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General Sources

A: Writing a good program
is like writing a good paper,

but a program also needs to be fast.
(John Abbott)

B: Writing a good program
is like writing a good paper,

but a compiler is a lot fussier than a referee.
(Anna Maria Bigatti)

J. Abbott, A.M. Bigatti, L. Robbiano, CoCoA: a system for doing Computations
in Commutative Algebra. Available at http://cocoa.dima.unige.it

M. Kreuzer, L. Robbiano, COMPUTATIONAL COMMUTATIVE ALGEBRA 1, 2,
Springer (2000, 2005)

M. Kreuzer, L. Robbiano, COMPUTATIONAL LINEAR AND COMMUTATIVE
ALGEBRA, Springer (2016)
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Specific Sources

L.N. Long, Various differents for 0-dimensional schemes and applications,
dissertation, University of Passau, Passau, (2015).

M. Kreuzer, L. N. Long, L. Robbiano, On the Cayley-Bacharach Property
ArXiv:1804.09496. To appear in “Communications in Algebra”.

M. Kreuzer, L. N. Long, L. Robbiano, Subschemes of the Border Basis Scheme,
In preparation.
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Affine or Projective?

given the choice between two theories,

take the one which is funnier

There are at least three serious reasons why we choose the affine setting.

Ideals can be studied using the decomposition of a 0-dimensional K algebra
into local rings.

The structure of the coordinate ring and its canonical module can be
described via multiplication matrices.

The affine setup is suitable for generalizing everything to families
of 0-dimensional ideals via the border basis scheme.
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The Setting, I

We let K be a field and R a 0-dimensional affine K-algebra, i.e. R = P/I,
where P = K[x1, . . . , xn] is a polynomial ring over K and I is a 0-dimensional
ideal in P, hence dimK(R) <∞.

The ideal I has a primary decomposition of the form I = Q1 ∩ · · · ∩Qs where
the ideals Qi are called the primary components of I. The corresponding primes
Mi = Rad(Qi) are maximal ideals, called the maximal components of I.

The image of Qi in R is denoted by qi, and for the image of Mi in R we write mi.
Then we have 〈0〉 = q1 ∩ · · · ∩ qs, and mi = Rad(qi) for i = 1, . . . , s.

We have ı : R ∼= R/q1 × · · · × R/qs which is called the decomposition of R
into local rings. For i = 1, . . . , s, the ring Ri = R/qi is a 0-dimensional local
K-algebra with maximal ideal m̄i = mi/qi. The ideal Soc(Ri) = AnnRi(m̄i) is
called the socle of Ri. For all fields Li = Ri/m̄i ∼= R/mi we put `i = dimK(Li).
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The Setting, II

We equip P with the (standard) degree filtration F̃ = (FiP)i∈Z, where
FiP = {f ∈ P | deg(f ) ≤ i} ∪ {0}

For every i ∈ Z, let FiI = FiP ∩ I, and let FiR = FiP/FiI. Then the family
(FiI)i∈Z is called the induced filtration on I, and the family F = (FiR)i∈Z
is a Z-filtration on R which is called the degree filtration on R.

Definition

Let R = P/I be a 0-dimensional affine K-algebra as above.
(a) The map HFa

R : Z −→ Z where i 7→ dimK(FiR) is called the
affine Hilbert function of X.

(b) The number ri(R) = min{i ∈ Z | HFa
X(j) = dimK(R) for all j ≥ i} is called the

regularity index of R.

(c) The first difference function ∆ HFa
R(i) = HFa

R(i)− HFa
R(i− 1) of HFa

R is called the
Castelnuovo function of R, and ∆R = ∆ HFa

R(ri(R)) is the last difference of R.

Example

Let I = 〈x3, y3〉. Then we have ∆ HFa
R = (1, 2, 3, 2, 1). Therefore we have

ri(R) = 4 and ∆R = 1.
The same for two generic (no common factor) cubics.
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R(i) = HFa

R(i)− HFa
R(i− 1) of HFa

R is called the
Castelnuovo function of R, and ∆R = ∆ HFa

R(ri(R)) is the last difference of R.

Example

Let I = 〈x3, y3〉. Then we have ∆ HFa
R = (1, 2, 3, 2, 1). Therefore we have

ri(R) = 4 and ∆R = 1.
The same for two generic (no common factor) cubics.
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A regular sequence of topics... in no particular order

Complete Intersections
or

Regular Sequences

H. Wiebe, Über homologische Invarianten lokaler Ringe, Math. Ann. 179
(1969), 257-274.
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A Result of Wiebe

Recall that a 0-dimensional local ring of the form K[x1, . . . , xn]M/I with a field K, a
maximal ideal M, and a 0-dimensional ideal I, is called a complete intersection if I
can be generated by a regular sequence of length n.

