Border basis, Hilbert Scheme of points and flat deformations

Mariemi Alonso
(from joint paper with Jerome Brachat and Bernard Mourrain)

Univ. Complutense de Madrid, Spain

ACA2018, Santiago de Compostela
$18-22$ th Junio 2018

General Techniques in Computer Algebra

General Techniques in Computer Algebra

- Some methods are not stable under perturbation: Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc)

General Techniques in Computer Algebra

- Some methods are not stable under perturbation: Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc) Drawbacks:

In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?

General Techniques in Computer Algebra

- Some methods are not stable under perturbation: Gröbner basis, Macaulay H-basis, Involutive bases (Janet, Pommaret, etc) Drawbacks:

In applications, where the aim is to develop efficient methods which are stable under perturbations. Starting with a perturbation of the input, do we get nearby output ?

- Some methods are stable under perturbation:

Resultants, Cartan 1945; Kuranishi 1957;
Border basis: Mourrain, Trébuchet: 1999-2008; and Kehrein, Kreuzer, Robbiano: 2005-2008.

Outline

(1) Border basis

Outline

(1) Border basis
(2) Flatness and Border bases

Outline

(1) Border basis

2 Flatness and Border bases
(3) The punctual Hilbert scheme

Outline

(1) Border basis
(2) Flatness and Border bases
(3) The punctual Hilbert scheme

4 Tangent Space to the punctual Hilbert scheme

Outline

(1) Border basis
2) Flatness and Border bases
(3) The punctual Hilbert scheme

4 Tangent Space to the punctual Hilbert scheme

0 -dim. A-algebras with monomial basis B

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, (or connected to 1 (for $\underline{\mathbf{x}}^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, (or connected to 1 (for $\underline{\mathbf{x}}^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, (or connected to 1 (for $\underline{\mathbf{x}}^{\alpha} \in B$, there is $\left.i: x^{\alpha} / x_{i} \in B\right)$.
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a ring, R^{A} the ring $A\left[x_{1}, \ldots, x_{n}\right]$ and let \mathcal{A} be a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ such that \mathcal{A} is a free A-module with basis B.

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, (or connected to 1 (for $\underline{\mathbf{x}}^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.

Let A be a ring, R^{A} the ring $A\left[x_{1}, \ldots, x_{n}\right]$ and let \mathcal{A} be a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ such that \mathcal{A} is a free A-module with basis B.

- For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B.

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, (or connected to 1 (for $\underline{\mathbf{x}}^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a ring, R^{A} the ring $A\left[x_{1}, \ldots, x_{n}\right]$ and let \mathcal{A} be a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ such that \mathcal{A} is a free A-module with basis B.
- For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B. For any $\alpha \in \partial B$, there exists $z_{\alpha, \beta} \in A$ $(\beta \in B)$ s.t.

$$
h_{\alpha}^{z}(\underline{\mathbf{x}}):=\underline{\mathbf{x}}^{\alpha}-\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta} \equiv 0
$$

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, (or connected to 1 (for $\underline{\mathbf{x}}^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a ring, R^{A} the ring $A\left[x_{1}, \ldots, x_{n}\right]$ and let \mathcal{A} be a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ such that \mathcal{A} is a free A-module with basis B.
- For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B. For any $\alpha \in \partial B$, there exists $z_{\alpha, \beta} \in A$ $(\beta \in B)$ s.t.

$$
h_{\alpha}^{z}(\underline{\mathbf{x}}):=\underline{\mathbf{x}}^{\alpha}-\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta} \equiv 0
$$

The $h_{\alpha}^{z}(\underline{\mathbf{x}})$ will be called, the border relations of \mathcal{A} w.r.t. B.

0 -dim. A-algebras with monomial basis B

- Let B be set of μ monomials in $\underline{\mathbf{x}}=\left(x_{1}, \ldots, x_{n}\right)$. We identify B with a set of \mathbb{N}^{n}.
- We assume that B is stable by division, (or connected to 1 (for $\underline{\mathbf{x}}^{\alpha} \in B$, there is $i: x^{\alpha} / x_{i} \in B$).
- Denote $B^{+}=x_{1} B \cup \cdots \cup x_{n} B \cup B$ and $\partial B=B^{+}-B$.
- Let A be a ring, R^{A} the ring $A\left[x_{1}, \ldots, x_{n}\right]$ and let \mathcal{A} be a quotient algebra of $A\left[x_{1}, \ldots, x_{n}\right]$ such that \mathcal{A} is a free A-module with basis B.
- For any $\alpha \in \partial B$, the monomial $\underline{\mathbf{x}}^{\alpha}$ is a linear combination in A of the monomials of B. For any $\alpha \in \partial B$, there exists $z_{\alpha, \beta} \in A$ $(\beta \in B)$ s.t.

$$
h_{\alpha}^{z}(\underline{\mathbf{x}}):=\underline{\mathbf{x}}^{\alpha}-\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta} \equiv 0
$$

The $h_{\alpha}^{z}(\underline{\mathbf{x}})$ will be called, the border relations of \mathcal{A} w.r.t. B.

- Border relations, are re-writing rules

Define a "normal form", N^{2}
For $\beta \in B, N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=\underline{\mathbf{x}}^{\beta}$,
For $\alpha \in \partial B . N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\alpha}\right)=\underline{\mathbf{x}}^{\alpha}-h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})=\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta}$

Define a "normal form", N^{2}
For $\beta \in B, N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=\underline{\mathbf{x}}^{\beta}$,
For $\alpha \in \partial B . N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\alpha}\right)=\underline{\mathbf{x}}^{\alpha}-h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})=\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta}$

- The tables of multiplication $M_{x_{i}}^{z}:\langle B\rangle \rightarrow\langle B\rangle$ are constructed using $M_{x_{i}}^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=N^{\mathbf{z}}\left(x_{i} \underline{\underline{x}}^{\beta}\right)$ for $\beta \in B$. These operators of multiplication commute.

Define a "normal form", N^{2}
For $\beta \in B, N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=\underline{\mathbf{x}}^{\beta}$,
For $\alpha \in \partial B . N^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\alpha}\right)=\underline{\mathbf{x}}^{\alpha}-h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})=\sum_{\beta \in B} z_{\alpha, \beta} \underline{\mathbf{x}}^{\beta}$

- The tables of multiplication $M_{x_{i}}^{z}:\langle B\rangle \rightarrow\langle B\rangle$ are constructed using $M_{x_{i}}^{\mathbf{z}}\left(\underline{\mathbf{x}}^{\beta}\right)=N^{\mathbf{z}}\left(x_{i} \underline{\underline{x}}^{\beta}\right)$ for $\beta \in B$. These operators of multiplication commute.
- Notice that the coefficients of the matrix of $M_{x_{i}}^{z}$ in the basis B are linear in the coefficients z 's.

