Special Properties of Zero-Dimensional Ideals: new Algorithms

Lorenzo Robbiano

University of Genoa, Italy Department of Mathematics

Lorenzo Robbiano (University of Genoa, Italy)

B: Writing a good program is like writing a good paper; but a compiler is a lot fussier than a referee. (Anna Maria Bigatti)

B: Writing a good program is like writing a good paper, but a compiler is a lot fussier than a referee. (Anna Maria Bigatti)

B: Writing a good program is like writing a good paper, but a compiler is a lot fussier than a referee. (Anna Maria Bigatti)

M. Kreuzer, L. Robbiano, COMPUTATIONAL LINEAR AND COMMUTATIVE ALGEBRA, Springer (2016)

B: Writing a good program is like writing a good paper, but a compiler is a lot fussier than a referee. (Anna Maria Bigatti)

J. Abbott, A.M. Bigatti, L. Robbiano, *CoCoA: a system for doing Computations in Commutative Algebra*. Available at http://cocoa.dima.unige.it

M. Kreuzer, L. Robbiano, COMPUTATIONAL COMMUTATIVE ALGEBRA 1, 2, Springer (2000, 2005)

B: Writing a good program is like writing a good paper, but a compiler is a lot fussier than a referee. (Anna Maria Bigatti)

J. Abbott, A.M. Bigatti, L. Robbiano, *CoCoA: a system for doing Computations in Commutative Algebra*. Available at http://cocoa.dima.unige.it

M. Kreuzer, L. Robbiano, COMPUTATIONAL COMMUTATIVE ALGEBRA 1, 2, Springer (2000, 2005)

M. Kreuzer, L. Robbiano, COMPUTATIONAL LINEAR AND COMMUTATIVE ALGEBRA, Springer (2016)

B: Writing a good program is like writing a good paper, but a compiler is a lot fussier than a referee. (Anna Maria Bigatti)

- J. Abbott, A.M. Bigatti, L. Robbiano, *CoCoA: a system for doing Computations in Commutative Algebra*. Available at http://cocoa.dima.unige.it
- M. Kreuzer, L. Robbiano, COMPUTATIONAL COMMUTATIVE ALGEBRA 1, 2, Springer (2000, 2005)
- M. Kreuzer, L. Robbiano, COMPUTATIONAL LINEAR AND COMMUTATIVE ALGEBRA, Springer (2016)

Specific Sources

Long, Various differents for 0-dimensional schemes and applications

and government and a subscription of the subsc

M. Kreuzer, L. N. Long, L. Robbiano, Subschemes of the Border Basis Scheme, In preparation.

- L.N. Long, Various differents for 0-dimensional schemes and applications, dissertation, University of Passau, Passau, (2015).
- M. Kreuzer, L. N. Long, L. Robbiano, *On the Cayley-Bacharach Property* ArX1v:1804.09496. To appear in "Communications in Algebra".
- M. Kreuzer, L. N. Long, L. Robbiano, Subschemes of the Border Basis Scheme, In preparation.

- L.N. Long, Various differents for 0-dimensional schemes and applications, dissertation, University of Passau, Passau, (2015).
- M. Kreuzer, L. N. Long, L. Robbiano, *On the Cayley-Bacharach Property* ArXiv:1804.09496. To appear in "Communications in Algebra".
 - M. Kreuzer, L. N. Long, L. Robbiano, Subschemes of the Border Basis Scheme, In preparation.

- L.N. Long, Various differents for 0-dimensional schemes and applications, dissertation, University of Passau, Passau, (2015).
- M. Kreuzer, L. N. Long, L. Robbiano, *On the Cayley-Bacharach Property* ArXiv:1804.09496. To appear in "Communications in Algebra".
 - M. Kreuzer, L. N. Long, L. Robbiano, *Subschemes of the Border Basis Scheme*, In preparation.

There are at least three serious reasons why we choose the affine setting.

 The structure of the coordinate ring and its canonical module can be described via multiplication matrices.

 The affine setup is suitable for generalizing everything to families of 0-dimensional ideals via the border basis scheme.

There are at least three serious reasons why we choose the affine setting.

- The structure of the coordinate ring and its canonical module can be described via multiplication matrices.

 The affine setup is suitable for generalizing everything to families of 0-dimensional ideals via the border basis scheme.

There are at least three serious reasons why we choose the affine setting.

 The structure of the coordinate ring and its canonical module can be described via multiplication matrices.

 The affine setup is suitable for generalizing everything to families of 0-dimensional ideals via the border basis scheme.

There are at least three serious reasons why we choose the affine setting.

• Ideals can be studied using the decomposition of a 0-dimensional *K* algebra into local rings.

• The structure of the coordinate ring and its canonical module can be described via multiplication matrices.

• The affine setup is suitable for generalizing everything to families of 0-dimensional ideals via the border basis scheme.

There are at least three serious reasons why we choose the affine setting.

- Ideals can be studied using the decomposition of a 0-dimensional *K* algebra into local rings.
- The structure of the coordinate ring and its canonical module can be described via multiplication matrices.

• The affine setup is suitable for generalizing everything to families of 0-dimensional ideals via the border basis scheme.

There are at least three serious reasons why we choose the affine setting.

- Ideals can be studied using the decomposition of a 0-dimensional *K* algebra into local rings.
- The structure of the coordinate ring and its canonical module can be described via multiplication matrices.
- The affine setup is suitable for generalizing everything to families of 0-dimensional ideals via the border basis scheme.

 We let K be a field and R a 0-dimensional affine K-algebra, i.e. R = P/I, where P = K[x₁,...,x_n] is a polynomial ring over K and I is a 0-dimensional ideal in P, hence dim₁(R) < ∞.

- The image of Ω₁ in R is denoted by q_i, and for the image of 𝔅₁ in R we write m_i. Then we have (0) = q₁ (1 · · · f) q_j, and m_j = Rad(q_j) for i = 1, ..., s.
- We have i: R ≅ R/q₁ × ···· × R/q, which is called the decomposition of R into local rings. For i = 1, ..., s, the ring R_i = R/q_i is a 0-dimensional local K-algebra with maximal ideal m
 _i = m_i/q_i. The ideal Soc(R_i) = Ann_{R_i}(m
 _i) is called the socle of R_i. For all fields L_i = R_i/m
 _i ≅ R/m
 _i we put l_i = dim_K(L_i).

 We let K be a field and R a 0-dimensional affine K-algebra, i.e. R = P/I, where P = K[x₁,...,x_n] is a polynomial ring over K and I is a 0-dimensional ideal in P, hence dim₁(R) < ∞.

- The image of Ω₁ in R is denoted by q_i, and for the image of 𝔅₁ in R we write m_i. Then we have (0) = q₁ (1 · · · f) q_j, and m_j = Rad(q_j) for i = 1, ..., s.
- We have i: R ≅ R/q₁ × ···· × R/q, which is called the decomposition of R into local rings. For i = 1, ..., s, the ring R_i = R/q_i is a 0-dimensional local K-algebra with maximal ideal m
 _i = m_i/q_i. The ideal Soc(R_i) = Ann_{R_i}(m
 _i) is called the socle of R_i. For all fields L_i = R_i/m
 _i ≅ R/m
 _i we put l_i = dim_K(L_i).