The i-th Fitting ideal of a module M is denoted by Fitti(M).

Proposition (Wiebe)

A local ring R with maximal ideal m is a 0-dimensional complete intersection if and
only if the 0-th Fitting ideal of m satisfies Fitt0(m) 6= 〈0〉.

Recall that a maximal ideal in the polynomial ring can always be generated by a
regular sequence of length n (see [3], Cor. 5.3.14).
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A Fundamental Proposition

Proposition (Wiebe)

Let P = K[x1, . . . , xn], let M be a maximal ideal of P, let {g1, . . . , gn} be a system of
generators of M, let I ⊂ P be an M-primary ideal, let {f1, . . . , fr} be a system of
generators of I, let R = P/I, and let m = M/I.
For i = 1, . . . , r, write fi =

∑n
j=1 aijgj, and form the matrix W ∈ Matn,r(R) of size

n× r whose columns are given by
∑n

j=1 āijej for i = 1, . . . , r, where āij denotes the
residue class of aij in R.

Then the 0-th Fitting ideal Fitt0(m) is generated by the minors of order n of W.
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j=1 āijej for i = 1, . . . , r, where āij denotes the
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An Algorithm

Algorithm (Checking Local Complete Intersection Schemes)

Let X be a 0-dimensional scheme in An, let RX = P/IX be the affine coordinate ring of X, and
let µ = dimK(RX). The following instructions define an algorithm which checks whether X is a
local complete intersection and returns the corresponding Boolean value.

(1) Compute the primary decomposition IX = Q1 ∩ · · · ∩Qs of the ideal IX, where
Qi = 〈fi1, . . . , fiνi〉 is a primary ideal in P and fi1, . . . , fiνi ∈ P for i = 1, . . . , s.

(2) For i = 1, . . . , s, check whether P/Qi is a local complete intersection ring using the
following commands. If the answer is always TRUE(i), return TRUE and stop.

(3) Compute a regular sequence (gi1, . . . , gin) ∈ Pn which generates the maximal ideal
Mi = Rad(Qi).

(4) For j = 1, . . . , νi, write fij =
∑n

k=1 aijkgik.

(5) Form the matrix W of size n× νi whose columns are given by
∑n

k=1 aijkek.

(6) Calculate the tuple of residue classes in P/Qi of the minors of order n of W. If the result
is different from (0, . . . , 0), return TRUE(i) and continue with the next i in Step (2).
Otherwise, return FALSE and stop.
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An Example

Example

Let K = Q, let P = K[x, y, z], and let X be the 0-dimensional subscheme of A2

defined by the ideal IX = 〈f1, . . . , f4〉, where f1 = z2 − y, f2 = x2 − 2xz + y,
f3 = yz− z− 1, and f4 = y2 − y− z.
Let us use our Algorithm to check whether X is a local complete intersection scheme.
The calculation of the primary decomposition of IX yields that IX is a primary ideal
and its radical is the maximal ideal M = 〈x− z, y− z2, z3 − z− 1〉. Here the
polynomials g1 = x− z, g2 = y− z2, and g3 = z3 − z− 1 form a regular sequence
which generates M.
Thus we represent f1, . . . , f4 as required by Step (4) of the algorithm and get the matrix

W =

(
0 x− z 0 0
−1 1 z z2 + y− 1

0 0 1 z

)
The tuple of residue classes in P/IX of the minors of order 3 of W is
(x̄− z̄, x̄z̄− ȳ, 0, −x̄ȳ + x̄ + 1). Therefore the scheme X is a local complete
intersection.
We also obtain that IX is, e.g., generated by {f1, f2, f3}, but not by {f1, f3, f4}.
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(x̄− z̄, x̄z̄− ȳ, 0, −x̄ȳ + x̄ + 1). Therefore the scheme X is a local complete
intersection.
We also obtain that IX is, e.g., generated by {f1, f2, f3}, but not by {f1, f3, f4}.