Border equations

- Conversely, if we are interested in characterizing the coefficients $\mathbf{z}:=\left(z_{\alpha, \beta}\right)_{\alpha \in \partial B, \beta \in B}$ such that the polynomials $\left(h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})\right)_{\alpha \in B}$ are the border relations of some free A-algebra $\mathcal{A}^{\mathbf{z}}=A\left[x_{1}, \ldots, x_{n}\right] / I$ with basis B.

Border equations

- Conversely, if we are interested in characterizing the coefficients $\mathbf{z}:=\left(z_{\alpha, \beta}\right)_{\alpha \in \partial B, \beta \in B}$ such that the polynomials $\left(h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}})\right)_{\alpha \in B}$ are the border relations of some free A-algebra $\mathcal{A}^{\mathbf{z}}=A\left[x_{1}, \ldots, x_{n}\right] / I$ with basis B.Mourrain '99, and Kreuzer-Robbiano'08 proved

Theorem

Let B be a set of μ monomials connected to 1 . The polynomials $h_{\alpha}^{\mathbf{z}}(\underline{\mathbf{x}}), \mathbf{z} \in A$, are the border relations of some free quotient algebra \mathcal{A} of $A\left[x_{1}, \ldots, x_{n}\right]$ of basis B iff

$$
\begin{equation*}
M_{x_{i}}^{\mathrm{z}} \circ M_{x_{j}}^{\mathrm{z}}-M_{x_{j}}^{\mathrm{z}} \circ M_{x_{i}}^{\mathrm{z}}=0 \quad \text { for } \quad 1 \leqslant i<j \leqslant n . \tag{1}
\end{equation*}
$$

$$
\mathcal{H}_{B}:=\left\{\mathbf{z}=\left(z_{\alpha, \beta}\right) \in \mathbb{K}^{\partial B \times B} ; M_{x_{i}}^{\mathbf{z}} \circ M_{x_{j}}^{\mathbf{z}}-M_{x_{j}}^{\mathbf{z}} \circ M_{x_{i}}^{\mathbf{z}}=0_{1 \leqslant i<j \leqslant n}\right\}
$$

Perturbing equations

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $A=\mathbb{K}[[\varepsilon]], R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathbf{x}]=A[\mathbf{x}], \mathcal{A}:=R^{\varepsilon} / \mathrm{I}$ and, $(\mathbf{f})=\mathrm{I}$ with I^{0} describing the initial finite zero-set.

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $A=\mathbb{K}[[\varepsilon]], R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathbf{x}]=A[\mathbf{x}], \mathcal{A}:=R^{\varepsilon} / \mathrm{I}$ and, $(\mathbf{f})=\mathrm{I}$ with I^{0} describing the initial finite zero-set.Obstructions for flatness of

$$
\mathbb{K}[[\varepsilon]] \rightarrow \mathcal{A}
$$

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $A=\mathbb{K}[[\varepsilon]], R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathbf{x}]=A[\mathbf{x}], \mathcal{A}:=R^{\varepsilon} / \mathrm{I}$ and, $(\mathbf{f})=\mathrm{I}$ with I^{0} describing the initial finite zero-set.Obstructions for flatness of

$$
\mathbb{K}[[\varepsilon]] \rightarrow \mathcal{A}
$$

"isolated, embedded points, points going to infinite"

Perturbing equations

- Start with algebraic equations defining a finite set of points $\mathbf{f}^{0} \in \mathbb{K}\left[x_{1}, \ldots, x_{n}\right]^{s}$, let $I^{0}=\left(\mathbf{f}^{0}\right)$ the 0 -dim ideal and $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / I^{0}$.
- Let B be a set of monomials that is also a \mathbb{K}-basis for \mathcal{A}^{0}.
- Let us perturb the system $\mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots$, and let $A=\mathbb{K}[[\varepsilon]], R^{\varepsilon}=\mathbb{K}[[\varepsilon]][\mathrm{x}]=A[\mathrm{x}], \mathcal{A}:=R^{\varepsilon} / \mathrm{I}$ and, $(\mathbf{f})=\mathrm{I}$ with I^{0} describing the initial finite zero-set.Obstructions for flatness of

$$
\mathbb{K}[[\varepsilon]] \rightarrow \mathcal{A}
$$

Flatness means the monomial basis B is still a basis of \mathcal{A} as $\mathbb{K}[[\varepsilon]]$ module (assumed \mathcal{A} is finite $\mathbb{K}[[\varepsilon]]$ - module)

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathbf{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathbf{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.
- Consider the multiplicative set
$S=\{g(\boldsymbol{x}) \in A[x]: g(\boldsymbol{x}) \bmod \mathfrak{m}=1\}$

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathbf{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.
- Consider the multiplicative set
$S=\{g(\boldsymbol{x}) \in A[x]: g(\boldsymbol{x}) \bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[\mathbf{x}] / I$.

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.
- Consider the multiplicative set
$S=\{g(\boldsymbol{x}) \in A[x]: g(\boldsymbol{x}) \bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[\mathrm{x}] / \mathrm{I}$.

The effect of taking the extended ring is to keep only "the points to finite distance"

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.
- Consider the multiplicative set
$S=\{g(\boldsymbol{x}) \in A[x]: g(\boldsymbol{x}) \bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[\mathrm{x}] / \mathrm{I}$.

The effect of taking the extended ring is to keep only "the points to finite distance" The ring $S^{-1} \mathcal{A}$ is a finite A-module.

Flatness criterion

- More generally, let $(A, \mathfrak{m}, \mathbb{K})$ be a henselian ring. Start with a deformed situation $\mathbf{f} \in A[\mathbf{x}]^{s}, \mathbf{f}=\mathbf{f}^{0}+\varepsilon \mathbf{f}^{1}+\cdots ; \varepsilon \in \mathfrak{m}$, denote by $\mathrm{I}=(\mathbf{f}) \mathrm{A}[\mathbf{x}], \mathrm{I}^{0}=\left(\mathbf{f}^{0}\right) \mathbb{K}[\mathbf{x}]$ and $\mathcal{A}:=A[\mathbf{x}] / \mathrm{I}$ and the residual (initial) situation $\mathcal{A}^{0}=\mathbb{K}[\mathbf{x}] / 1^{0}$.
- Consider the multiplicative set
$S=\{g(\boldsymbol{x}) \in A[x]: g(\boldsymbol{x}) \bmod \mathfrak{m}=1\}$
- Let $\mathcal{A}_{a}:=S^{-1} \mathcal{A}=S^{-1} A[\mathbf{x}] / I$.

The effect of taking the extended ring is to keep only "the points to finite distance" The ring $S^{-1} \mathcal{A}$ is a finite A-module.

QUESTION:

Conditions for $\mathcal{A}=A[\mathbf{x}] / \mathrm{I}$ (resp. $\mathcal{A}_{a}=S^{-1}(A[\mathbf{x}] / \mathrm{I})$ to be a flat (hence free) A module? What can we say of a border basis of \mathcal{A} (or \mathcal{A}_{a}), assuming one knows a border basis mod. \mathfrak{m} ?

