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K field

P = K[x1, . . . , xn] polynomial ring

I ⊂ P 0-dimensional ideal (i.e. dimK(P/I) < ∞)

X = Spec(P/I) 0-dimensional subscheme of An of length

µ = dimK(P/I)
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Definition 1.1 (a) A divisor closed set of terms O = {t1, . . . , tµ} is

called an order ideal of terms.

(b) The border of O is ∂O = (x1O ∪ · · · ∪ xnO) \ O. We write

∂O = {b1, . . . , bν}.

(c) Let γij ∈ K. Then the set G = {g1, . . . , gν} such that

gj = bj −
∑µ

i=1 γij ti is called an O-border prebasis.

(d) An O-border prebasis G is called an O-border basis of I if

I = ⟨G⟩ and if O represents a K-basis of R = P/I .
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Picture of an order ideal and its border
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Picture of an order ideal and its border

• term in the order ideal ◦ term in the border
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Definition 1.2 Let G be an O-border prebasis as above. For

r = 1, . . . , n, the matrix Ar = (a(r)ij ) ∈ Matµ(K), where

a(r)ij =

⎧
⎨

⎩
δim if xrtj = tm

γim if xrtj = bm

is called the r-th formal multiplication matrix for G.
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Definition 1.2 Let G be an O-border prebasis as above. For

r = 1, . . . , n, the matrix Ar = (a(r)ij ) ∈ Matµ(K), where

a(r)ij =

⎧
⎨

⎩
δim if xrtj = tm

γim if xrtj = bm

is called the r-th formal multiplication matrix for G.

Theorem 1.3 (Mourrain)

An O-border prebasis G ⊂ I is an O-border basis of I if and only if

the formal multiplication matrices commute, i.e. if and only if

AiAj −AjAi = 0 for 1 ≤ i < j ≤ n.
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2 – Border Basis Schemes

The problem with internet quotes is

that you can’t always rely on their accuracy.

(Abraham Lincoln, 1864)

P = K[x1, . . . , xn] polynomial ring over a field K

O = {t1, . . . , tµ} order ideal with border ∂O = {b1, . . . , bν}

Definition 2.1 Let cij be indeterminates. Then the set

G = {g1, . . . , gν} such that gj = bj −
∑µ

i=1 cij ti is called the generic

O-border prebasis.
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Definition 2.2 (a) For r = 1, . . . , n, the matrix

Ar = (a(r)ij ) ∈ Matµ(K[cij ]), where

a(r)ij =

⎧
⎨

⎩
δim if xrtj = tm

cim if xrtj = bm

is called the r-th generic multiplication matrix for O.
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Definition 2.2 (a) For r = 1, . . . , n, the matrix

Ar = (a(r)ij ) ∈ Matµ(K[cij ]), where

a(r)ij =

⎧
⎨

⎩
δim if xrtj = tm

cim if xrtj = bm

is called the r-th generic multiplication matrix for O.

(b) Consider the ideal in K[cij ] which is generated by all entries of

the commutator matrices ArAs −AsAr with 1 ≤ r < s ≤ n. Then

the subscheme of Aµν
K = Spec(K[cij ]) defined by this ideal is called

the O-border basis scheme. It is denoted by BO, its vanishing

ideal is denoted by I(BO), and its affine coordinate ring is denoted by

BO = K[c11, . . . , cµν ]/I(BO).
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Example 2.3 Let O = {1, x, y, xy} ⊆ T2. Then we have

Ax =

⎛

⎜⎜⎜⎜⎜
⎝

0 c12 0 c14

1 c22 0 c24

0 c32 0 c34

0 c42 1 c44

⎞

⎟⎟⎟⎟⎟
⎠

and Ay =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 c11 c13

0 0 c21 c23

1 0 c31 c33

0 1 c41 c43

⎞

⎟⎟⎟⎟⎟
⎠
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Example 2.3 Let O = {1, x, y, xy} ⊆ T2. Then we have