Lorenzo Robbiano (University of Genoa, Italy) Zero-Dimensional Ideals: new Algorithms Santiago de Compostela, ACA-2018 11 / 35



An Example

Example

Let K = Q, let P = K[x, y, z], and let X be the 0-dimensional subscheme of A2

defined by the ideal IX = 〈f1, . . . , f4〉, where f1 = z2 − y, f2 = x2 − 2xz + y,
f3 = yz− z− 1, and f4 = y2 − y− z.
Let us use our Algorithm to check whether X is a local complete intersection scheme.
The calculation of the primary decomposition of IX yields that IX is a primary ideal
and its radical is the maximal ideal M = 〈x− z, y− z2, z3 − z− 1〉. Here the
polynomials g1 = x− z, g2 = y− z2, and g3 = z3 − z− 1 form a regular sequence
which generates M.
Thus we represent f1, . . . , f4 as required by Step (4) of the algorithm and get the matrix

W =

(
0 x− z 0 0
−1 1 z z2 + y− 1

0 0 1 z

)
The tuple of residue classes in P/IX of the minors of order 3 of W is
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Gorenstein Rings

Figure: Daniel-Gorenstein (1923 –1992)
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Why Gorenstein?

From an article of Craig Huneke (1997)
1 Daniel Gorenstein is famous for his role in the classification of finite simple

groups.
2 A question occurring to everyone who studies Gorenstein rings is:

Why are they called Gorenstein rings?
3 His name being attached to this concept goes back to his thesis on plane curves,

written under Oscar Zariski and published in the Transactions of the American
Mathematical Society in 1952.

4 They could perhaps more justifiably be called Bass rings, or Grothendieck rings,
or Rosenlicht rings, or Serre rings. The usual definition now used in most
textbooks goes back to the work of Bass in the paper
On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

I’d like to buy a new boomerang,
but I don’t know how to throw the old one away

5 Going back even further, one could make on argument that the origins of
Gorenstein rings lie in the work of W. Gröbner, and F.S. Macaulay.
Indeed, a 1934 paper of Gröbner explicitly gives the basic duality of a
0-dimensional Gorenstein ring and recognizes the role of the socle.
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Definition and Remarks

Definition

Let R be a zero-dimensional affine K-algebra.
(a) Let (R,m) be a local ring. We say that R is a Gorenstein local ring if we have

dimR/m(Soc(R)) = 1.
(b) Let q1, . . . , qs be the primary components of the zero ideal in R. We say that R is

a locally Gorenstein ring if R/qi is a locally Gorenstein local ring for
i = 1, . . . , s.

The following remark provides a large class of locally Gorenstein rings.

Remark

A field is clearly a Gorenstein ring. Consequently, every reduced zero-dimensional
affine K-algebra R is a locally Gorenstein ring, as we can see by applying the
isomorphism R ∼= R/m1 × · · · × R/ms induced by the primary decomposition of R.
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Characterization of Locally Gorenstein K-algebras

The next theorem characterizes locally Gorenstein rings and provides a link between
this property of the ring R and the commendability of its multiplication family F .

Theorem (Characterization of Zero-Dimensional Locally Gorenstein Algebras)

Let R be a zero-dimensional affine K-algebra. The following conditions are
equivalent.

(a) The ring R is a Gorenstein ring.

(b) The multiplication family F of R is commendable.

(c) The canonical module ωR is a cyclic R-module.
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An Algorithm

With the help of this theorem, we can write down an algorithm which checks
whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in An, let RX = P/IX be the affine coordinate ring
of X, and let µ = dimK(RX). The following instructions define an algorithm which
checks whether X is a locally Gorenstein scheme and returns the corresponding
Boolean value.

(1) Compute a tuple of polynomials whose residue classes B = (b1, . . . , bµ) form a
K-basis of RX.

(2) For i = 1, . . . , n, compute the matrix Mbi ∈ Matµ(K) representing the
multiplication by bi on R in the basis B.

(3) Let z1, . . . , zµ be new indeterminates, and let C ∈ Matµ(K[z1, . . . , zµ]) be the
matrix whose columns are M tr

bi
· (z1, . . . , zµ)tr for i = 1, . . . , µ.

(4) If det(C) 6= 0 return TRUE, otherwise return FALSE.

Lorenzo Robbiano (University of Genoa, Italy) Zero-Dimensional Ideals: new Algorithms Santiago de Compostela, ACA-2018 16 / 35



An Algorithm

With the help of this theorem, we can write down an algorithm which checks
whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in An, let RX = P/IX be the affine coordinate ring
of X, and let µ = dimK(RX). The following instructions define an algorithm which
checks whether X is a locally Gorenstein scheme and returns the corresponding
Boolean value.

(1) Compute a tuple of polynomials whose residue classes B = (b1, . . . , bµ) form a
K-basis of RX.

(2) For i = 1, . . . , n, compute the matrix Mbi ∈ Matµ(K) representing the
multiplication by bi on R in the basis B.

(3) Let z1, . . . , zµ be new indeterminates, and let C ∈ Matµ(K[z1, . . . , zµ]) be the
matrix whose columns are M tr

bi
· (z1, . . . , zµ)tr for i = 1, . . . , µ.