- We let *K* be a field and *R* a 0-dimensional affine *K*-algebra, i.e. R = P/I, where $P = K[x_1, \ldots, x_n]$ is a polynomial ring over *K* and *I* is a 0-dimensional ideal in *P*, hence dim_{*K*}(*R*) < ∞ .
- The ideal *I* has a primary decomposition of the form *I* = Ω₁ ∩ ··· ∩ Ω_s where the ideals Ω_i are called the primary components of *I*. The corresponding primes M_i = Rad(Ω_i) are maximal ideals, called the maximal components of *I*.
- The image of Ω_i in R is denoted by q_i, and for the image of M_i in R we write m_i. Then we have ⟨0⟩ = q₁ ∩ · · · ∩ q_s, and m_i = Rad(q_i) for i = 1, . . . , s.
- We have $i: R \cong R/\mathfrak{q}_1 \times \cdots \times R/\mathfrak{q}_s$ which is called the decomposition of R into local rings. For $i = 1, \ldots, s$, the ring $R_i = R/\mathfrak{q}_i$ is a 0-dimensional local *K*-algebra with maximal ideal $\overline{\mathfrak{m}}_i = \mathfrak{m}_i/\mathfrak{q}_i$. The ideal $\operatorname{Soc}(R_i) = \operatorname{Ann}_{R_i}(\overline{\mathfrak{m}}_i)$ is called the socle of R_i . For all fields $L_i = R_i/\overline{\mathfrak{m}}_i \cong R/\mathfrak{m}_i$ we put $\ell_i = \dim_K(L_i)$.

- We let *K* be a field and *R* a 0-dimensional affine *K*-algebra, i.e. R = P/I, where $P = K[x_1, \ldots, x_n]$ is a polynomial ring over *K* and *I* is a 0-dimensional ideal in *P*, hence dim_{*K*}(*R*) < ∞ .
- The ideal *I* has a primary decomposition of the form *I* = 𝔅₁ ∩ · · · ∩ 𝔅_s where the ideals 𝔅_i are called the primary components of *I*. The corresponding primes 𝔐_i = Rad(𝔅_i) are maximal ideals, called the maximal components of *I*.
- The image of Ω_i in *R* is denoted by q_i, and for the image of M_i in *R* we write m_i. Then we have ⟨0⟩ = q₁ ∩ · · · ∩ q_s, and m_i = Rad(q_i) for i = 1, . . . , s.
- We have *i*: R ≅ R/q₁ × ··· × R/q_s which is called the decomposition of R into local rings. For *i* = 1, ..., s, the ring R_i = R/q_i is a 0-dimensional local K-algebra with maximal ideal m
 _i = m_i/q_i. The ideal Soc(R_i) = Ann_{R_i}(m
 _i) is called the socle of R_i. For all fields L_i = R_i/m
 _i ≅ R/m_i we put ℓ_i = dim_K(L_i).

- We let *K* be a field and *R* a 0-dimensional affine *K*-algebra, i.e. R = P/I, where $P = K[x_1, \ldots, x_n]$ is a polynomial ring over *K* and *I* is a 0-dimensional ideal in *P*, hence dim_{*K*}(*R*) < ∞ .
- The ideal *I* has a primary decomposition of the form *I* = 𝔅₁ ∩ · · · ∩ 𝔅_s where the ideals 𝔅_i are called the primary components of *I*. The corresponding primes 𝔐_i = Rad(𝔅_i) are maximal ideals, called the maximal components of *I*.
- The image of 𝔅_i in R is denoted by q_i, and for the image of 𝔅_i in R we write m_i. Then we have ⟨0⟩ = q₁ ∩ · · · ∩ q_s, and m_i = Rad(q_i) for i = 1, . . . , s.
- We have $i: R \cong R/\mathfrak{q}_1 \times \cdots \times R/\mathfrak{q}_s$ which is called the decomposition of R into local rings. For $i = 1, \ldots, s$, the ring $R_i = R/\mathfrak{q}_i$ is a 0-dimensional local *K*-algebra with maximal ideal $\overline{\mathfrak{m}}_i = \mathfrak{m}_i/\mathfrak{q}_i$. The ideal $\operatorname{Soc}(R_i) = \operatorname{Ann}_{R_i}(\overline{\mathfrak{m}}_i)$ is called the socle of R_i . For all fields $L_i = R_i/\overline{\mathfrak{m}}_i \cong R/\mathfrak{m}_i$ we put $\ell_i = \dim_K(L_i)$.

- We let *K* be a field and *R* a 0-dimensional affine *K*-algebra, i.e. R = P/I, where $P = K[x_1, \ldots, x_n]$ is a polynomial ring over *K* and *I* is a 0-dimensional ideal in *P*, hence dim_{*K*}(*R*) < ∞ .
- The ideal *I* has a primary decomposition of the form *I* = 𝔅₁ ∩ · · · ∩ 𝔅_s where the ideals 𝔅_i are called the primary components of *I*. The corresponding primes 𝔐_i = Rad(𝔅_i) are maximal ideals, called the maximal components of *I*.
- The image of 𝔅_i in R is denoted by q_i, and for the image of 𝔅_i in R we write m_i. Then we have ⟨0⟩ = q₁ ∩ · · · ∩ q_s, and m_i = Rad(q_i) for i = 1, . . . , s.
- We have $i: R \cong R/\mathfrak{q}_1 \times \cdots \times R/\mathfrak{q}_s$ which is called the decomposition of R into local rings. For $i = 1, \ldots, s$, the ring $R_i = R/\mathfrak{q}_i$ is a 0-dimensional local K-algebra with maximal ideal $\overline{\mathfrak{m}}_i = \mathfrak{m}_i/\mathfrak{q}_i$. The ideal $\operatorname{Soc}(R_i) = \operatorname{Ann}_{R_i}(\overline{\mathfrak{m}}_i)$ is called the socle of R_i . For all fields $L_i = R_i/\overline{\mathfrak{m}}_i \cong R/\mathfrak{m}_i$ we put $\ell_i = \dim_K(L_i)$.

We equip *P* with the (standard) degree filtration $\mathcal{F} = \{F_i P\}_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \leq i\} \cup \{0\}$ For every $i \in \mathbb{Z}_n$ let $F_i J = F_i P \in [I_i]$ and let $F_i R = F_i P / F_i J$. Then the family $F_i = (F_i R)_{i \in \mathbb{Z}}$ is called the induced filtration on *L* and the family $\mathcal{F} = (F_i R)_{i \in \mathbb{Z}}$.

We equip *P* with the (standard) degree filtration $\widetilde{\mathcal{F}} = (F_i P)_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \le i\} \cup \{0\}$

For every $i \in \mathbb{Z}$, let $F_iI = F_iP \cap I$, and let $F_iR = F_iP/F_iI$. Then the family $(F_iI)_{i\in\mathbb{Z}}$ is called the induced filtration on *I*, and the family $\mathcal{F} = (F_iR)_{i\in\mathbb{Z}}$ is a \mathbb{Z} -filtration on *R* which is called the degree filtration on *R*.