Ax =

⎛

⎜⎜⎜⎜⎜
⎝

0 c12 0 c14

1 c22 0 c24

0 c32 0 c34

0 c42 1 c44

⎞

⎟⎟⎟⎟⎟
⎠

and Ay =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 c11 c13

0 0 c21 c23

1 0 c31 c33

0 1 c41 c43

⎞

⎟⎟⎟⎟⎟
⎠

and the defining ideal of BO is generated by

{ c11c32 + c13c42 − c14, c12c21 + c14c41 − c13,

c21c32 + c23c42 − c24, c12c23 − c11c34 + c14c43 − c13c44,

c21c22 + c24c41 + c11 − c23, c23c32 − c31c34 + c34c43 − c33c44 − c14,

c31c32 + c33c42 + c12 − c34, c22c23 − c21c34 + c24c43 − c23c44 + c13,

c21c32 + c34c41 − c33, c32c41 + c42c43 + c22 − c44,

c21c42 + c41c44 + c31 − c43, c34c41 − c23c42 + c24 − c33 }
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Remark 2.4 (a) The border basis scheme is an open subscheme of

the Hilbert scheme Hilbµ(An) parametrizing all 0-dimensional

subschemes of An of length µ.
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Remark 2.4 (a) The border basis scheme is an open subscheme of

the Hilbert scheme Hilbµ(An) parametrizing all 0-dimensional

subschemes of An of length µ.

(b) Note that its affine coordinate ring is given by easily computable

quadratic equations.

(c) The various border basis schemes for order ideals with µ elements

cover the Hilbert scheme.

Idea: Using the generic multiplication matrices and the algorithms

given in the preceding talk, we can calculate sets of equations which

define subschemes of BO parametrizing 0-dimensional schemes

having certain special properties such as Gorenstein schemes, CBP,

strict Gorenstein schemes, strict complete intersections, etc.
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3 – Computing the Locally Gorenstein Locus

90% of coding is debugging.

The other 10% is writing bugs.

(Bram Cohen)

O = {t1, . . . , tµ} order ideal in Tn

Definition 3.1 The set of all K-rational points Γ = (γij) ∈ Kµν of

the border basis scheme BO whose associated 0-dimensional

scheme XΓ is locally Gorenstein is called the locally Gorenstein

locus of BO and is denoted by LGor(O).
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Algorithm 3.2 (The Non-Locally Gorenstein Locus in BO)

The following steps compute an ideal in K[cij ] which defines the

complement of the locally Gorenstein locus in BO.
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Algorithm 3.2 (The Non-Locally Gorenstein Locus in BO)

The following steps compute an ideal in K[cij ] which defines the

complement of the locally Gorenstein locus in BO.

(1) Determine the generic multiplication matrices A1, . . . ,An for O.

(2) Calculate the commutators ArAs −AsAr for 1 ≤ r < s ≤ n and

form the ideal I(BO) in K[cij ] generated by their entries.

(3) Introduce new indeterminates z1, . . . , zµ and construct the

matrix C in Matµ(K[cij ][z1, . . . , zµ]) whose i-th column is given by

ti(A tr
1 , . . . ,A tr

n ) · (z1, . . . , zµ) tr.

(4) Compute det(C) in K[cij ][z1, . . . , zµ], and let J be the ideal

in K[cij ] generated by the coefficients of det(C) w.r.t. z1, . . . , zµ.

(5) Return the ideal I(BO) + J .
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Example 3.3 Let us compute the locally Gorenstein locus of BO in

the above example O = {1, x, y, xy}.
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Example 3.3 Let us compute the locally Gorenstein locus of BO in

the above example O = {1, x, y, xy}.