(4) If det(C) 6= 0 return TRUE, otherwise return FALSE.

Lorenzo Robbiano (University of Genoa, Italy) Zero-Dimensional Ideals: new Algorithms Santiago de Compostela, ACA-2018 16 / 35



An Algorithm

With the help of this theorem, we can write down an algorithm which checks
whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in An, let RX = P/IX be the affine coordinate ring
of X, and let µ = dimK(RX). The following instructions define an algorithm which
checks whether X is a locally Gorenstein scheme and returns the corresponding
Boolean value.

(1) Compute a tuple of polynomials whose residue classes B = (b1, . . . , bµ) form a
K-basis of RX.

(2) For i = 1, . . . , n, compute the matrix Mbi ∈ Matµ(K) representing the
multiplication by bi on R in the basis B.

(3) Let z1, . . . , zµ be new indeterminates, and let C ∈ Matµ(K[z1, . . . , zµ]) be the
matrix whose columns are M tr

bi
· (z1, . . . , zµ)tr for i = 1, . . . , µ.

(4) If det(C) 6= 0 return TRUE, otherwise return FALSE.

Lorenzo Robbiano (University of Genoa, Italy) Zero-Dimensional Ideals: new Algorithms Santiago de Compostela, ACA-2018 16 / 35



An Algorithm

With the help of this theorem, we can write down an algorithm which checks
whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in An, let RX = P/IX be the affine coordinate ring
of X, and let µ = dimK(RX). The following instructions define an algorithm which
checks whether X is a locally Gorenstein scheme and returns the corresponding
Boolean value.

(1) Compute a tuple of polynomials whose residue classes B = (b1, . . . , bµ) form a
K-basis of RX.

(2) For i = 1, . . . , n, compute the matrix Mbi ∈ Matµ(K) representing the
multiplication by bi on R in the basis B.

(3) Let z1, . . . , zµ be new indeterminates, and let C ∈ Matµ(K[z1, . . . , zµ]) be the
matrix whose columns are M tr

bi
· (z1, . . . , zµ)tr for i = 1, . . . , µ.

(4) If det(C) 6= 0 return TRUE, otherwise return FALSE.

Lorenzo Robbiano (University of Genoa, Italy) Zero-Dimensional Ideals: new Algorithms Santiago de Compostela, ACA-2018 16 / 35



An Algorithm

With the help of this theorem, we can write down an algorithm which checks
whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in An, let RX = P/IX be the affine coordinate ring
of X, and let µ = dimK(RX). The following instructions define an algorithm which
checks whether X is a locally Gorenstein scheme and returns the corresponding
Boolean value.

(1) Compute a tuple of polynomials whose residue classes B = (b1, . . . , bµ) form a
K-basis of RX.

(2) For i = 1, . . . , n, compute the matrix Mbi ∈ Matµ(K) representing the
multiplication by bi on R in the basis B.

(3) Let z1, . . . , zµ be new indeterminates, and let C ∈ Matµ(K[z1, . . . , zµ]) be the
matrix whose columns are M tr

bi
· (z1, . . . , zµ)tr for i = 1, . . . , µ.

(4) If det(C) 6= 0 return TRUE, otherwise return FALSE.

Lorenzo Robbiano (University of Genoa, Italy) Zero-Dimensional Ideals: new Algorithms Santiago de Compostela, ACA-2018 16 / 35



An Algorithm

With the help of this theorem, we can write down an algorithm which checks
whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in An, let RX = P/IX be the affine coordinate ring
of X, and let µ = dimK(RX). The following instructions define an algorithm which
checks whether X is a locally Gorenstein scheme and returns the corresponding
Boolean value.

(1) Compute a tuple of polynomials whose residue classes B = (b1, . . . , bµ) form a
K-basis of RX.

(2) For i = 1, . . . , n, compute the matrix Mbi ∈ Matµ(K) representing the
multiplication by bi on R in the basis B.

(3) Let z1, . . . , zµ be new indeterminates, and let C ∈ Matµ(K[z1, . . . , zµ]) be the
matrix whose columns are M tr

bi
· (z1, . . . , zµ)tr for i = 1, . . . , µ.