Flatness criterion (conti..)

Starting with border relations for the residual algebra \mathcal{A}^{0}

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

Flatness criterion (conti..)

Starting with border relations for the residual algebra \mathcal{A}^{0}

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

we try to lift them to get border relations in \mathcal{A}

Flatness criterion (conti..)

Starting with border relations for the residual algebra \mathcal{A}^{0}

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

We can lift h_{β}^{0} to \mathcal{A}, getting new elements \mathbf{f}^{β}, for $\beta \in \partial B$ s.t. $\mathbf{f}^{\beta} \in \mathrm{I}$. Then, let

$$
\tilde{h_{\beta}}=x^{\beta}-\sum z_{\alpha \beta}^{\tilde{\beta}} \mathbf{x}^{\alpha}
$$

for $\beta \in \partial B$ and $\alpha \in B$, where $z_{\alpha \beta}^{\tilde{\alpha}}$ are unknowns, that that we try to determine as elements of A s.t. $\quad z_{\alpha \beta} \bmod \cdot \mathfrak{m}=z_{\alpha \beta}^{0}$

Flatness criterion (conti..)

Starting with border relations for the residual algebra \mathcal{A}^{0}

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

We can lift h_{β}^{0} to \mathcal{A}, getting new elements \mathbf{f}^{β}, for $\beta \in \partial B$ s.t. $\mathbf{f}^{\beta} \in \mathbf{I}$. Then, let

$$
\tilde{h_{\beta}}=x^{\beta}-\sum z_{\alpha \beta}^{\tilde{\alpha}} \mathbf{x}^{\alpha}
$$

for $\beta \in \partial B$ and $\alpha \in B$, where $z_{\alpha \beta}^{\tilde{\alpha}}$ are unknowns, that that we try to determine as elements of A s.t. $\quad z_{\alpha \beta} \bmod \cdot \mathfrak{m}=z_{\alpha \beta}^{0}$
We reduce the generators \mathbf{f}^{β} 's with the \tilde{h}_{β} 's $(\beta \in \partial B$, and we impose the condition that the remainder must be zero.

Flatness criterion (conti..)

Starting with border relations for the residual algebra \mathcal{A}^{0}

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

We can lift h_{β}^{0} to \mathcal{A}, getting new elements \mathbf{f}^{β}, for $\beta \in \partial B$ s.t. $\mathbf{f}^{\beta} \in \mathbf{I}$. Then, let

$$
\tilde{h_{\beta}}=x^{\beta}-\sum z_{\alpha \beta}^{\tilde{\alpha}} \mathbf{x}^{\alpha}
$$

for $\beta \in \partial B$ and $\alpha \in B$, where $z_{\alpha \beta}^{\tilde{\alpha}}$ are unknowns, that that we try to determine as elements of A s.t. $\quad z_{\alpha \beta} \bmod \cdot \mathfrak{m}=z_{\alpha \beta}^{0}$
We reduce the generators \mathbf{f}^{β} 's with the \tilde{h}_{β} 's $(\beta \in \partial B$, and we impose the condition that the remainder must be zero.
Obtaining a Hensel system with a unique solution $z_{\alpha \beta} \in A$, lifting $z_{\alpha \beta}^{0}$.

Flatness criterion (conti..)

Starting with border relations for the residual algebra \mathcal{A}^{0}

$$
h_{\beta}^{0}:=x^{\beta}-\sum z_{\alpha \beta}^{0} x^{\alpha} ; z_{\alpha \beta}^{0} \in \mathbb{K}
$$

We can lift h_{β}^{0} to \mathcal{A}, getting new elements \mathbf{f}^{β}, for $\beta \in \partial B$ s.t. $\mathbf{f}^{\beta} \in \mathbf{I}$. Then, let

$$
\tilde{h_{\beta}}=x^{\beta}-\sum z_{\alpha \beta}^{\tilde{\alpha}} \mathbf{x}^{\alpha}
$$

for $\beta \in \partial B$ and $\alpha \in B$, where $z_{\alpha \beta}^{\tilde{\alpha}}$ are unknowns, that that we try to determine as elements of A s.t. $\quad z_{\alpha \beta} \bmod \cdot \mathfrak{m}=z_{\alpha \beta}^{0}$
We reduce the generators \mathbf{f}^{β} 's with the \tilde{h}_{β} 's $(\beta \in \partial B$, and we impose the condition that the remainder must be zero.
Obtaining a Hensel system with a unique solution $z_{\alpha \beta} \in A$, lifting $z_{\alpha \beta}^{0}$. Write $h_{\beta}=x^{\beta}-\sum z_{\alpha \beta} \mathbf{x}^{\alpha}$ and set

$$
\mathcal{H}:=\left(\left(h_{\beta}\right)_{\beta \in \partial B}\right) S^{-1} A[\mathbf{x}] \subset \mathrm{IS}^{-1} \mathrm{~A}[\mathbf{x}]
$$

Flatness criterion (conti..)

$$
\mathcal{H}:=\left(\left(h_{\beta}\right)_{\beta \in \partial B}\right) S^{-1} A[\mathbf{x}] \subset I S^{-1} \mathrm{~A}[\mathbf{x}]
$$

WE GET FLATNESS, iff the lifted border relations:

Flatness criterion (conti..)

$$
\mathcal{H}:=\left(\left(h_{\beta}\right)_{\beta \in \partial B}\right) S^{-1} A[\mathrm{x}] \subset \mathrm{S}^{-1} \mathrm{~A}[\mathrm{x}]
$$

WE GET FLATNESS, iff the lifted border relations:

- i) verify the equations of commutativity, in order to be border basis of $A[\mathbf{x}] /\left(h_{\alpha \beta}\right)$, and
- ii) generate the ideal of the beginning: $I S^{-1} \mathrm{~A}[\mathrm{x}]=\mathcal{H}$ (generators of I reduce to zero mod. the lifted equations)