Let R = P/I be a 0-dimensional affine *K*-algebra as above.

We equip *P* with the (standard) degree filtration $\widetilde{\mathcal{F}} = (F_i P)_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \le i\} \cup \{0\}$

For every $i \in \mathbb{Z}$, let $F_iI = F_iP \cap I$, and let $F_iR = F_iP/F_iI$. Then the family $(F_iI)_{i\in\mathbb{Z}}$ is called the induced filtration on *I*, and the family $\mathcal{F} = (F_iR)_{i\in\mathbb{Z}}$ is a \mathbb{Z} -filtration on *R* which is called the degree filtration on *R*.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above.

- (a) The map HF^{*i*}_{*R*} : ℤ → ℤ where *i* → dim_{*K*}(*F_iR*) is called the affine Hilbert function of 𝔅.
- (b) The number ri(R) = min{i ∈ Z | HF_X^a(j) = dim_K(R) for all j ≥ i} is called the regularity index of R.
- (c) The first difference function $\Delta \operatorname{HF}_{R}^{a}(i) = \operatorname{HF}_{R}^{a}(i) \operatorname{HF}_{R}^{a}(i-1)$ of $\operatorname{HF}_{R}^{a}$ is called the Castelnuovo function of *R*, and $\Delta_{R} = \Delta \operatorname{HF}_{R}^{a}(\operatorname{ri}(R))$ is the last difference of *R*.

We equip *P* with the (standard) degree filtration $\widetilde{\mathcal{F}} = (F_i P)_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \le i\} \cup \{0\}$

For every $i \in \mathbb{Z}$, let $F_iI = F_iP \cap I$, and let $F_iR = F_iP/F_iI$. Then the family $(F_iI)_{i\in\mathbb{Z}}$ is called the induced filtration on *I*, and the family $\mathcal{F} = (F_iR)_{i\in\mathbb{Z}}$ is a \mathbb{Z} -filtration on *R* which is called the degree filtration on *R*.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above.

(a) The map HF^a_R : Z → Z where i → dim_K(F_iR) is called the affine Hilbert function of X.

b) The number $ri(R) = \min\{i \in \mathbb{Z} \mid HF_{\mathbb{X}}^{a}(j) = \dim_{\mathcal{K}}(R) \text{ for all } j \ge i\}$ is called the regularity index of R.

(c) The first difference function $\Delta \operatorname{HF}_{R}^{a}(i) = \operatorname{HF}_{R}^{a}(i) - \operatorname{HF}_{R}^{a}(i-1)$ of $\operatorname{HF}_{R}^{a}$ is called the Castelnuovo function of *R*, and $\Delta_{R} = \Delta \operatorname{HF}_{R}^{a}(\operatorname{rl}(R))$ is the last difference of *R*.

We equip *P* with the (standard) degree filtration $\widetilde{\mathcal{F}} = (F_i P)_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \le i\} \cup \{0\}$

For every $i \in \mathbb{Z}$, let $F_iI = F_iP \cap I$, and let $F_iR = F_iP/F_iI$. Then the family $(F_iI)_{i\in\mathbb{Z}}$ is called the induced filtration on *I*, and the family $\mathcal{F} = (F_iR)_{i\in\mathbb{Z}}$ is a \mathbb{Z} -filtration on *R* which is called the degree filtration on *R*.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above.

(a) The map HF^a_R : Z → Z where i → dim_K(F_iR) is called the affine Hilbert function of X.

(b) The number ri(R) = min{i ∈ Z | HF^a_X(j) = dim_K(R) for all j ≥ i} is called the regularity index of R.

c) The first difference function $\Delta \operatorname{HF}_{R}^{a}(i) = \operatorname{HF}_{R}^{a}(i) - \operatorname{HF}_{R}^{a}(i-1)$ of $\operatorname{HF}_{R}^{a}$ is called the Castelnuovo function of R, and $\Delta_{R} = \Delta \operatorname{HF}_{R}^{a}(\operatorname{ri}(R))$ is the last difference of R.

We equip *P* with the (standard) degree filtration $\widetilde{\mathcal{F}} = (F_i P)_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \le i\} \cup \{0\}$

For every $i \in \mathbb{Z}$, let $F_iI = F_iP \cap I$, and let $F_iR = F_iP/F_iI$. Then the family $(F_iI)_{i\in\mathbb{Z}}$ is called the induced filtration on *I*, and the family $\mathcal{F} = (F_iR)_{i\in\mathbb{Z}}$ is a \mathbb{Z} -filtration on *R* which is called the degree filtration on *R*.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above.

- (a) The map HF^a_R : Z → Z where i → dim_K(F_iR) is called the affine Hilbert function of X.
- (b) The number ri(R) = min{i ∈ Z | HF^a_X(j) = dim_K(R) for all j ≥ i} is called the regularity index of R.
- (c) The first difference function $\Delta \operatorname{HF}_{R}^{a}(i) = \operatorname{HF}_{R}^{a}(i) \operatorname{HF}_{R}^{a}(i-1)$ of $\operatorname{HF}_{R}^{a}$ is called the Castelnuovo function of *R*, and $\Delta_{R} = \Delta \operatorname{HF}_{R}^{a}(\operatorname{ri}(R))$ is the last difference of *R*.

We equip *P* with the (standard) degree filtration $\widetilde{\mathcal{F}} = (F_i P)_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \le i\} \cup \{0\}$

For every $i \in \mathbb{Z}$, let $F_iI = F_iP \cap I$, and let $F_iR = F_iP/F_iI$. Then the family $(F_iI)_{i\in\mathbb{Z}}$ is called the induced filtration on *I*, and the family $\mathcal{F} = (F_iR)_{i\in\mathbb{Z}}$ is a \mathbb{Z} -filtration on *R* which is called the degree filtration on *R*.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above.

- (a) The map HF^a_R : Z → Z where i → dim_K(F_iR) is called the affine Hilbert function of X.
- (b) The number ri(R) = min{i ∈ Z | HF^a_X(j) = dim_K(R) for all j ≥ i} is called the regularity index of R.
- (c) The first difference function $\Delta \operatorname{HF}_{R}^{a}(i) = \operatorname{HF}_{R}^{a}(i) \operatorname{HF}_{R}^{a}(i-1)$ of $\operatorname{HF}_{R}^{a}$ is called the Castelnuovo function of *R*, and $\Delta_{R} = \Delta \operatorname{HF}_{R}^{a}(\operatorname{ri}(R))$ is the last difference of *R*.

Example

Let $I = \langle x^3, y^3 \rangle$. Then we have $\Delta \operatorname{HF}^a_R = (1, 2, 3, 2, 1)$. Therefore we have $\operatorname{ri}(R) = 4$ and $\Delta_R = 1$.

The same for two generic (no common factor) cubics.