(4) If det(C) 6= 0 return TRUE, otherwise return FALSE.
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An Example

Example

Let K = Q, let P = K[x, y, z], and let R = P/I, where I is the ideal of P generated by{
x2 − 18xy + 43y2 + 12xz− 170

3 yz + 218
3 z2 − 4x + 340

3 y− 216z + 166
3 ,

xy2 − 3xy− 4
9 y2 + xz− 32

27 yz− 28
27 z2 + 64

27 y + 28
9 z− 32

27 ,
y3 − 17

9 y2 + 17
27 yz− 2

27 z2 − 88
27 y + 20

9 z− 10
27 ,

y2z− 10
9 y2 − 17

27 yz + 83
27 z2 + 34

27 y− 74
9 z + 64

27 ,
z3 + 2

9 y2 − 11
27 yz− 40

27 z2 + 22
27 y− 14

9 z + 16
27 ,

xz2 − xy− 1
9 y2 − 8

27 yz− 7
27 z2 + 16

27 y + 7
9 z− 8

27 ,
yz2 + 2

9 y2 − 38
27 yz− 67

27 z2 − 32
27 y + 49

9 z− 38
27 ,

xyz− 1
9 y2 − 3xz− 8

27 yz− 7
27 z2 + x + 16

27 y + 7
9 z− 8

27

}
.

Let us check whether R is locally Gorenstein or not. Note that the given generating set
is the reduced Gröbner basis of I with respect to DegRevLex.
So, a K-basis B of R is given by the residue classes of the elements in the tuple
(1, z, y, x, z2, yz, xz, y2, xy).
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As the computation of the determinant of the matrix C ∈ K[z1, . . . , z9] of size 9× 9 in
Step (4) of the Algorithm is quite demanding, we substitute in C the indeterminates
(z1, . . . , z9) by the numbers λ = (1,−3,−1, 2, 4,−1,−1, 1, 3) and get

Cλ =



1 −3 −1 2 4 −1 −1 1 3
−3 4 −1 −1 23

27
671
27

191
27 − 1015

27 − 25
27

−1 −1 1 3 671
27 − 1015

27 − 25
27

178
27

710
27

2 −1 3 − 2719
3

191
27 − 25

27
108017

27
710
27 − 107924

27

4 23
27

671
27

191
27

257
9

493
27 − 25

27
338
27

200
9

−1 671
27 − 1015

27 − 25
27

493
27

338
27

200
9 − 2696

27 − 266
27

−1 191
27 − 25

27
108017

27 − 25
27

200
9 − 35938

9 − 266
27

348632
27

1 − 1015
27

178
27

710
27

338
27 − 2696

27 − 266
27

1163
27

1715
27

3 − 25
27

710
27 − 107924

27
200
9 − 266

27
348632

27
1715
27 − 143783

9


Since we have det(Cλ) = 114824810760065082500447360

10460353203 6= 0, we know that det(C) 6= 0,
and hence the ring R is locally Gorenstein.

It turns out that I = Q1 ∩M2 ∩M3 where Q1 = 〈(x− y3 − 1)2, y− z2, z3 − 3z + 1〉,
M2 = 〈x, y2 − 2, z− 2〉, M3 = 〈x− 1, y + 1, z)〉.
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Cayley and Bacharach

Arthur Cayley (1821 – 1895) Isaak Bacharach (1854 – 1942)
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The Story Begins

even the longest journey
begins with the first step

(Chinese Proverb)

ca. 320: The theorem of Pappos1 (Pappus Alexandrinus).

1640: The theorem of Pascal2

1Pappi Alexandrini, Mathematicae Collectiones, published by Franciscum de Franciscis Senense, Venice 1588.
2B. Pascal, Essay pour les coniques, Paris, 1640.
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The Story Continues, I

1748: Cramer-Euler paradox.

1835:

By remarks of Jacobi3 and Chasles4 it is clear that by that time it
was “generally known” that 9 points of intersection of two cubics have
the Cayley-Bacharach Property (CBP), i.e. every cubic which passes
through 8 of the 9 points is forced to pass through the ninth.

3C.G. Jacobi, De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis,
simul cum enodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

4M. Chasles, Apercu historique sur l’origine et le développement des méthodes en géometrié, M. Hayez, Brussels, 1837.
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The Story Continues, II

1836: C.G. Jacobi proved in5 an algebraic version of the CBP for mn points
complete intersection of two curves of degrees m and n.

1843: Arthur Cayley6 stated a much stronger version of the CBP which,
even in the case of the usual CBP, has a gap.

1885: Isaac Bacharach7 gives the first explicit statement and a correct proof
of the CBP for reduced complete intersections in the plane.
The proof was based on the AΦ + BΨ Fundamentalsatz of M. Noether.

1887: Even if Cayley8 failed to gasp the error in his proof, the name
Cayley-Bacharach Theorem became the commonly accepted one.

