ1(xβ1) · · · δ1(xβµ)

...
...

δµ(xβ1) · · · δµ(xβµ)

∣∣∣∣∣∣∣
for βi ∈ Nn+1, |βi | = d and β1 < · · · < βµ.

M.E. Alonso



Border basis
Flatness and Border bases

The punctual Hilbert scheme
Tangent Space to the punctual Hilbert scheme

Plucker coordinates
We assume A is a local ring.

Let X = Spec(A), and
GrµS∗d

(X ) = {∆ : ∆ = Sd/Id : A free module of rank µ}
GrµS∗d

(X ) ↪→ P(∧µ(SA
d )∗)

:Consider the Plucker coordinates in in P(∧µ(SA
d )∗):

Let ∆ = Sd/Id ∈ GrµS∗d
(X ), and (δ1, . . . , δµ) in be any basis of

the dual space ∆∗ (also a free A-module of rank µ).
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The HilbµPn(X ) inside the GrµS∗
d
(X )

I Algebraic structure of HilbµPn(X ) as projective variety is given
by means of the bijection

HilbµPn(X )←→

W A = {(SA
d /Id ,S

A
d+1/Id+1) ∈ Grµ

SA ∗
d

(X )×Grµ
SA ∗
d+1

(X ) | SA
1 ·Id = Id+1}.

Id 7→ Id = (Id) + (Id : S1) + (Id : S2) + · · ·+ (Id : Sd−1)

I This holds by Gotzmann Persistence , and Regularity thms, and
There is an elementary proof by using border basis.
I In A-B-M (2008), Brachat-Lella-Mourrain-Roggero (2010),

Lederer (?), find an inmersion of it inside the GrµS∗d (X ) with global

equations of degree two. In the following we show how to get it
inside a product of Grasmanians with equations of degree two.
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Global equations for HilbµPn(X )

I I) A Determinantal identity.

Let ∆ := SA
d /Id ∈ GrµS∗

d
(X ),

B = (b1, . . . , bµ) be a family of homogeneous polynomials of degree d , then,
∆B a−

∑µ
i=1 ∆B [bi |a] bi = 0 in ∆, for a ∈ SA

d

where B [bi |a] = (b1, . . . , bi−1, a, bi+1, . . . , bµ). Let it be

M :=

 δ1(a) δ1(b1) · · · δ1(bµ)

.

.

.

.

.

.
δµ(a) δµ(b1) · · · δµ(bµ)

1 1 · · · 1


As MAdj(M)t = det(M)I(µ+1)×(µ+1). We get the last equality

M


∆B

∆B [b1|a]

...
∆

B [bµ|a]

 =


0
0
...

det(M)

 .
Developing this product, the first µ coordinates show that every δj vanishes at

∆B a−
∑µ

i=1 ∆B [bi |a] bi = 0, therefore ∆B a−
∑µ

i=1 ∆B [bi |a] bi = 0 ∈ ∆ .

M.E. Alonso
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Conti.

Theorem: Let d ≥ µ be an integer. HilbµPn (X ) is the projection on GrµS∗
d

(X )

of the variety of GrµS∗
d

(X )× GrµS∗
d+1

(X ) defined by the equations

∆B ∆
′
B′,xka −

∑
b∈B

∆B [b|a] ∆
′
B′,xkb = 0,

for all families B (resp. B ′) of µ (resp. µ− 1) monomials of degree d (resp.

d + 1), all monomial a ∈ SA
d and for every k (where B

′
, xka is the family

(b
′
1, . . . , b

′
µ−1, xka).

Proof.The reciprocal argument is similar using the same determinantal equality.
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′
, xka is the family

(b
′
1, . . . , b

′
µ−1, xka).

Proof. Let (∆,∆
′
) ∈ GrµS∗

d
(X )× GrµS∗

d+1
(X ) satisfying the equations above.

∆ = Sd/Id with ker(∆) := I satur. homog. ideal ofSd .)

Let us to prove that S1 · ker ∆ ⊂ ker ∆
′
. Let B be a basis of ∆ (so that ∆B is

invertible in A), and let f be an element of ker ∆.By linearity, equations above

imply that ∆
′

B′,xk f
= 0 for all k = 1, . . . , n and all subset B ′ of µ− 1

monomials of degree d + 1 (because ∆B [b|f ] = 0).Thus, by determinantal

Lemma , xk · f belongs to ker ∆
′

for all k = 1, .., n and S1 · ker ∆ ⊂ ker ∆
′
.
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Equations for µ = n = 2

HilbµPn (X )←→
HilbµPn (X ) = {(SA

d /Id , S
A
d+1/Id+1) ∈ Grµ

SA ∗
d

(X )× Grµ
SA ∗
d+1

(X ) | SA
1 · Id = Id+1}.

Its projection on Grµ
SA ∗
d

(X ) gives the embedd. of HilbµPn (X ) in a
Grasmanian.