Let Z = (z1, z2, z3, z4) tr and form the matrix
C = (Z , AxZ , AyZ , AxAyZ). Its four columns are

Z,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0

c12 c22 c32 c42

0 0 0 1

c14 c24 c34 c44

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Z,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 1 0

0 0 0 1

c11 c21 c31 c41

c13 c23 c33 c43

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Z,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1

p1 p2 p3 p4

c13 c23 c33 c43

q1 q2 q3 q4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Z

where p1 = c11c32 + c13c42, p2 = c21c32 + c23c42,

p3 = c31c32 + c33c42 + c12, p4 = c32c41 + c42c43 + c22,

q1 = c11c34 + c13c44, q2 = c21c34 + c23c44, q3 = c31c34 + c33c44 + c14,

and q4 = c34c41 + c43c44 + c24.
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The determinant of C is a polynomial

det(C) = (−c211c14c32 + c211c12c34 − c11c13c14c42 + c11c12c13c44

− c12c
2
13) z

4
1 + · · ·+ (−c41c42 + 1) z44

in K[cij ][z1, z2, z3, z4] which is homogeneous of degree 4 with respect

to z1, . . . , z4 and has 35 non-zero coefficients in K[cij ]. Let J be the

ideal generated by these coefficients. Then the Non-Locally

Gorenstein Locus NonLGor(O) is defined by the ideal I(BO) + J .

Via the isomorphism BO
∼= P̃ = K[c21, c23, c32, c34, c41, c42, c43, c44],

we can examine NonLGor(O) further. Let J̃ be the image of J in P̃ .

Then we can compute a Gröbner basis of J̃ and check that

dim(P̃ /J̃) = 4. Hence NonLGor(O) is the set of closed points of a

4-dimensional closed subscheme of BO
∼= A8.
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Recall that the degree filtration of R = P/I is given by

FiR = P≤i/(I ∩ P≤i) for i ∈ Z.

Definition 4.1 (a) A tuple B = (t̄1, . . . , t̄µ) ∈ Rµ is called a degree

filtered K-basis of R if the set B ∩ FiR is a K-basis of FiR for

every i ∈ Z and if ord(t̄1) ≤ · · · ≤ ord(t̄µ).
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4 – The Degree Filtered Border Basis Scheme

The first five days after the weekend

are always the worst.

Recall that the degree filtration of R = P/I is given by

FiR = P≤i/(I ∩ P≤i) for i ∈ Z.

Definition 4.1 (a) A tuple B = (t̄1, . . . , t̄µ) ∈ Rµ is called a degree

filtered K-basis of R if the set B ∩ FiR is a K-basis of FiR for

every i ∈ Z and if ord(t̄1) ≤ · · · ≤ ord(t̄µ).

(b) We say that I has a degree filtered O-border basis if O is a

degree filtered K-basis of R.
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Proposition 4.2 For a K-rational point Γ = (γij) of BO, the

0-dimensional scheme XΓ associated to Γ has a degree filtered

O-border basis if and only if γij = 0 for all i ∈ {1, . . . , µ} and

j ∈ {1, . . . , ν} such that deg(ti) > deg(bj).
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O-border basis if and only if γij = 0 for all i ∈ {1, . . . , µ} and

j ∈ {1, . . . , ν} such that deg(ti) > deg(bj).

Definition 4.3 Let IdfO be the ideal in K[cij ] generated by all

indeterminates cij such that deg(ti) > deg(bj).

(a) The closed subscheme Bdf
O of BO defined by I(Bdf

O ) = I(BO) + IdfO
is called the degree filtered O-border basis scheme. Its affine

coordinate ring is denoted by Bdf
O = K[cij ]/I(Bdf

O ).
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Proposition 4.2 For a K-rational point Γ = (γij) of BO, the

0-dimensional scheme XΓ associated to Γ has a degree filtered

O-border basis if and only if γij = 0 for all i ∈ {1, . . . , µ} and

j ∈ {1, . . . , ν} such that deg(ti) > deg(bj).

Definition 4.3 Let IdfO be the ideal in K[cij ] generated by all

indeterminates cij such that deg(ti) > deg(bj).

(a) The closed subscheme Bdf
O of BO defined by I(Bdf

O ) = I(BO) + IdfO
is called the degree filtered O-border basis scheme. Its affine

coordinate ring is denoted by Bdf
O = K[cij ]/I(Bdf

O ).