We equip *P* with the (standard) degree filtration $\widetilde{\mathcal{F}} = (F_i P)_{i \in \mathbb{Z}}$, where $F_i P = \{f \in P \mid \deg(f) \le i\} \cup \{0\}$

For every $i \in \mathbb{Z}$, let $F_iI = F_iP \cap I$, and let $F_iR = F_iP/F_iI$. Then the family $(F_iI)_{i\in\mathbb{Z}}$ is called the induced filtration on I, and the family $\mathcal{F} = (F_iR)_{i\in\mathbb{Z}}$ is a \mathbb{Z} -filtration on R which is called the degree filtration on R.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above.

- (a) The map HF^a_R : Z → Z where i → dim_K(F_iR) is called the affine Hilbert function of X.
- (b) The number ri(R) = min{i ∈ Z | HF^a_X(j) = dim_K(R) for all j ≥ i} is called the regularity index of R.
- (c) The first difference function $\Delta \operatorname{HF}_{R}^{a}(i) = \operatorname{HF}_{R}^{a}(i) \operatorname{HF}_{R}^{a}(i-1)$ of $\operatorname{HF}_{R}^{a}$ is called the Castelnuovo function of *R*, and $\Delta_{R} = \Delta \operatorname{HF}_{R}^{a}(\operatorname{ri}(R))$ is the last difference of *R*.

Example

Let $I = \langle x^3, y^3 \rangle$. Then we have $\Delta \operatorname{HF}_R^a = (1, 2, 3, 2, 1)$. Therefore we have $\operatorname{ri}(R) = 4$ and $\Delta_R = 1$.

The same for two generic (no common factor) cubics.

A regular sequence of topics... in no particular order

Complete Intersections or Regular Sequences

H. Wiebe, Über homologische Invarianten lokaler Ringe, Math. Ann. 179 (1969), 257-274.

A regular sequence of topics... in no particular order

Complete Intersections or Regular Sequences

 Wiebe, Über homologische Invarianten lokaler Ringe, Math. Ann. 179 1969), 257-274.

A regular sequence of topics... in no particular order

Complete Intersections or Regular Sequences

H. Wiebe, *Über homologische Invarianten lokaler Ringe*, Math. Ann. **179** (1969), 257-274.

Recall that a 0-dimensional local ring of the form $K[x_1, ..., x_n]_{\mathfrak{M}}/I$ with a field K, a maximal ideal \mathfrak{M} , and a 0-dimensional ideal I, is called a complete intersection if I can be generated by a regular sequence of length n.

The *i*-th Fitting ideal of a module M is denoted by Fitt_i(M).

Recall that a maximal ideal in the polynomial ring can always be generated by a regular sequence of length n (see [3], Cor. 5.3.14).

Recall that a 0-dimensional local ring of the form $K[x_1, \ldots, x_n]_{\mathfrak{M}}/I$ with a field *K*, a maximal ideal \mathfrak{M} , and a 0-dimensional ideal *I*, is called a complete intersection if *I* can be generated by a regular sequence of length *n*.

The *i*-th Fitting ideal of a module M is denoted by $Fit_i(M)$.

Recall that a maximal ideal in the polynomial ring can always be generated by a regular sequence of length n (see [3], Cor. 5.3.14).

The *i*-th Fitting ideal of a module M is denoted by Fitt_{*i*}(M).

The *i*-th Fitting ideal of a module M is denoted by Fitt_{*i*}(M).

Proposition (Wiebe)

A local ring R with maximal ideal \mathfrak{m} is a 0-dimensional complete intersection if and only if the 0-th Fitting ideal of \mathfrak{m} satisfies $\text{Fitt}_0(\mathfrak{m}) \neq \langle 0 \rangle$.

The *i*-th Fitting ideal of a module M is denoted by Fitt_{*i*}(M).

Proposition (Wiebe)

A local ring R with maximal ideal \mathfrak{m} is a 0-dimensional complete intersection if and only if the 0-th Fitting ideal of \mathfrak{m} satisfies $\text{Fitt}_0(\mathfrak{m}) \neq \langle 0 \rangle$.

The *i*-th Fitting ideal of a module M is denoted by Fitt_{*i*}(M).

Proposition (Wiebe)

A local ring R with maximal ideal \mathfrak{m} is a 0-dimensional complete intersection if and only if the 0-th Fitting ideal of \mathfrak{m} satisfies $\text{Fitt}_0(\mathfrak{m}) \neq \langle 0 \rangle$.

A Fundamental Proposition

Proposition (Wiebe)

Let $P = K[x_1, ..., x_n]$, let \mathfrak{M} be a maximal ideal of P, let $\{g_1, ..., g_n\}$ be a system of generators of \mathfrak{M} , let $I \subset P$ be an \mathfrak{M} -primary ideal, let $\{f_1, ..., f_r\}$ be a system of generators of I, let R = P/I, and let $\mathfrak{m} = \mathfrak{M}/I$. For i = 1, ..., r, write $f_i = \sum_{j=1}^n a_{ij}g_j$, and form the matrix $\overline{W} \in \operatorname{Mat}_{n,r}(R)$ of size $n \times r$ whose columns are given by $\sum_{j=1}^n \overline{a}_{ij}e_j$ for i = 1, ..., r, where \overline{a}_{ij} denotes the residue class of a_{ij} in R.

Then the 0-th Fitting ideal $Fitt_0(\mathfrak{m})$ is generated by the minors of order n of \overline{W} .

Algorithm (Checking Local Complete Intersection Schemes)

- Compute the primary decomposition $I_{\mathbb{X}} = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}_s$ of the ideal $I_{\mathbb{X}}$, where $\mathfrak{Q}_i = \langle f_{i1}, \dots, f_{i\nu_i} \rangle$ is a primary ideal in P and $f_{i1}, \dots, f_{i\nu_i} \in P$ for $i = 1, \dots, s$.
- (2) For i = 1,..., s, check whether P/Ω_i is a local complete intersection ring using the following commands. If the answer is always TRUE (i), return TRUE and stop.
- 3) Compute a regular sequence $(g_{i1}, \ldots, g_{in}) \in P^n$ which generates the maximal ideal $\mathfrak{M}_i = \operatorname{Rad}(\mathfrak{Q}_i).$
- (4) For $j = 1, ..., \nu_i$, write $f_{ij} = \sum_{k=1}^n a_{ijk} g_{ik}$.
- (5) Form the matrix W of size $n \times v_i$ whose columns are given by $\sum_{k=1}^{n} a_{ijk} e_k$.
- (6) Calculate the tuple of residue classes in P/Q_i of the minors of order n of W. If the result is different from (0,...,0), return TRUE (i) and continue with the next i in Step (2). Otherwise, return FALSE and stop.