Example

We consider the perturbation
$f_{1}^{\varepsilon}=x^{2}-\varepsilon x, f_{2}^{\varepsilon}=x y-\varepsilon x, f_{3}^{\varepsilon}=x y-\varepsilon y, f_{4}^{\varepsilon}=y^{2}-\varepsilon y, f_{5}^{\varepsilon}=\varepsilon x-\varepsilon^{2}$ ，
$f_{6}^{\varepsilon}=\varepsilon y-\varepsilon^{2}$ ．
－We have $I^{0}=\left(x^{2}, x y, y^{2}\right)$ and $I=\left(f_{1}^{\varepsilon}, \ldots, f_{6}^{\varepsilon}\right)$ ．
－The set $B=\{1, x, y\}$ is a basis of R / \mathfrak{I}^{0} and the border relations are $h_{x^{2}}^{0}=x^{2}$ ， $h_{x y}^{0}=x y, h_{y^{2}}^{0}=y^{2}$ ．As $h_{x^{2}}^{0}=f_{1}^{0}, h_{x y}^{0}=f_{2}^{0}, h_{y^{2}}^{0}=f_{4}^{0}$ ，these border relations lift in
－$\tilde{h}_{x^{2}}^{\varepsilon}=f_{1}^{\varepsilon}=x^{2}-\varepsilon x$ ，
－$\tilde{h}_{x y}^{\varepsilon}=f_{2}^{\varepsilon}=x y-\varepsilon x$ ，
－$\tilde{h}_{y^{2}}^{\varepsilon}=f_{4}^{\varepsilon}=y^{2}-\varepsilon y$ ．
－After reduction by the formal border relations and resolution of the corresponding（linear）system，we have $h_{m}^{\varepsilon}=\tilde{h}_{m}^{\varepsilon}$ ，so that $\mid \mathrm{S}^{-1} \mathrm{~A}[\mathrm{x}]=\mathcal{H}$ ．
－Only need to chek that the multiplication operators by x and y commute，so that the polynomials $h_{x^{2}}^{\varepsilon}, h_{x y}^{\varepsilon}, h_{y^{2}}^{\varepsilon}$ are border relations for B ．

Example: "The importance of being flat" (O. Wild)

Example:

$$
f_{1}:=y^{2}+\operatorname{ty} x^{2}+t, \quad f_{2}:=x^{3}+y x^{2}-t^{2}
$$

Example: "The importance of being flat" (O. Wild)

Example:

$$
f_{1}:=y^{2}+t y x^{2}+t, \quad f_{2}:=x^{3}+y x^{2}-t^{2}
$$

- $\mathrm{I}^{0}=\left(\mathrm{y}^{2}, \mathrm{x}^{3}+\mathrm{yx}^{2}\right)$ and $\mathrm{I}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \mathrm{S}^{-1} \mathbb{K}[[\mathrm{t}]][\mathrm{x}, \mathrm{y}]$ Setting $t=0$, the system has an isolated zero $(0,0)$ of multiplicity 6 .

Example: "The importance of being flat" (O. Wild)

Example:

$$
f_{1}:=y^{2}+\operatorname{ty} x^{2}+t, \quad f_{2}:=x^{3}+y x^{2}-t^{2}
$$

- $\mathrm{I}^{0}=\left(\mathrm{y}^{2}, \mathrm{x}^{3}+\mathrm{yx} \mathrm{x}^{2}\right)$ and $\mathrm{I}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \mathrm{S}^{-1} \mathbb{K}[[\mathrm{t}]][\mathrm{x}, \mathrm{y}]$ Setting $t=0$, the system has an isolated zero $(0,0)$ of multiplicity 6 .
- $\mathbf{h}_{\mathbf{y}^{2}}^{0}=y^{2}, h_{y^{2} x}^{0}=y^{2} x, h_{y^{2} x^{2}}^{0}=y^{2} x^{2}, \mathbf{h}_{x^{3}}^{0}=\mathbf{x}^{3}+\mathbf{x}^{2} \mathbf{y}, \mathbf{h}_{x^{3} y}^{0}=$ $\operatorname{red}\left(y h_{x^{3}}^{0}\right)=\mathbf{x}^{3} \mathbf{y}$ is a border basis for $\mathbb{K}[x, y] / I^{0}$,
$\partial B=\left\{1, x, y, x^{2}, x y, x^{2} y\right\}$

Example: "The importance of being flat" (O. Wild)

Example:

$$
f_{1}:=y^{2}+\operatorname{ty} x^{2}+t, \quad f_{2}:=x^{3}+y x^{2}-t^{2}
$$

- $\mathrm{I}^{0}=\left(\mathrm{y}^{2}, \mathrm{x}^{3}+\mathrm{yx} \mathrm{x}^{2}\right)$ and $\mathrm{I}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \mathrm{S}^{-1} \mathbb{K}[[\mathrm{t}]][\mathrm{x}, \mathrm{y}]$ Setting $t=0$, the system has an isolated zero $(0,0)$ of multiplicity 6 .
- $\mathbf{h}_{\mathrm{y}^{2}}^{0}=y^{2}, h_{y^{2} x}^{0}=y^{2} x, h_{y^{2} x^{2}}^{0}=y^{2} x^{2}, \mathbf{h}_{x^{3}}^{0}=\mathbf{x}^{3}+\mathbf{x}^{2} \mathbf{y}, \mathbf{h}_{x^{3} y}^{0}=$ $\operatorname{red}\left(y h_{x^{3}}^{0}\right)=\mathbf{x}^{3} \mathbf{y}$ is a border basis for $\mathbb{K}[x, y] / I^{0}$, $\partial B=\left\{1, x, y, x^{2}, x y, x^{2} y\right\}$ For t small enough the system has 6 roots be very near to $(0,0)$: a cluster and another more point away it.

Example: "The importance of being flat" (O. Wild)

Example:

$$
f_{1}:=y^{2}+t y x^{2}+t, \quad f_{2}:=x^{3}+y x^{2}-t^{2}
$$

- $I^{0}=\left(y^{2}, x^{3}+y x^{2}\right)$ and $I=\left(f_{1}, f_{2}\right) S^{-1} \mathbb{K}[[t]][x, y]$
- $\mathbf{h}_{\mathbf{y}^{2}}^{0}=y^{2}, h_{y^{2} x}^{0}=y^{2} x, h_{y^{2} x^{2}}^{0}=y^{2} x^{2}, \mathbf{h}_{x^{3}}^{0}=\mathbf{x}^{3}+\mathbf{x}^{2} \mathbf{y}, \mathbf{h}_{x^{3} y}^{0}=$ $\operatorname{red}\left(y h_{x^{3}}^{0}\right)=x^{3} y$ is a border basis for $\mathbb{K}[x, y] / I^{0}$, $\partial B=\left\{1, x, y, x^{2}, x y, x^{2} y\right\}$ For t small enough the system has 6 roots be very near to $(0,0)$: a cluster and another more point away it. Warning, this example doesn't correspond exactly to the last theorem. Here \mathcal{A}_{a} is not A-flat, a bigger ring $\mathcal{A}_{(\mathfrak{m}, x, y)}$ is A-flat. But it allow us to show how to construct efficiently a border basis for the cluster

Example: "The importance of being flat" (O. Wild)