(b) The set of polynomials Gdf = {gdf1 , . . . , gdfν } in K[cij ][x1, . . . , xn]

given by gj = bj −
∑

{i|deg(ti)≤deg(bj)}
cij ti is called the generic

degree filtered O-border prebasis.
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Remark 4.4 (Some Properties of Bdf
O )

Let Cnondf be the set of all indeterminates cij such that

deg(ti) > deg(bj).
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Remark 4.4 (Some Properties of Bdf
O )

Let Cnondf be the set of all indeterminates cij such that

deg(ti) > deg(bj).

(a) For k = 1, . . . , n, let Adf
k be the matrix obtained from Ak by

setting all indeterminates in Cnondf equal to zero. Then the matrices

Adf
1 , . . . ,Adf

n are called the generic degree filtered multiplication

matrices with respect to O.

(b)When we set the indeterminates in Cnondf equal to zero in I(BO),

we get an ideal Ī(Bdf
O ) such that Bdf

O
∼= K[Cdf ]/Ī(Bdf

O ).

(c) If O has a generic Hilbert function then BO = Bdf
O .

17-c
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Let O = {t1, . . . , tµ} be an order ideal in Tn.

Definition 5.1 The set of all K-rational points Γ = (γij) ∈ Kµν of

the border basis scheme BO whose associated 0-dimensional

scheme XΓ is a Cayley-Bacharach scheme is called the

Cayley-Bacharach locus of BO and is denoted by CB(O).
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5 – Computing the Cayley-Bacharach Locus

Great! It is summer!

Finally I can wear short trousers

while I play with my computer.

Let O = {t1, . . . , tµ} be an order ideal in Tn.

Definition 5.1 The set of all K-rational points Γ = (γij) ∈ Kµν of

the border basis scheme BO whose associated 0-dimensional

scheme XΓ is a Cayley-Bacharach scheme is called the

Cayley-Bacharach locus of BO and is denoted by CB(O).

Goal: Calculate the Cayley-Bacharach locus in Bdf
O , i.e. the

equations defining CB(O) ∩ Bdf
O .
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Algorithm 5.2 (The Cayley-Bacharach Locus in Bdf
O )

Let O = {t1, . . . , tµ} be an order ideal with deg(t1) ≤ · · · ≤ deg(tµ),

and let ∆ = #{i ∈ {1, . . . , µ} | deg(ti) = deg(tµ)}. The following

algorithm computes the vanishing ideal of NonCB(O) ∩ Bdf
O .
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Algorithm 5.2 (The Cayley-Bacharach Locus in Bdf
O )

Let O = {t1, . . . , tµ} be an order ideal with deg(t1) ≤ · · · ≤ deg(tµ),
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i = 1, . . . , µ, compute the multiplication matrix

Mti = ti(A1, . . . ,An).

(3) For j = 1, . . . ,∆, form the matrix Vj ∈ Matµ(K[cij ]) whose i-th

column is the (µ−∆+ j)-th column of M tr
ti

for i = 1, . . . , µ.

(4) Form the block column matrix W = Col(V1, . . . , V∆) and

compute the ideal J generated by the maximal minors of W .

(5) Return the ideal I(Bdf
O ) + J .
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6 – The Strict Complete Intersection Locus

The trouble with socialism is that eventually

you run out of other people’s money.

(Margaret Thatcher)

Definition 6.1 Let X be a 0-dimensional subscheme of An. The

scheme X is called a strict complete intersection scheme if the

associated graded ring grF (RX) ∼= P/DF(I) is a (local) complete

intersection.

Idea: The rings P/DF(I) are parametrized by the homogeneous

border basis scheme. Apply the characterization of local complete

intersections to this family.
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Definition 6.2 Let IhomO be the ideal in K[cij ] generated by all

indeterminates cij such that deg(ti) ̸= deg(bj).
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basis scheme. Its affine coordinate ring is Bhom
O = K[cij ]/I(Bhom

O ).