Algorithm (Checking Local Complete Intersection Schemes)

- (1) Compute the primary decomposition $I_{\mathbb{X}} = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}_s$ of the ideal $I_{\mathbb{X}}$, where $\mathfrak{Q}_i = \langle f_{i1}, \ldots, f_{i\nu_i} \rangle$ is a primary ideal in P and $f_{i1}, \ldots, f_{i\nu_i} \in P$ for $i = 1, \ldots, s$.
- (2) For i = 1,..., s, check whether P/Q_i is a local complete intersection ring using the following commands. If the answer is always TRUE (i), return TRUE and stop.
- (3) Compute a regular sequence $(g_{i1}, \ldots, g_{in}) \in P^n$ which generates the maximal ideal $\mathfrak{M}_i = \operatorname{Rad}(\mathfrak{Q}_i).$
- (4) For $j = 1, ..., \nu_i$, write $f_{ij} = \sum_{k=1}^n a_{ijk} g_{ik}$.
- (5) Form the matrix W of size $n \times v_i$ whose columns are given by $\sum_{k=1}^{n} a_{ijk} e_k$.
- (6) Calculate the tuple of residue classes in P/Ω_i of the minors of order n of W. If the result is different from (0,...,0), return TRUE (i) and continue with the next i in Step (2). Otherwise, return FALSE and stop.

Algorithm (Checking Local Complete Intersection Schemes)

- (1) Compute the primary decomposition $I_{\mathbb{X}} = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}_s$ of the ideal $I_{\mathbb{X}}$, where $\mathfrak{Q}_i = \langle f_{i1}, \ldots, f_{i\nu_i} \rangle$ is a primary ideal in P and $f_{i1}, \ldots, f_{i\nu_i} \in P$ for $i = 1, \ldots, s$.
- For i = 1,..., s, check whether P/Q_i is a local complete intersection ring using the following commands. If the answer is always TRUE (i), return TRUE and stop.
- (3) Compute a regular sequence $(g_{i1}, \ldots, g_m) \in P^n$ which generates the maximal ideal $\mathfrak{M}_i = \operatorname{Rad}(\mathfrak{Q}_i).$
- (4) For $j = 1, ..., \nu_i$, write $f_{ij} = \sum_{k=1}^n a_{ijk} g_{ik}$.
- (5) Form the matrix W of size $n \times v_i$ whose columns are given by $\sum_{k=1}^{n} a_{ijk} e_k$.
- (6) Calculate the tuple of residue classes in P/Q_i of the minors of order n of W. If the result is different from (0,...,0), return TRUE (i) and continue with the next i in Step (2). Otherwise, return FALSE and stop.

Algorithm (Checking Local Complete Intersection Schemes)

- (1) Compute the primary decomposition $I_{\mathbb{X}} = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}_s$ of the ideal $I_{\mathbb{X}}$, where $\mathfrak{Q}_i = \langle f_{i1}, \ldots, f_{i\nu_i} \rangle$ is a primary ideal in P and $f_{i1}, \ldots, f_{i\nu_i} \in P$ for $i = 1, \ldots, s$.
- For i = 1,..., s, check whether P/Q_i is a local complete intersection ring using the following commands. If the answer is always TRUE (i), return TRUE and stop.
- (3) Compute a regular sequence (g_{i1},..., g_{in}) ∈ Pⁿ which generates the maximal ideal *M_i* = Rad(Ω_i).
- (4) For $j = 1, ..., \nu_i$, write $f_{ij} = \sum_{k=1}^n a_{ijk} g_{ik}$.
- (5) Form the matrix W of size $n \times \nu_i$ whose columns are given by $\sum_{k=1}^n a_{ijk} e_k$.
- 6) Calculate the tuple of residue classes in P/Ω_i of the minors of order n of W. If the result is different from (0,...,0), return TRUE (i) and continue with the next i in Step (2). Otherwise, return FALSE and stop.

Algorithm (Checking Local Complete Intersection Schemes)

- (1) Compute the primary decomposition $I_{\mathbb{X}} = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}_s$ of the ideal $I_{\mathbb{X}}$, where $\mathfrak{Q}_i = \langle f_{i1}, \ldots, f_{i\nu_i} \rangle$ is a primary ideal in P and $f_{i1}, \ldots, f_{i\nu_i} \in P$ for $i = 1, \ldots, s$.
- (2) For i = 1,..., s, check whether P/Q_i is a local complete intersection ring using the following commands. If the answer is always TRUE (i), return TRUE and stop.
- (3) Compute a regular sequence (g_{i1},..., g_{in}) ∈ Pⁿ which generates the maximal ideal *M_i* = Rad(Ω_i).
- (4) For $j = 1, ..., \nu_i$, write $f_{ij} = \sum_{k=1}^n a_{ijk} g_{ik}$.
- (5) Form the matrix W of size $n \times v_i$ whose columns are given by $\sum_{k=1}^{n} a_{ijk} e_k$.
- (6) Calculate the tuple of residue classes in P/Ω_i of the minors of order n of W. If the result is different from (0,...,0), return TRUE (i) and continue with the next i in Step (2). Otherwise, return FALSE and stop.

Algorithm (Checking Local Complete Intersection Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_X = P/I_X$ be the affine coordinate ring of X, and let $\mu = \dim_K(R_X)$. The following instructions define an algorithm which checks whether X is a local complete intersection and returns the corresponding Boolean value.

- (1) Compute the primary decomposition $I_{\mathbb{X}} = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}_s$ of the ideal $I_{\mathbb{X}}$, where $\mathfrak{Q}_i = \langle f_{i1}, \ldots, f_{i\nu_i} \rangle$ is a primary ideal in P and $f_{i1}, \ldots, f_{i\nu_i} \in P$ for $i = 1, \ldots, s$.
- For i = 1,..., s, check whether P/Q_i is a local complete intersection ring using the following commands. If the answer is always TRUE (i), return TRUE and stop.
- (3) Compute a regular sequence (g_{i1},..., g_{in}) ∈ Pⁿ which generates the maximal ideal *M_i* = Rad(Ω_i).
- (4) For $j = 1, ..., \nu_i$, write $f_{ij} = \sum_{k=1}^n a_{ijk} g_{ik}$.
- (5) Form the matrix W of size $n \times v_i$ whose columns are given by $\sum_{k=1}^{n} a_{ijk}e_k$.

 Calculate the tuple of residue classes in P/Q₁ of the minors of order n of W. If the result is different from (0,...,0), return TRUE (i) and continue with the next i in Step (2). Otherwise, return FALSE and stop.

Algorithm (Checking Local Complete Intersection Schemes)

- (1) Compute the primary decomposition $I_{\mathbb{X}} = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}_s$ of the ideal $I_{\mathbb{X}}$, where $\mathfrak{Q}_i = \langle f_{i1}, \ldots, f_{i\nu_i} \rangle$ is a primary ideal in P and $f_{i1}, \ldots, f_{i\nu_i} \in P$ for $i = 1, \ldots, s$.
- (2) For i = 1,..., s, check whether P/Q_i is a local complete intersection ring using the following commands. If the answer is always TRUE (i), return TRUE and stop.
- (3) Compute a regular sequence (g_{i1},..., g_{in}) ∈ Pⁿ which generates the maximal ideal *M_i* = Rad(Q_i).
- (4) For $j = 1, ..., \nu_i$, write $f_{ij} = \sum_{k=1}^n a_{ijk} g_{ik}$.
- (5) Form the matrix W of size $n \times v_i$ whose columns are given by $\sum_{k=1}^{n} a_{ijk}e_k$.
- (6) Calculate the tuple of residue classes in P/Q_i of the minors of order n of W. If the result is different from (0,...,0), return TRUE (i) and continue with the next i in Step (2). Otherwise, return FALSE and stop.