5De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione
paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

6A. Cayley, On the intersection of curves, Cambridge Math. J. 3 (1843), 211-213.
7 I. Bacharach, Über den Cayley’schen Schnittpunktsatz, Math. Ann. 26 (1886), 275-299.
8A. Cayley, On the intersection of curves, Math. Ann. 30 (1887), 85-90.
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The Modern Era, I

1952: Starting with the work of Gorenstein9 it became clear the the CBP can be
extended beyond complete intersections.

1985:

E. Davis, A.V. Geramita, F. Orecchia10 extended the theory to level algebras
and charachterised arithmetically Gorenstein sets of points in Pn by
the CBP and the symmetry of their Hilbert function.

9D. Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc. 72 (1952), 414-436.
10E. Davis, A.V. Geramita, and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93 (1985), 593-597.
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The Modern Era, II

1993:

M. Kreuzer, A.V. Geramita, L. Robbiano11 showed that the CBP of sets of points
in Pn is intrinsically related to the structure of the canonical module of their
coordinate ring.

1992-1994: M. Kreuzer12 extended previous results to arbitrary 0-dimensional
projective schemes over an algebraically closed field.

11Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc. 339 (1993), 163-189.
12M. Kreuzer, On 0-dimensional complete intersections, Math. Ann. 292 (1992), 43-58

M. Kreuzer, On the canonical module of a 0-dimensional scheme, Can. J. Math. 141 (1994), 357-379.
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The Modern Era, III

1996:

D. Eisenbud, M. Green, J. Harris13 reviewed the history of the CBP, put it in a
general algebraic frame, and proposed conjectures and extensions (see also14).

1998:

G. Valla15 discussed some of these conjectures and proved some partial results.
13D. Eisenbud, M. Green, and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295-324.
14D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo Theory, Asterisque, 218, (1993), 187–202.
15G. Valla, Problems and Results on Hilbert Functions of Graded Algebras, Six lectures on Commutative Algebra,

Elias, Giral, Miró-Roig, Zarzuela eds. Birkhäuser, 1998.
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The Modern Era, IV

2016: M. Kreuzer and L. Robbiano16 defined the CBP for 0-dimensional
affine K-algebras with any K, and linear maximal ideals, and provided several
algorithms to check it.

2015:

Meanwhile, Le Ngoc Long, in his PhD thesis17 gave the most general definition
of the CBP on arbitrary 0-dimensional affine K-algebras.

16M. Kreuzer and L. Robbiano, Computational Linear and Commutative Algebra, Springer, Heidelberg, 2016.
17Various differents for 0-dimensional schemes and appplications, dissertation, University of Passau, Passau, 2015.
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Divisors

divide et impera

Definition
Let I be a 0-dimesional ideal in P and let I ⊂ J .

(a) The ideal J in P is called a Qi-divisor of I if J is of the form
J = Q1 ∩ · · · ∩Q′i ∩ · · · ∩Qs with an ideal Q′i in P such that Qi ⊂ Q′i ⊆Mi.

(b) The ideal J in P is called a minimal Qi-divisor of I if it is a Qi-divisor of I and
dimK(J/I) = `i = dimK(P/Mi).

Example
Let K be a field, let P = K[x, y], and let Q = 〈x2, y2〉. Clearly, the ideal Q is
M-primary for M = 〈x, y〉, and we have ` = dimK(P/M) = 1.
Now we consider the ideal J1 = Q + 〈x〉 = 〈x, y2〉. Clearly J1 is M-primary and
hence a Q-divisor of Q. Since we have dimK(J1/Q) = 2 > `, the ideal J1 is not
a minimal Q-divisor of Q.
Next we look at the ideal J2 = Q + 〈xy〉 = 〈x2, xy, y2〉. Again it is clear that J2
is M-primary, and therefore a Q-divisor of Q. In this case we get the equality
dimK(J2/Q) = 1 = `, whence J2 is even a minimal Q-divisor of Q.
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Separators I

Definition

For i ∈ {1, . . . , s}, an element f ∈ R is called a separator for mi if we have
dimK〈f 〉 = `i = dimK(R/mi) and f ∈ qj for every j 6= i.

Theorem

Let R be a 0-dimensional affine K-algebra and let i ∈ {1, . . . , s}. TFAE
(a) The element f is a separator for mi.

(b) We have AnnR(f ) = mi.

(c) The image of f is a non-zero element in the socle of the local ring R/qi and, for j 6= i,
the image of f is zero in R/qj.

Proposition

Let F ∈ P, let f be the residue class of F in R, and let i ∈ {1, . . . , s}. TFAE
(a) The element f is a separator for mi.