Example:

$$
f_{1}:=y^{2}+t y x^{2}+t, \quad f_{2}:=x^{3}+y x^{2}-t^{2}
$$

- $I^{0}=\left(y^{2}, x^{3}+y x^{2}\right)$ and $I=\left(f_{1}, f_{2}\right) S^{-1} \mathbb{K}[[t]][x, y]$
- $\mathbf{h}_{\mathbf{y}^{2}}^{0}=y^{2}, h_{y^{2} x}^{0}=y^{2} x, h_{y^{2} x^{2}}^{0}=y^{2} x^{2}, \mathbf{h}_{x^{3}}^{0}=\mathbf{x}^{3}+\mathbf{x}^{2} \mathbf{y}, \mathbf{h}_{x^{3} y}^{0}=$ $\operatorname{red}\left(y h_{x^{3}}^{0}\right)=x^{3} y$ is a border basis for $\mathbb{K}[x, y] / I^{0}$, $\partial B=\left\{1, x, y, x^{2}, x y, x^{2} y\right\}$
- We introduce the \tilde{h} 's:

$$
\begin{aligned}
\tilde{h_{y^{2}}} & :=y^{2}+a_{0}+a_{1} x+a_{2} x^{2}+a_{3} y+a_{4} y x+a_{5} y x^{2} \\
\tilde{h_{x^{3}}} & :=x^{3}+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} y+b_{4} y x+b_{5} y x^{2} \\
\tilde{h_{x^{3} y}} & :=x^{3} y+c_{0}+c_{1} x+c_{2} x^{2}+c_{3} y+c_{4} x y+c_{5} x^{2} y
\end{aligned}
$$

Example: "The importance of being flat" (O. Wild)

Example:

$$
f_{1}:=y^{2}+\operatorname{ty} x^{2}+t, \quad f_{2}:=x^{3}+y x^{2}-t^{2}
$$

- $\mathrm{I}^{0}=\left(\mathrm{y}^{2}, \mathrm{x}^{3}+\mathrm{yx} \mathrm{x}^{2}\right)$ and $\mathrm{I}=\left(\mathrm{f}_{1}, \mathrm{f}_{2}\right) \mathrm{S}^{-1} \mathbb{K}[[\mathrm{t}]][\mathrm{x}, \mathrm{y}]$
- $\mathbf{h}_{\mathrm{y}^{2}}^{0}=y^{2}, h_{y^{2} x}^{0}=y^{2} x, h_{y^{2} x^{2}}^{0}=y^{2} x^{2}, \mathbf{h}_{x^{3}}^{0}=x^{3}+\mathbf{x}^{2} \mathbf{y}, \mathbf{h}_{x^{3} y}^{0}=$ $\operatorname{red}\left(y h_{x^{3}}^{0}\right)=x^{3} y$ is a border basis for $\mathbb{K}[x, y] / I^{0}$, $\partial B=\left\{1, x, y, x^{2}, x y, x^{2} y\right\}$
- We introduce the \tilde{h} 's:

$$
\begin{aligned}
\tilde{h_{y^{2}}} & :=y^{2}+a_{0}+a_{1} x+a_{2} x^{2}+a_{3} y+a_{4} y x+a_{5} y x^{2} \\
\tilde{h_{x^{3}}} & :=x^{3}+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} y+b_{4} y x+b_{5} y x^{2} \\
\tilde{h_{x^{3} y} y} & :=x^{3} y+c_{0}+c_{1} x+c_{2} x^{2}+c_{3} y+c_{4} x y+c_{5} x^{2} y
\end{aligned}
$$

- reduce f_{1}, f_{2} 's with \tilde{h} 's, obtaining some Hensel equations

$$
\begin{gathered}
a_{1}=a_{2}=a_{3}=a_{4}=0, b_{1}=b_{2}=b_{3}=b_{4}=0 \\
a_{0}=t, b_{0}=-t^{2}, a_{5}=t, b_{5}=1,
\end{gathered}
$$

$$
\begin{gathered}
c_{2}=\frac{t\left(1+t c_{5}\right)^{2}}{-1-3 t c_{5}-3 t^{2} c_{5}^{2}-t^{3} c_{5}^{3}+t^{5}} \\
c_{0}=\frac{t^{3} c_{2}}{1+t c_{5}}, c_{1}=\frac{t^{4} c_{2}}{\left(1+t c_{5}\right)^{2}}, c_{3}=\frac{-t^{2}}{1+t c_{5}}, c_{4}=\frac{-t^{3}}{\left(1+t c_{5}\right)^{2}} \\
-t^{6} c_{5}^{7}-6 t^{5} c_{5}^{6}-15 t^{4} c_{5}^{5}+\left(-20 t^{3}+t^{8}+t^{6}\right) c_{5}^{4}+\left(-15 t^{2}+4 t^{5}+2 t^{7}\right) c_{5}^{3} \\
\\
+\left(6 t^{4}-6 t\right) c_{5}^{2}+\left(-1-2 t^{5}+4 t^{3}\right) c_{5}+\left(t^{2}+t^{9}-t^{4}\right)
\end{gathered}
$$

- We approximate till o $\left(t^{10}\right)$ with Newton method the rational functions, and the "unique" solution of the last equation near zero

$$
\begin{gathered}
t^{2}-t^{4}+4 t^{5}-6 t^{7}+16 t^{8}+3 t^{9}+O\left(t^{10}\right) \\
t^{2}-t^{4}-2 t^{5}+6 t^{7}+7 t^{8}-3 t^{9}+O\left(t^{10}\right) \\
t^{2}-t^{4}-2 t^{5}+6 t^{7}+7 t^{8}-3 t^{9}- \\
35 t^{10}-30 t^{11}+45 t^{12}+210 t^{13}+128 t^{14}+O\left(t^{15}\right)
\end{gathered}
$$

- Using $c_{5}=t^{2}-t^{4}-2 t^{5}$, or $c_{5}=t^{2}$, leads to the two following (approximating) matrices for the multiplication by y in the basis of monomials under the staircase:

$$
\begin{aligned}
\text { aprMy }: & {\left[\begin{array}{cccccc}
0 & 0 & -t & 0 & -t^{3}-t^{5} & -t^{4}+2 t^{7} \\
0 & 0 & 0 & 0 & -t-t^{6} & -t^{5} \\
1 & 0 & 0 & 0 & -t^{3}+t^{6} & t^{5}-t^{7} \\
0 & 0 & 0 & 0 & -t^{2}+t^{5} & -t+t^{4}-2 t^{6}-3 t^{7} \\
0 & 1 & 0 & 0 & -t^{4}+2 t^{7} & -t^{3}+2 t^{6} \\
0 & 0 & -t & 1 & t^{3}-t^{5}-2 t^{6} & t^{2}-t^{4}-2 t^{5}+4 t^{7}
\end{array}\right] } \\
& \text { AprMy:=}\left[\begin{array}{cccccc}
0 & 0 & -t & 0 & -t^{3} & -t^{4} \\
0 & 0 & 0 & 0 & -t & -t^{5} \\
1 & 0 & 0 & 0 & -t^{3} & t^{5} \\
0 & 0 & 0 & 0 & -t^{2} & -t \\
0 & 1 & 0 & 0 & -t^{4} & -t^{3} \\
0 & 0 & -t & 1 & t^{3} & t^{2}
\end{array}\right]
\end{aligned}
$$

We may use the characteristic polynomial of one of these matrices. For small values of t, say $|t| \leq 10^{-2}$, the second one is sufficient:

$$
\begin{aligned}
\text { Gy }= & y^{6}+\left(-t^{2}+t^{4}\right) y^{5}+\left(t^{6}+3 t\right) y^{4}+\left(t^{7}+t^{8}+t^{10}-2 t^{3}\right) y^{3} \\
& +\left(t^{7}+3 t^{2}\right) y^{2}+\left(-t^{6}+2 t^{9}-t^{4}\right) y+\left(t^{3}-t^{8}\right)
\end{aligned}
$$

Computing with 12 digits we get correct answers up to many digits for the cluster of six roots. The same computation, when using a floating point Gröbner basis computation needs arround 200 digits of precision.