Let us use our Algorithm to check whether K is a local complete intersection scheme. The calculation of the primary decomposition of f_K yields that f_K is a primary ideal and its radical is the maximal ideal $M \rightarrow (k \rightarrow z_k, \gamma \rightarrow z'_k, z' \rightarrow z \rightarrow 1)$. Here the polynomials $g_1 = k \rightarrow z_k g_2 = \gamma' \rightarrow z''_k$ and $g_2 = z' \rightarrow z \rightarrow 1$. Form a regular sequence which generates M.

Thus we represent fig...., facts required by Step (4) of the algorithm and get the matrix.

(승규 음 가 음 소문)

The tuple of residue classes in P/I_2 of the minors of order 3 of W is (23 - 2, 32 - 3), 0, -33 + 3). Therefore the scheme X is a local complete

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let \mathbb{X} be the 0-dimensional subscheme of \mathbb{A}^2 defined by the ideal $I_{\mathbb{X}} = \langle f_1, \dots, f_4 \rangle$, where $f_1 = z^2 - y$, $f_2 = x^2 - 2xz + y$, $f_3 = yz - z - 1$, and $f_4 = y^2 - y - z$.

Let us use our Algorithm to check whether X is a local complete intersection scheme. The calculation of the primary decomposition of I_X yields that I_X is a primary ideal and its radical is the maximal ideal $\mathfrak{M} = \langle x - z, y - z^2, z^3 - z - 1 \rangle$. Here the polynomials $g_1 = x - z$, $g_2 = y - z^2$, and $g_3 = z^3 - z - 1$ form a regular sequence which generates \mathfrak{M} .

Thus we represent f_1, \ldots, f_4 as required by Step (4) of the algorithm and get the matrix

$$W = \begin{pmatrix} 0 & x - z & 0 & 0 \\ -1 & 1 & z & z^2 + y - 1 \\ 0 & 0 & 1 & z \end{pmatrix}$$

The tuple of residue classes in P/I_X of the minors of order 3 of W is $(\bar{x} - \bar{z}, \bar{x}\bar{z} - \bar{y}, 0, -\bar{x}\bar{y} + \bar{x} + 1)$. Therefore the scheme X is a local complete intersection.

We also obtain that I_X is, e.g., generated by $\{f_1, f_2, f_3\}$, but not by $\{f_1, f_3, f_4\}$

Lorenzo Robbiano (University of Genoa, Italy)

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let \mathbb{X} be the 0-dimensional subscheme of \mathbb{A}^2 defined by the ideal $I_{\mathbb{X}} = \langle f_1, \dots, f_4 \rangle$, where $f_1 = z^2 - y$, $f_2 = x^2 - 2xz + y$, $f_3 = yz - z - 1$, and $f_4 = y^2 - y - z$.

Let us use our Algorithm to check whether X is a local complete intersection scheme. The calculation of the primary decomposition of I_X yields that I_X is a primary ideal and its radical is the maximal ideal $\mathfrak{M} = \langle x - z, y - z^2, z^3 - z - 1 \rangle$. Here the polynomials $g_1 = x - z$, $g_2 = y - z^2$, and $g_3 = z^3 - z - 1$ form a regular sequence which generates \mathfrak{M} .

Thus we represent f_1, \ldots, f_4 as required by Step (4) of the algorithm and get the matrix

$$W = \begin{pmatrix} 0 & x - z & 0 & 0 \\ -1 & 1 & z & z^2 + y - 1 \\ 0 & 0 & 1 & z \end{pmatrix}$$

The tuple of residue classes in P/I_X of the minors of order 3 of W is $(\bar{x} - \bar{z}, \bar{x}\bar{z} - \bar{y}, 0, -\bar{x}\bar{y} + \bar{x} + 1)$. Therefore the scheme X is a local complete intersection.

We also obtain that I_X is, e.g., generated by $\{f_1, f_2, f_3\}$, but not by $\{f_1, f_3, f_4\}$

Lorenzo Robbiano (University of Genoa, Italy)

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let \mathbb{X} be the 0-dimensional subscheme of \mathbb{A}^2 defined by the ideal $I_{\mathbb{X}} = \langle f_1, \ldots, f_4 \rangle$, where $f_1 = z^2 - y$, $f_2 = x^2 - 2xz + y$, $f_3 = yz - z - 1$, and $f_4 = y^2 - y - z$.

Let us use our Algorithm to check whether \mathbb{X} is a local complete intersection scheme. The calculation of the primary decomposition of $I_{\mathbb{X}}$ yields that $I_{\mathbb{X}}$ is a primary ideal and its radical is the maximal ideal $\mathfrak{M} = \langle x - z, y - z^2, z^3 - z - 1 \rangle$. Here the polynomials $g_1 = x - z$, $g_2 = y - z^2$, and $g_3 = z^3 - z - 1$ form a regular sequence which generates \mathfrak{M} .

Thus we represent f_1, \ldots, f_4 as required by Step (4) of the algorithm and get the matrix

 $W = \begin{pmatrix} 0 & x-z & 0 & 0\\ -1 & 1 & z & z^2 + y - 1\\ 0 & 0 & 1 & z \end{pmatrix}$

The tuple of residue classes in P/I_X of the minors of order 3 of W is $(\bar{x} - \bar{z}, \bar{x}\bar{z} - \bar{y}, 0, -\bar{x}\bar{y} + \bar{x} + 1)$. Therefore the scheme X is a local complete intersection.

We also obtain that I_X is, e.g., generated by $\{f_1, f_2, f_3\}$, but not by $\{f_1, f_3, f_4\}$

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let \mathbb{X} be the 0-dimensional subscheme of \mathbb{A}^2 defined by the ideal $I_{\mathbb{X}} = \langle f_1, \ldots, f_4 \rangle$, where $f_1 = z^2 - y$, $f_2 = x^2 - 2xz + y$, $f_3 = yz - z - 1$, and $f_4 = y^2 - y - z$.

Let us use our Algorithm to check whether \mathbb{X} is a local complete intersection scheme. The calculation of the primary decomposition of $I_{\mathbb{X}}$ yields that $I_{\mathbb{X}}$ is a primary ideal and its radical is the maximal ideal $\mathfrak{M} = \langle x - z, y - z^2, z^3 - z - 1 \rangle$. Here the polynomials $g_1 = x - z$, $g_2 = y - z^2$, and $g_3 = z^3 - z - 1$ form a regular sequence which generates \mathfrak{M} .

Thus we represent f_1, \ldots, f_4 as required by Step (4) of the algorithm and get the matrix

$$W = \begin{pmatrix} 0 & x - z & 0 & 0 \\ -1 & 1 & z & z^2 + y - 1 \\ 0 & 0 & 1 & z \end{pmatrix}$$

The tuple of residue classes in P/I_X of the minors of order 3 of W is $(\bar{x} - \bar{z}, \bar{x}\bar{z} - \bar{y}, 0, -\bar{x}\bar{y} + \bar{x} + 1)$. Therefore the scheme X is a local complete intersection.