(b) The ideal J = I + 〈F〉 is a minimal Qi-divisor of I.
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Separators II

Definition

For f ∈ R \ {0}, let ordF (f ) = min{i ∈ Z | f ∈ FiR \ Fi−1R}. This number is called
the order of f with respect to F .

The following is a fundamental remark.

Remark

Given a maximal ideal mi of R, the separators for mi may not be uniquely determined
in two different ways:

(1) It is possible that two separators f , g for mi correspond to the same minimal
Qi-divisor of I. Then the ideals 〈f̄ 〉 and 〈ḡ〉 in R/qi are equal, but if we have
`i = dimK(R/mi) > 1, the orders of f and g with respect to F may not be equal.

(2) If dimK(Soc(R/qi)) > `i, there exist separators f , g for mi which correspond
to different Qi-divisors of I. In this case, the ideals 〈f̄ 〉 and 〈ḡ〉 in R/qi are not
equal.
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equal.

Lorenzo Robbiano (University of Genoa, Italy) Zero-Dimensional Ideals: new Algorithms Santiago de Compostela, ACA-2018 29 / 35



Separators II

Definition

For f ∈ R \ {0}, let ordF (f ) = min{i ∈ Z | f ∈ FiR \ Fi−1R}. This number is called
the order of f with respect to F .

The following is a fundamental remark.

Remark

Given a maximal ideal mi of R, the separators for mi may not be uniquely determined
in two different ways:

(1) It is possible that two separators f , g for mi correspond to the same minimal
Qi-divisor of I. Then the ideals 〈f̄ 〉 and 〈ḡ〉 in R/qi are equal, but if we have
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The Separator Degree

Example

Let K = Q, let P = K[x, y], let I = 〈xy, y3, x4 + x2〉, and let R = P/I.
We have I = Q1 ∩Q2, where Q1 = 〈y, x2 + 1〉 and Q2 = 〈xy, x2, y3〉.
And M1 = Rad(Q1) = Q1 and M2 = Rad(Q2) = 〈x, y〉.
The affine Hilbert function of R is (1, 3, 5, 6, 6, . . . ), and hence ri(R) = 3.
The residue classes of x2 and x3 in R are separators for m1, Their orders are 2 and 3.
Thus Q1 + 〈x2〉 = Q1 + 〈x3〉 = 〈1〉 shows a case of non-uniqueness of the first kind.
The residue classes of y2 and x3 + x are separators for m2. Their orders are 2 and 3.
Notice that the two ideals Q2 + 〈y2〉 and Q2 + 〈x3 + x〉 are different. Consequently,
this is a case of non-uniqueness of the second kind.

Definition

Let R = P/I be a 0-dimensional affine K-algebra as above, let m1, . . . ,ms be the
maximal ideals of R, and let i ∈ {1, . . . , s}.
Given a minimal Qi-divisor J of I and its image J̄ in R, we let
ri(J̄) = max{ordF (f ) | f ∈ J̄ \ {0}}.
Then the number sepdeg(mi) = min{ri(J̄) | J is a minimal Qi-divisor of I} is called
the separator degree of mi in R.
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The Cayley-Bacharach Property (CBP)

Proposition

The following conditions are equivalent.

(a) For every minimal Qi-divisor J of I and its image J̄ in R, there is a generator f
of J̄ such that ordF (f ) = ri(R).

(b) For the maximal ideal mi of R we have sepdeg(mi) = ri(R).

Definition

Let R = P/I be a 0-dimensional affine K-algebra, and let X = Spec(P/I) be the
0-dimensional affine scheme defined by I. We say that R has the Cayley-Bacharach
property (CBP), or that X is a Cayley-Bacharach scheme, if the equivalent conditions
of the above proposition are satisfied for all maximal ideals of R.

There is an algorithm which checks whether the maximal ideal mi of R has
maximal separator degree, i.e. sepdeg(mi) = ri(R).
The ring R of the above example does not have the CBP.
The coordinate ring of the classical nine points which are the complete
intersection of two plane cubics has the CBP.
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The Canonical Module

Definition

Let R = P/I be a 0-dimensional affine K-algebra.
(a) If we equip the K-vector space ωR = HomK(R,K) with the R-module structure

defined by f · ϕ(g) = ϕ(fg) for f , g ∈ R and ϕ ∈ ωR, we obtain the canonical
module of R.

(b) For every i ∈ Z, let GiωR = {ϕ ∈ ωR | ϕ(F−i−1R) = 0}. Then the family
G = (GiωR)i∈Z is a Z-filtration of ωR which we call the degree filtration of ωR.