Construction $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Construction $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$

Construction $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

Hilb $_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$

Construction $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

$\mathbf{H i l b}_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$

- If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the
homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short $)$
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right.$ homog. sat. ideal :
S_{d}^{A} / I_{d} is A locally free mod. of rank $\left.\mu \forall d \gg 0\right\}$

Construction $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

$\mathbf{H i l b}_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$

- If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the
homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short $)$
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right.$ homog. sat. ideal :
S_{d}^{A} / I_{d} is A locally free mod. of rank $\left.\mu \forall d \gg 0\right\}$
This set has a structure of scheme.

Construction $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

$\mathbf{H i l b}_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$

- If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short $)$
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right.$ homog. sat. ideal :
S_{d}^{A} / I_{d} is A locally free mod. of rank $\left.\mu \forall d \gg 0\right\}$
- One can cover the functor $\mathbf{H i l b}_{\mathbb{P}^{n}}^{\mu}$ with an open covering of affine representable subfunctors namely

Construction $\operatorname{Hilb}^{\mu}\left(\mathbb{P}^{n}\right)$

$\mathbf{H i l b}_{\mathbb{P}^{n}}^{\mu}=$ The Hilbert functor of \mathbb{P}^{n} relative to $\mu \in \mathbb{Z}^{+}$ $\mathcal{C}=$ Schemes of finite type over $\mathbb{K} \Longrightarrow$ Sets
$X \mapsto\left\{\right.$ flat families $Z \subset X \times \mathbb{P}^{n}$ with fibers having Hilbert polynomial $\left.\mu\right\}$

- If $X=\operatorname{Spec}(A), A$ is a \mathbb{K}-algebra of finite type, and the homogeneous ring $S^{A}=A\left[x_{0}, \ldots, x_{n}\right]\left(S^{A}=: S\right.$ for short $)$
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{I \subset S^{A}\right.$ homog. sat. ideal :
S_{d}^{A} / I_{d} is A locally free mod. of rank $\left.\mu \forall d \gg 0\right\}$
- One can cover the functor $\mathbf{H i l b}_{\mathbb{P}^{n}}^{\mu}$ with an open covering of affine representable subfunctors namely \mathbf{H}_{u}^{B} (B a set of μ monomials of degree, stable by division and $u \in S_{1}$; s.t. \mathbf{H}_{u}^{B} is represented by $\operatorname{Spec}\left(\mathbb{K}\left[\left(z_{\alpha, \beta}\right)_{\alpha \in \delta B, \beta \in B}\right] / \mathcal{R}\right)$, where \mathcal{R} is the ideal of commutating relations.

Plucker coordinates

We assume A is a local ring.

Plucker coordinates

We assume A is a local ring.

- Let $X=\operatorname{Spec}(A)$, and
$\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$

Plucker coordinates

We assume A is a local ring.

- Let $X=\operatorname{Spec}(A)$, and
$\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$

$$
\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

Plucker coordinates

We assume A is a local ring.

- Let $X=\operatorname{Spec}(A)$, and
$\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$

$$
\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

- Consider the Plucker coordinates in in $\mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)$:

Plucker coordinates

We assume A is a local ring.

- Let $X=\operatorname{Spec}(A)$, and $\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$

$$
\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

- Consider the Plucker coordinates in in $\mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)$:
- Let $\Delta=S_{d} / I_{d} \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$, and $\left(\delta_{1}, \ldots, \delta_{\mu}\right)$ in be any basis of the dual space Δ^{*} (also a free A-module of rank μ).

Plucker coordinates

We assume A is a local ring.

- Let $X=\operatorname{Spec}(A)$, and
$\operatorname{Gr}_{S_{d}^{*}}^{\mu}(X)=\left\{\Delta: \Delta=S_{d} / I_{d}: A\right.$ free module of rank $\left.\mu\right\}$

$$
\mathbf{G r}_{S_{d}^{*}}^{\mu}(X) \hookrightarrow \mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)
$$

- Consider the Plucker coordinates in in $\mathbb{P}\left(\wedge^{\mu}\left(S_{d}^{A}\right)^{*}\right)$:
- Let $\Delta=S_{d} / I_{d} \in \mathbf{G r}_{S_{d}^{*}}^{\mu}(X)$, and $\left(\delta_{1}, \ldots, \delta_{\mu}\right)$ in be any basis of the dual space Δ^{*} (also a free A-module of rank μ).
- Plücker coordinates of Δ as an element of $\mathbb{P}\left(\wedge^{\mu} S_{d}^{*}\right)$ are given by:

$$
\Delta_{\beta_{1}, \ldots, \beta_{\mu}}=\left|\begin{array}{ccc}
\delta_{1}\left(\mathbf{x}^{\beta_{1}}\right) & \cdots & \delta_{1}\left(\mathbf{x}^{\beta_{\mu}}\right) \\
\vdots & & \vdots \\
\delta_{\mu}\left(\mathbf{x}^{\beta_{1}}\right) & \cdots & \delta_{\mu}\left(\mathbf{x}^{\beta_{\mu}}\right)
\end{array}\right|
$$

for $\beta_{i} \in \mathbb{N}^{n+1},\left|\beta_{i}\right|=d$ and $\beta_{1}<\cdots<\beta_{\mu}$.

The $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ inside the $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ as projective variety is given by means of the bijection
$\operatorname{Hilb}_{\mathbb{P} n}^{\mu}(X) \longleftrightarrow$

$$
W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\}
$$

The $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ inside the $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ as projective variety is given by means of the bijection
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow$

$$
\begin{gathered}
W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\} . \\
\\
I_{d} \mapsto \overline{I_{d}}=\left(I_{d}\right)+\left(I_{d}: S_{1}\right)+\left(I_{d}: S_{2}\right)+\cdots+\left(I_{d}: S_{d-1}\right)
\end{gathered}
$$

The $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ inside the $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ as projective variety is given by means of the bijection
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow$

$$
\begin{gathered}
W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\} . \\
\\
I_{d} \mapsto \overline{I_{d}}=\left(I_{d}\right)+\left(I_{d}: S_{1}\right)+\left(I_{d}: S_{2}\right)+\cdots+\left(I_{d}: S_{d-1}\right)
\end{gathered}
$$

- This holds by Gotzmann Persistence, and Regularity thms, and There is an elementary proof by using border basis.