Ve also obtain that $I_{\rm X}$ is, e.g., generated by $\{f_1, f_2, f_3\}$, but not by $\{f_1, f_3, f_4\}$

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let \mathbb{X} be the 0-dimensional subscheme of \mathbb{A}^2 defined by the ideal $I_{\mathbb{X}} = \langle f_1, \ldots, f_4 \rangle$, where $f_1 = z^2 - y$, $f_2 = x^2 - 2xz + y$, $f_3 = yz - z - 1$, and $f_4 = y^2 - y - z$.

Let us use our Algorithm to check whether \mathbb{X} is a local complete intersection scheme. The calculation of the primary decomposition of $I_{\mathbb{X}}$ yields that $I_{\mathbb{X}}$ is a primary ideal and its radical is the maximal ideal $\mathfrak{M} = \langle x - z, y - z^2, z^3 - z - 1 \rangle$. Here the polynomials $g_1 = x - z$, $g_2 = y - z^2$, and $g_3 = z^3 - z - 1$ form a regular sequence which generates \mathfrak{M} .

Thus we represent f_1, \ldots, f_4 as required by Step (4) of the algorithm and get the matrix

$$W = \begin{pmatrix} 0 & x - z & 0 & 0 \\ -1 & 1 & z & z^2 + y - 1 \\ 0 & 0 & 1 & z \end{pmatrix}$$

The tuple of residue classes in $P/I_{\mathbb{X}}$ of the minors of order 3 of W is

 $(\bar{x} - \bar{z}, \bar{x}\bar{z} - \bar{y}, 0, -\bar{x}\bar{y} + \bar{x} + 1)$. Therefore the scheme X is a local complete intersection.

We also obtain that I_X is, e.g., generated by $\{f_1, f_2, f_3\}$, but not by $\{f_1, f_3, f_4\}$.

Gorenstein Rings

Figure: Daniel-Gorenstein (1923 –1992)

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

- From an article of Craig Huneke (1997)
- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is:
- Why are they called Gorenstein rings?

or Resentation mage, or serve mages the normal definition now used in mesttextbooks goes back to the work of Bass in the paper. On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

> I'd like to buy a new boomerang, but I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- groups. A question occurring to everyone who studies Gorenstein rings is:
- Why are they called Gorenstein rings?
- or Koordination ange, or Serverings. The usual octimation now used in more textbooks goes back to the work of Bass in the paper. On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

I'd like to buy a new boomerang, but I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is: Why are they called Gorenstein rings?
- His name being attached to this concept goes back to his thesis on plane curves, written under Oscar Zariski and published in the Transactions of the American Mathematical Society in 1952.
- They could perhaps more justifiably be called Bass rings, or Grothendieck rings, or Rosenlicht rings, or Serre rings. The usual definition now used in most textbooks goes back to the work of Bass in the paper
 On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

I'd like to buy a new boomerang, but I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is: Why are they called Gorenstein rings?
- His name being attached to this concept goes back to his thesis on plane curves, written under Oscar Zariski and published in the Transactions of the American Mathematical Society in 1952.
- They could perhaps more justifiably be called Bass rings, or Grothendieck rings, or Rosenlicht rings, or Serre rings. The usual definition now used in most textbooks goes back to the work of Bass in the paper
 On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

I'd like to buy a new boomerang, but I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is: Why are they called Gorenstein rings?
- His name being attached to this concept goes back to his thesis on plane curves, written under Oscar Zariski and published in the Transactions of the American Mathematical Society in 1952.
- They could perhaps more justifiably be called Bass rings, or Grothendieck rings, or Rosenlicht rings, or Serre rings. The usual definition now used in most textbooks goes back to the work of Bass in the paper On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

I'd like to buy a new boomerang, uut I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is: Why are they called Gorenstein rings?
- His name being attached to this concept goes back to his thesis on plane curves, written under Oscar Zariski and published in the Transactions of the American Mathematical Society in 1952.
- They could perhaps more justifiably be called Bass rings, or Grothendieck rings, or Rosenlicht rings, or Serre rings. The usual definition now used in most textbooks goes back to the work of Bass in the paper
 On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

but I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is: Why are they called Gorenstein rings?
- His name being attached to this concept goes back to his thesis on plane curves, written under Oscar Zariski and published in the Transactions of the American Mathematical Society in 1952.
- They could perhaps more justifiably be called Bass rings, or Grothendieck rings, or Rosenlicht rings, or Serre rings. The usual definition now used in most textbooks goes back to the work of Bass in the paper
 On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

but I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is: Why are they called Gorenstein rings?
- His name being attached to this concept goes back to his thesis on plane curves, written under Oscar Zariski and published in the Transactions of the American Mathematical Society in 1952.
- They could perhaps more justifiably be called Bass rings, or Grothendieck rings, or Rosenlicht rings, or Serre rings. The usual definition now used in most textbooks goes back to the work of Bass in the paper
 On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

I'd like to buy a new boomerang, but I don't know how to throw the old one away

From an article of Craig Huneke (1997)

- Daniel Gorenstein is famous for his role in the classification of finite simple groups.
- A question occurring to everyone who studies Gorenstein rings is: Why are they called Gorenstein rings?
- His name being attached to this concept goes back to his thesis on plane curves, written under Oscar Zariski and published in the Transactions of the American Mathematical Society in 1952.
- They could perhaps more justifiably be called Bass rings, or Grothendieck rings, or Rosenlicht rings, or Serre rings. The usual definition now used in most textbooks goes back to the work of Bass in the paper On the ubiquity of Gorenstein rings, Mathematische Zeitschrift (1963)

I'd like to buy a new boomerang, but I don't know how to throw the old one away

Going back even further, one could make on argument that the origins of Gorenstein rings lie in the work of W. Gröbner, and F.S. Macaulay. Indeed, a 1934 paper of Gröbner explicitly gives the basic duality of a 0-dimensional Gorenstein ring and recognizes the role of the socle.

Lorenzo Robbiano (University of Genoa, Italy)

Definition

Let *R* be a zero-dimensional affine *K*-algebra.

- (a) Let (R, \mathfrak{m}) be a local ring. We say that *R* is a Gorenstein local ring if we have $\dim_{R/\mathfrak{m}}(\operatorname{Soc}(R)) = 1$.
- (b) Let q₁,..., q_s be the primary components of the zero ideal in *R*. We say that *R* is a locally Gorenstein ring if *R*/q_i is a locally Gorenstein local ring for *i* = 1,..., *s*.

Definition

Let *R* be a zero-dimensional affine *K*-algebra.

- (a) Let (R, \mathfrak{m}) be a local ring. We say that *R* is a Gorenstein local ring if we have $\dim_{R/\mathfrak{m}}(\operatorname{Soc}(R)) = 1$.
 - b) Let q₁,..., q_s be the primary components of the zero ideal in *R*. We say that *R* is a locally Gorenstein ring if *R*/q_i is a locally Gorenstein local ring for i = 1,...,s.