(b) The set of polynomials Ghom = {ghom1 , . . . , ghomν }

in K[cij ][x1, . . . , xn] given by ghomj = bj −
∑

{i|deg(ti)=deg(bj)}
cij ti is

called the generic homogeneous O-border prebasis.

(c) Let Chom be the set of all cij such that deg(ti) ̸= deg(bj). For

k = 1, . . . , n, let Ahom
k be the matrix obtained from Ak by setting all

indeterminates in Chom equal to zero. Then the matrices

Ahom
1 , . . . ,Ahom

n are called the generic homogeneous

multiplication matrices with respect to O.
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Algorithm 6.3 (Computing the Strict CI Locus in Bdf
O )

Let O = {t1, . . . , tµ} be an order ideal with deg(t1) ≤ · · · ≤ deg(tµ),

and let ϱ = deg(tµ). Consider the following sequence of instructions.
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O ) = I(BO) + IdfO

(3) Form the generic homogeneous O-border prebasis

Ghom = {ghom1 , . . . , ghomj } and write ghomj =
∑n

i=1 hijxi with

hij ∈ K[cij ][x1, . . . , xn] for j = 1, . . . , ν.

(4) Form the matrix W of size n× ν whose columns are given by
∑n

i=1 hijei for j = 1, . . . , ν.
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(5) Let k =
(
ν
n

)
. Calculate the minors f1, . . . , fk of order n of W .

23



(5) Let k =
(
ν
n

)
. Calculate the minors f1, . . . , fk of order n of W .

(6) Using border division by Ghom, write the residue classes

f̄1, . . . , f̄k ∈ Bhom
O /⟨Ghom⟩ as Bhom

O -linear combinations

f̄j =
∑µ
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(6) Using border division by Ghom, write the residue classes

f̄1, . . . , f̄k ∈ Bhom
O /⟨Ghom⟩ as Bhom

O -linear combinations

f̄j =
∑µ

i=1 āijti with ā1j , . . . , āµj ∈ Bhom
O for j = 1, . . . , k.

(7) Let Chom = {cij | deg(ti) = deg(bj)}. For i = 1, . . . , µ and

j = 1, . . . , k, let aij ∈ K[Chom] be a polynomial which represents the

āij with respect to Bhom
O

∼= K[Chom]/Ī(Bhom
O ). Return the ideal

J = I(Bdf
O ) + ⟨aij | i ∈ {1, . . . , µ}, j ∈ {1, . . . , k}⟩ and stop.

This is an algorithm which computes an ideal J in the ring K[cij ]

which defines a closed subscheme NonSCI(O) ∩ Bdf
O . The K-rational

points of this subscheme represent the 0-dimensional subschemes

of An which have a degree filtered O-border basis, but are not strict

complete intersection schemes.
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can describe explicitly, e.g.
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Outlook

(1) There are many other loci in the border bases scheme which we

can describe explicitly, e.g.

• strict Cayley-Bacharach schemes

• strict Gorenstein schemes

• locally Gorenstein Cayley-Bacharach schemes

(2) Many properties require us to fix the (affine) Hilbert function.

• The closed subscheme BO(H) of BO corresponds to all schemes

whose Hilbert function is dominated by a fixed Hilbert function H.

• Its open subset BO(H) corresponds to all schemes whose Hilbert

function is H.
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• The defining equations of BO(H) can be computed.
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• The defining equations of BO(H) can be computed.

(3) The various Hilbert function subschemes of BO form a tree at

whose root lies Bdf
O and whose unique leaf is the subscheme

corresponding to H : 1 2 · · · µ µ · · · .

(4) Inside the parts of this stratificaton we can calculate the

equations defining the loci of the subschemes which are locally

Gorenstein, Cayley-Bacharach, strict complete intersections, etc. In

general, these loci are constructible and can be described by a pair

of ideals.
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that 5-6 days later you are hungry again.

Thank you for your attention!
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THE END

The trouble with Spanish food is

that 5-6 days later you are hungry again.

Thank you for your attention!

Humor is if you laugh anyway.
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