The $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ inside the $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$

- Algebraic structure of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ as projective variety is given by means of the bijection

$$
\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow
$$

$$
\begin{gathered}
W^{A}=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\} . \\
\\
\\
I_{d} \mapsto \overline{I_{d}}=\left(I_{d}\right)+\left(I_{d}: S_{1}\right)+\left(I_{d}: S_{2}\right)+\cdots+\left(I_{d}: S_{d-1}\right)
\end{gathered}
$$

- This holds by Gotzmann Persistence, and Regularity thms, and There is an elementary proof by using border basis.
- In A-B-M (2008), Brachat-Lella-Mourrain-Roggero (2010), Lederer (?), find an inmersion of it inside the $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$ with global equations of degree two. In the following we show how to get it inside a product of Grasmanians with equations of degree two.

Global equations for $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$

- I) A Determinantal identity.

Global equations for $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$

- I) A Determinantal identity. Let $\Delta:=S_{d}^{A} / I_{d} \in \mathcal{G} r_{s_{d}^{*}}^{\mu}(X)$,
$B=\left(b_{1}, \ldots, b_{\mu}\right)$ be a family of homogeneous polynomials of degree d, then,

$$
\Delta_{B} a-\sum_{i=1}^{\mu} \Delta_{B}\left[b_{i} \mid a\right] \quad b_{i}=0 \text { in } \Delta \text {, for } a \in S_{d}^{A}
$$

where $B^{\left[b_{i} \mid a\right]}=\left(b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{\mu}\right)$.

Global equations for $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$

- I) A Determinantal identity. Let $\Delta:=S_{d}^{A} / I_{d} \in \mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$,
$B=\left(b_{1}, \ldots, b_{\mu}\right)$ be a family of homogeneous polynomials of degree d, then,

$$
\Delta_{B} a-\sum_{i=1}^{\mu} \Delta_{B_{B}^{\left[b_{i} / a\right]}} b_{i}=0 \text { in } \Delta \text {, for } a \in S_{d}^{A}
$$

where $B^{\left[b_{i} / a\right]}=\left(b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{\mu}\right)$. Let it be

$$
M:=\left[\begin{array}{cccc}
\delta_{1}(a) & \delta_{1}\left(b_{1}\right) & \cdots & \delta_{1}\left(b_{\mu}\right) \\
\vdots & & & \vdots \\
\delta_{\mu}(a) & \delta_{\mu}\left(b_{1}\right) & \cdots & \delta_{\mu}\left(b_{\mu}\right) \\
1 & 1 & \cdots & 1
\end{array}\right]
$$

As $M \operatorname{Adj}(M)^{t}=\operatorname{det}(M) \mathrm{I}_{(\mu+1) \times(\mu+1)}$. We get the last equality

$$
M\left[\begin{array}{c}
\Delta_{B} \\
\Delta_{B^{\left[b_{1} \mid a\right]}} \\
\vdots \\
\Delta_{B^{\left[b_{\mu} \mid a\right]}}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
\operatorname{det}(M)
\end{array}\right]
$$

Developing this product, the first μ coordinates show that every δ_{j} vanishes at $\Delta_{B} a-\sum_{i=1}^{P} \Delta_{B^{\left[b_{i} \mid a\right]}} b_{i}=0$, therefore $\Delta_{B} a-\sum_{i=1}^{\mu} \Delta_{B^{\left[b_{i} \mid a\right]}} b_{i}=0 \in \Delta$.

Conti.

Theorem: Let $d \geq \mu$ be an integer. Hilb $_{\mathbb{P}^{n}}^{\mu}(X)$ is the projection on $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B[b] a]} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.

Conti.

Theorem: Let $d \geq \mu$ be an integer. Hilb $_{\mathbb{P}^{n}}^{\mu}(X)$ is the projection on $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B[b] a} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above.

Conti.

Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ is the projection on $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B^{[b \mid a]}} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above.
$\Delta=S_{d} / I_{d}$ with $\operatorname{ker}(\Delta):=I$ satur. homog. ideal of S_{d}.)

Conti.

Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ is the projection on $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B^{[b \mid a]}} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above.
$\Delta=S_{d} / I_{d}$ with $\operatorname{ker}(\Delta):=I$ satur. homog. ideal of S_{d}.)
Let us to prove that $S_{1} \cdot \operatorname{ker} \Delta \subset \operatorname{ker} \Delta^{\prime}$. Let B be a basis of Δ (so that Δ_{B} is invertible in A), and let f be an element of ker Δ.

Conti.

Theorem: Let $d \geq \mu$ be an integer. $\operatorname{Hilb}_{\mathbb{D}^{n}}^{\mu}(X)$ is the projection on $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B[b \mid a]} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof. Let $\left(\Delta, \Delta^{\prime}\right) \in \mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ satisfying the equations above.
$\Delta=S_{d} / I_{d}$ with $\operatorname{ker}(\Delta):=I$ satur. homog. ideal of S_{d}.)
Let us to prove that $S_{1} \cdot \operatorname{ker} \Delta \subset \operatorname{ker} \Delta^{\prime}$. Let B be a basis of Δ (so that Δ_{B} is invertible in A), and let f be an element of ker Δ. By linearity, equations above imply that $\Delta_{B^{\prime}, x_{k} f}^{\prime}=0$ for all $k=1, \ldots, n$ and all subset B^{\prime} of $\mu-1$ monomials of degree $d+1$ (because $\Delta_{B[b \mid f]}=0$).

Conti.

Theorem: Let $d \geq \mu$ be an integer. Hilb $_{\mathbb{P}^{n}}^{\mu}(X)$ is the projection on $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X)$ of the variety of $\mathcal{G} r_{S_{d}^{*}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{*}}^{\mu}(X)$ defined by the equations

$$
\Delta_{B} \Delta_{B^{\prime}, x_{k} a}^{\prime}-\sum_{b \in B} \Delta_{B[b \mid]]} \Delta_{B^{\prime}, x_{k} b}^{\prime}=0,
$$

for all families B (resp. B^{\prime}) of μ (resp. $\mu-1$) monomials of degree d (resp. $d+1$), all monomial $a \in S_{d}^{A}$ and for every k (where $B^{\prime}, x_{k} a$ is the family $\left(b_{1}^{\prime}, \ldots, b_{\mu-1}^{\prime}, x_{k} a\right)$.
Proof.The reciprocal argument is similar using the same determinantal equality.

Equations for $\mu=n=2$

$$
\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow
$$

$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\}$.
Its projection on $\mathcal{G} r_{S_{d}^{A *}}^{\mu}(X)$ gives the embedd. of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ in a Grasmanian.

Equations for $\mu=n=2$

$$
\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow
$$

$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\}$.
Its projection on $\mathcal{G} r_{S^{A *}}^{\mu}(X)$ gives the embedd. of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ in a Grasmanian. The equations are computed with the same technique, but they are more involved.