(c) The map HFa
ωR

: Z −→ Z defined by HFa
ωR

(i) = dimK(GiωR) for all i ∈ Z is
called the affine Hilbert function of ωR.

Remark

Let d = dimK(R), and let B = (f1, . . . , fd) be a degree filtered K-basis of R. Then the
dual basis B∗ = (f ∗1 , . . . , f

∗
d ) defined by f ∗i : R −→ K with f ∗i (fj) = δij for

i, j = 1, . . . , d is a degree filtered K-basis of ωR, and we have the equality
ordG(f ∗i ) = − ordF (fi) for i = 1, . . . , d.
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Main Theorem and Main Algorithm

Theorem

Let R = P/I be a 0-dimensional affine K-algebra. TFAE
(a) The ring R has the Cayley-Bacharach property.

(b) The bilinear map R⊗K G− ri(R)ωR −→ ωR is non-degenerate.

(c) We have AnnR(G− ri(R)ωR) = {0}.

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

(1) Compute a degree filtered K-basis B = (b1, . . . , bd) of R. Let ∆ ≥ 1 be such that bd−∆+1, . . . , bd
are the elements of B of order ri(R).

(2) For i = 1, . . . , d, compute the matrix Mbi ∈ Matd(K) representing the multiplication by bi in B.

(3) For j = 1, . . . ,∆, form the matrix Vj ∈ Matd(K) whose i-th column is the (d −∆ + j)-th column
of (Mbi )

tr for i = 1, . . . , d.

(4) Form the block column matrix W = Col(V1, . . . ,V∆) and compute Ker(W).

(5) If Ker(W) = {0}, return TRUE. Otherwise, return FALSE.

This is an algorithm which checks whether R has the Cayley-Bacharach property and returns the
corresponding Boolean value.
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An Example

Example

Let K = Q, let P = K[x, y, z], let I be the ideal of P generated by
{z2 − x + 2z, xz− 2x− y + 4z, y2 − x + z, x2 − yz− 4x− 4y + 8z}, and let R = P/I.
The primary decomposition of I is I = M1 ∩M2, where we have M1 = 〈x, y, z〉 and
M2 = 〈z2−x+2z, xz−2x−y+4z, y2−x+z, x2−yz−4x−4y+8z, xy−2yz−z−1〉.
Here M1 and M2 are maximal ideals, M1 is a linear maximal ideal, and M2
corresponds to a residue field extension K ⊂ L2 of degree 5. The affine Hilbert
function of R is (1, 4, 6, 6, . . . ), and hence ri(R) = 2. A degree filtered K-basis of R is
given by the residue classes of {1, z, y, x, yz, xy}. Thus we have d = 6 and
∆R = 2. The two matrices V1 and V2 computed in Step (3) of the algorithm are

V1 =


0 0 0 0 1 0
0 0 1 0 −2 −4
0 1 0 0 0 1
0 0 0 1 −4 −8
−1 −2 0 −4 1 1

0 −4 1 −8 1 −2

 and V2 =


0 0 0 0 0 1
0 0 0 0 1 2
0 0 0 1 0 0
0 0 1 0 2 4
0 1 0 2 0 1
1 2 0 4 1 5


Since the matrix W = Col(V1,V2) has a trivial kernel, we conclude that R has the CBP.
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The primary decomposition of I is I = M1 ∩M2, where we have M1 = 〈x, y, z〉 and
M2 = 〈z2−x+2z, xz−2x−y+4z, y2−x+z, x2−yz−4x−4y+8z, xy−2yz−z−1〉.
Here M1 and M2 are maximal ideals, M1 is a linear maximal ideal, and M2
corresponds to a residue field extension K ⊂ L2 of degree 5. The affine Hilbert
function of R is (1, 4, 6, 6, . . . ), and hence ri(R) = 2. A degree filtered K-basis of R is
given by the residue classes of {1, z, y, x, yz, xy}. Thus we have d = 6 and
∆R = 2. The two matrices V1 and V2 computed in Step (3) of the algorithm are

V1 =


0 0 0 0 1 0
0 0 1 0 −2 −4
0 1 0 0 0 1
0 0 0 1 −4 −8
−1 −2 0 −4 1 1

0 −4 1 −8 1 −2

 and V2 =


0 0 0 0 0 1
0 0 0 0 1 2
0 0 0 1 0 0
0 0 1 0 2 4
0 1 0 2 0 1
1 2 0 4 1 5


Since the matrix W = Col(V1,V2) has a trivial kernel, we conclude that R has the CBP.
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The End?

Question: What is a mathematician’s favourite dessert?
Answer: Pi

To be continued...
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