The equations are computed with the same technique, but they are
more involved. For µ = n = 2 we obtain, plus permutation of x , y and z :
I They come from: commutation of the multiplication by the variables and by

considering multiplication and changes of chart w.r.t the Plucker coordinates.
The same were obtained by Brodsky-Sturmfels (2010), using Groebner bases.
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d+1/Id+1) ∈ Grµ

SA ∗
d
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Its projection on Grµ
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d

(X ) gives the embedd. of HilbµPn (X ) in a
Grasmanian.The equations are computed with the same technique, but they are
more involved. For µ = n = 2 we obtain, plus permutation of x , y and z :

∆
y2,xy

∆
x2,xz

− ∆xy,yz ∆
x2,xy

= 0,

∆
y2,xy

∆
x2,yz

− ∆xy,xz ∆
y2,xy

− ∆xy,yz ∆
x2,y2 = 0,

∆
x2,xy

∆xy,xz + ∆
x2,y2 ∆

x2,xz
− ∆

x2,yz
∆

x2,xy
= 0,

∆
x2,xy

∆
z2,xy

− ∆2
xy,xz − ∆

x2,xz
∆xy,yz = 0,

∆
x2,xy

∆
x2,z2 − ∆xy,xz ∆

x2,xz
− ∆

x2,xz
∆

x2,yz
= 0,

∆
z2,xz

∆
x2,xy

− ∆xz,yz ∆
x2,xz

= 0,

∆
z2,xz

∆
x2,zy

− ∆xy,xz ∆
z2,xz

− ∆zy,xz ∆
x2,z2 = 0,

∆
x2,xz

∆xy,xz + ∆
x2,z2 ∆

x2,xy
− ∆

x2,zy
∆

x2,xz
= 0,

∆
x2,xz

∆
y2,xz

− ∆2
xy,xz − ∆

x2,xy
∆xz,yz = 0,

∆
x2,xz

∆
x2,y2 − ∆xy,xz ∆

x2,xy
− ∆

x2,xy
∆

x2,zy
= 0,

∆
y2,xz

∆yz,xz + ∆yz,xz ∆xy,yz − ∆yz,xz ∆
y2,xz

− ∆
z2,xy

∆
xy,y2 = 0,

∆
xy,y2 ∆yz,xz + ∆xy,yz ∆xy,yz − ∆xy,yz ∆

y2,xz
− ∆

xy,z2 ∆
xy,y2 = 0,

∆
y2,xz

∆
z2,xy

+ ∆yz,xz ∆
xy,z2 − ∆yz,xz ∆yz,xz − ∆

z2,xy
∆xy,yz = 0,

∆
xy,y2 ∆

z2,xy
+ ∆xy,yz ∆

xy,z2 − ∆xy,yz ∆yz,xz − ∆
xy,z2 ∆xy,yz = 0,

∆2
xy,xz − ∆

xz,y2 ∆
x2,xz

− ∆xz,yz ∆
x2,xy

= 0,

∆xz,yz ∆
xz,x2 + ∆

xz,z2 ∆
xy,x2 = 0,

∆2
xy,xz − ∆xy,yz ∆

x2,xz
− ∆

xy,z2 ∆
xy,x2 = 0.

I They come from: commutation of the multiplication by the variables and by
considering multiplication and changes of chart w.r.t the Plucker coordinates.
The same were obtained by Brodsky-Sturmfels (2010), using Groebner bases.
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The Tangent space to the punctual Hilbert scheme

We consider the border relations at a point: h0
α α ∈ B

I Write hεα = h0
α + εh1

α +O(ε2) where h1
α(x) :=

∑
β∈B h1

α,βx
β

.

Determine the linear system satisfied by h1 := (h1
α,β)α∈∂B,β∈B .

I Operator multiplication by xi : Mε
xi

decomposes:
Mε

xi
= M0

xi
+ εM1

xi
+O(ε2), where M0

xi
is the operator of

multiplication by xi in A0 and M1
xi

is linear in h1.
The commutation implies

Mε
xi
◦Mε

xj
−Mε

xj
◦Mε

xi
= (M0

xi
◦M0

xj
−M0

xj
◦M0

xi
)+

+ε(M1
xi
◦M0

xj
+ M0

xi
◦M1

xj
−M1

xj
◦M0

xi
−M0

xj
◦M1

xi
) +O(ε2)

= ε(M1
xi
◦M0

xj
+ M0

xi
◦M1

xj
−M1

xj
◦M0

xi
−M0

xj
◦M1

xi
) +O(ε2)
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I We deduce the linear equations in h1

M1
xi
◦M0

xj
+M0

xi
◦M1

xj
−M1

xj
◦M0

xi
−M0

xj
◦M1

xi
= 0(1 6 i < j 6 n)[∗ ∗ ∗]

The above are the equations of the Tangent space TI0 to
the variety HB at the point I0 whose border relations are
(h0
α)α

M.E. Alonso
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THANK YOU FOR YOUR ATTENTION!

M.E. Alonso
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