Equations for $\mu=n=2$

$$
\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow
$$

$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\}$.
Its projection on $\mathcal{G} r_{S^{A *}}^{\mu}(X)$ gives the embedd. of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ in a Grasmanian. The equations are computed with the same technique, but they are more involved. For $\mu=n=2$ we obtain, plus permutation of x, y and z :

Equations for $\mu=n=2$

$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow$
$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\}$.
Its projection on $\mathcal{G} r_{S^{A} *}^{\mu}(X)$ gives the embedd. of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ in a
Grasmanian. The equations are computed with the same technique, but they are more involved. For $\mu=n=2$ we obtain, plus permutation of x, y and z :

Equations for $\mu=n=2$

$\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X) \longleftrightarrow$

$$
\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)=\left\{\left(S_{d}^{A} / I_{d}, S_{d+1}^{A} / I_{d+1}\right) \in \mathcal{G} r_{S_{d}^{A *}}^{\mu}(X) \times \mathcal{G} r_{S_{d+1}^{A *}}^{\mu}(X) \mid S_{1}^{A} \cdot I_{d}=I_{d+1}\right\}
$$

Its projection on $\mathcal{G} r_{S_{A *}^{A *}}^{\mu}(X)$ gives the embedd. of $\operatorname{Hilb}_{\mathbb{P}^{n}}^{\mu}(X)$ in a Grasmanian. The equations are computed with the same technique, but they are more involved. For $\mu=n=2$ we obtain, plus permutation of x, y and z :

- They come from: commutation of the multiplication by the variables and by considering multiplication and changes of chart w.r.t the Plucker coordinates. The same were obtained by Brodsky-Sturmfels (2010), using Groebner bases.

The Tangent space to the punctual Hilbert scheme

The Tangent space to the punctual Hilbert scheme

We consider the border relations at a point: $h_{\alpha}^{0} \alpha \in B$

The Tangent space to the punctual Hilbert scheme

We consider the border relations at a point: $h_{\alpha}^{0} \alpha \in B$

- Write $h_{\alpha}^{\varepsilon}=h_{\alpha}^{0}+\varepsilon h_{\alpha}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ where $h_{\alpha}^{1}(\boldsymbol{x}):=\sum_{\beta \in B} h_{\alpha, \beta}^{1} \boldsymbol{x}^{\beta}$.

The Tangent space to the punctual Hilbert scheme

We consider the border relations at a point: $h_{\alpha}^{0} \alpha \in B$

- Write $h_{\alpha}^{\varepsilon}=h_{\alpha}^{0}+\varepsilon h_{\alpha}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ where $h_{\alpha}^{1}(\boldsymbol{x}):=\sum_{\beta \in B} h_{\alpha, \beta}^{1} \boldsymbol{x}^{\beta}$.

Determine the linear system satisfied by $\boldsymbol{h}^{1}:=\left(h_{\alpha, \beta}^{1}\right)_{\alpha \in \partial B, \beta \in B}$.

The Tangent space to the punctual Hilbert scheme

We consider the border relations at a point: $h_{\alpha}^{0} \alpha \in B$

- Write $h_{\alpha}^{\varepsilon}=h_{\alpha}^{0}+\varepsilon h_{\alpha}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ where $h_{\alpha}^{1}(\boldsymbol{x}):=\sum_{\beta \in B} h_{\alpha, \beta}^{1} \boldsymbol{x}^{\beta}$.

Determine the linear system satisfied by $\boldsymbol{h}^{1}:=\left(h_{\alpha, \beta}^{1}\right)_{\alpha \in \partial B, \beta \in B}$.

- Operator multiplication by $x_{i}: M_{x_{i}}^{\varepsilon}$ decomposes:
$M_{x_{i}}^{\varepsilon}=M_{x_{i}}^{0}+\varepsilon M_{x_{i}}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$, where $M_{x_{i}}^{0}$ is the operator of multiplication by x_{i} in \mathcal{A}^{0} and $M_{x_{i}}^{1}$ is linear in \boldsymbol{h}^{1}.

The Tangent space to the punctual Hilbert scheme

We consider the border relations at a point: $h_{\alpha}^{0} \alpha \in B$

- Write $h_{\alpha}^{\varepsilon}=h_{\alpha}^{0}+\varepsilon h_{\alpha}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ where $h_{\alpha}^{1}(\boldsymbol{x}):=\sum_{\beta \in B} h_{\alpha, \beta}^{1} \boldsymbol{x}^{\beta}$.

Determine the linear system satisfied by $\boldsymbol{h}^{1}:=\left(h_{\alpha, \beta}^{1}\right)_{\alpha \in \partial B, \beta \in B}$.

- Operator multiplication by $x_{i}: M_{x_{i}}^{\varepsilon}$ decomposes:
$M_{x_{i}}^{\varepsilon}=M_{x_{i}}^{0}+\varepsilon M_{x_{i}}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$, where $M_{x_{i}}^{0}$ is the operator of multiplication by x_{i} in \mathcal{A}^{0} and $M_{x_{i}}^{1}$ is linear in \boldsymbol{h}^{1}.
The commutation implies

$$
\begin{gathered}
M_{x_{i}}^{\varepsilon} \circ M_{x_{j}}^{\varepsilon}-M_{x_{j}}^{\varepsilon} \circ M_{x_{i}}^{\varepsilon}=\left(M_{x_{i}}^{0} \circ M_{x_{j}}^{0}-M_{x_{j}}^{0} \circ M_{x_{i}}^{0}\right)+ \\
+\varepsilon\left(M_{x_{i}}^{1} \circ M_{x_{j}}^{0}+M_{x_{i}}^{0} \circ M_{x_{j}}^{1}-M_{x_{j}}^{1} \circ M_{x_{i}}^{0}-M_{x_{j}}^{0} \circ M_{x_{i}}^{1}\right)+\mathcal{O}\left(\varepsilon^{2}\right) \\
=\varepsilon\left(M_{x_{i}}^{1} \circ M_{x_{j}}^{0}+M_{x_{i}}^{0} \circ M_{x_{j}}^{1}-M_{x_{j}}^{1} \circ M_{x_{i}}^{0}-M_{x_{j}}^{0} \circ M_{x_{i}}^{1}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{gathered}
$$

- We deduce the linear equations in \boldsymbol{h}^{1}
$M_{x_{i}}^{1} \circ M_{x_{j}}^{0}+M_{x_{i}}^{0} \circ M_{x_{j}}^{1}-M_{x_{j}}^{1} \circ M_{x_{i}}^{0}-M_{x_{j}}^{0} \circ M_{x_{i}}^{1}=0(1 \leqslant i<j \leqslant n)[* * *]$
The above are the equations of the Tangent space $T_{l_{0}}$ to the variety $\mathcal{H}_{\mathcal{B}}$ at the point I_{0} whose border relations are $\left(h_{\alpha}^{0}\right)_{\alpha}$

THANK YOU FOR YOUR ATTENTION!