Definition

Let *R* be a zero-dimensional affine *K*-algebra.

- (a) Let (R, \mathfrak{m}) be a local ring. We say that *R* is a Gorenstein local ring if we have $\dim_{R/\mathfrak{m}}(\operatorname{Soc}(R)) = 1$.
- (b) Let q₁,..., q_s be the primary components of the zero ideal in *R*. We say that *R* is a locally Gorenstein ring if *R*/q_i is a locally Gorenstein local ring for *i* = 1,..., *s*.

Definition

Let *R* be a zero-dimensional affine *K*-algebra.

- (a) Let (R, \mathfrak{m}) be a local ring. We say that *R* is a Gorenstein local ring if we have $\dim_{R/\mathfrak{m}}(\operatorname{Soc}(R)) = 1$.
- (b) Let q₁,..., q_s be the primary components of the zero ideal in *R*. We say that *R* is a locally Gorenstein ring if *R*/q_i is a locally Gorenstein local ring for *i* = 1,..., *s*.

Definition

Let *R* be a zero-dimensional affine *K*-algebra.

- (a) Let (R, \mathfrak{m}) be a local ring. We say that *R* is a Gorenstein local ring if we have $\dim_{R/\mathfrak{m}}(\operatorname{Soc}(R)) = 1$.
- (b) Let q₁,..., q_s be the primary components of the zero ideal in *R*. We say that *R* is a locally Gorenstein ring if *R*/q_i is a locally Gorenstein local ring for *i* = 1,..., *s*.

The following remark provides a large class of locally Gorenstein rings.

Remark

A field is clearly a Gorenstein ring. Consequently, every reduced zero-dimensional affine K-algebra R is a locally Gorenstein ring, as we can see by applying the isomorphism $R \cong R/\mathfrak{m}_1 \times \cdots \times R/\mathfrak{m}_s$ induced by the primary decomposition of R.

Characterization of Locally Gorenstein K-algebras

The next theorem characterizes locally Gorenstein rings and provides a link between this property of the ring R and the commendability of its multiplication family \mathcal{F} .

Characterization of Locally Gorenstein K-algebras

The next theorem characterizes locally Gorenstein rings and provides a link between this property of the ring *R* and the commendability of its multiplication family \mathcal{F} .

Characterization of Locally Gorenstein K-algebras

The next theorem characterizes locally Gorenstein rings and provides a link between this property of the ring R and the commendability of its multiplication family \mathcal{F} .

Theorem (Characterization of Zero-Dimensional Locally Gorenstein Algebras)

Let *R* be a zero-dimensional affine *K*-algebra. The following conditions are equivalent.

(a) The ring R is a Gorenstein ring.

b) *The multiplication family F* of *R* is commendable.

(c) The canonical module ω_R is a cyclic *R*-module.

The next theorem characterizes locally Gorenstein rings and provides a link between this property of the ring R and the commendability of its multiplication family \mathcal{F} .

Theorem (Characterization of Zero-Dimensional Locally Gorenstein Algebras)

Let *R* be a zero-dimensional affine *K*-algebra. The following conditions are equivalent.

- (a) The ring R is a Gorenstein ring.
- (b) The multiplication family \mathcal{F} of R is commendable.
- (c) The canonical module ω_R is a cyclic *R*-module.

The next theorem characterizes locally Gorenstein rings and provides a link between this property of the ring R and the commendability of its multiplication family \mathcal{F} .

Theorem (Characterization of Zero-Dimensional Locally Gorenstein Algebras)

Let *R* be a zero-dimensional affine *K*-algebra. The following conditions are equivalent.

- (a) The ring R is a Gorenstein ring.
- (b) The multiplication family \mathcal{F} of R is commendable.

(c) The canonical module ω_R is a cyclic *R*-module.

The next theorem characterizes locally Gorenstein rings and provides a link between this property of the ring R and the commendability of its multiplication family \mathcal{F} .

Theorem (Characterization of Zero-Dimensional Locally Gorenstein Algebras)

Let *R* be a zero-dimensional affine *K*-algebra. The following conditions are equivalent.

- (a) The ring R is a Gorenstein ring.
- (b) The multiplication family \mathcal{F} of R is commendable.
- (c) The canonical module ω_R is a cyclic *R*-module.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Let X be a 0-dimensional scheme in N^{n} , let $R_{X} \rightarrow P/R_{0}$ be the affine coordinate ring of X, and let $\mu \rightarrow \dim_{\mathbb{F}}(R_{X})$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Bodeon value.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Let X, be a D-dimensional scheme in A^{0} , let $R_{X} \rightarrow D/R_{0}$ be the affine coordinate rings of X, and let $\mu = dime(R_{0})$. The following instructions define as algorithm which checks whether X, is a locally. Government acheme and returns the corresponding Bodieon value.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_{\mathbb{X}} = P/I_{\mathbb{X}}$ be the affine coordinate ring of X, and let $\mu = \dim_{\mathcal{K}}(R_{\mathbb{X}})$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Boolean value.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_{\mathbb{X}} = P/I_{\mathbb{X}}$ be the affine coordinate ring of X, and let $\mu = \dim_{\mathcal{K}}(R_{\mathbb{X}})$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Boolean value.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_X = P/I_X$ be the affine coordinate ring of X, and let $\mu = \dim_K(R_X)$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Boolean value.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_X = P/I_X$ be the affine coordinate ring of X, and let $\mu = \dim_K(R_X)$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Boolean value.

- Compute a tuple of polynomials whose residue classes B = (b₁,...,b_µ) form a K-basis of R_X.
- (2) For i = 1, ..., n, compute the matrix $M_{b_i} \in \operatorname{Mat}_{\mu}(K)$ representing the multiplication by b_i on R in the basis B.
- (3) Let z_1, \ldots, z_μ be new indeterminates, and let $C \in \operatorname{Mat}_\mu(K[z_1, \ldots, z_\mu])$ be the matrix whose columns are $M_{b_i}^{\mathfrak{u}} \cdot (z_1, \ldots, z_\mu)^{\mathfrak{u}}$ for $i = 1, \ldots, \mu$.
- (4) If $det(C) \neq 0$ return TRUE, otherwise return FALSE.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_X = P/I_X$ be the affine coordinate ring of X, and let $\mu = \dim_K(R_X)$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Boolean value.

- Compute a tuple of polynomials whose residue classes B = (b₁,...,b_µ) form a K-basis of R_X.
- (2) For i = 1, ..., n, compute the matrix $M_{b_i} \in Mat_{\mu}(K)$ representing the multiplication by b_i on R in the basis B.

3) Let z_1, \ldots, z_μ be new indeterminates, and let $C \in Mat_\mu(K[z_1, \ldots, z_\mu])$ be the matrix whose columns are $M_{b_i}^{\mu} \cdot (z_1, \ldots, z_\mu)^{\mu}$ for $i = 1, \ldots, \mu$.

(4) If det(C) \neq 0 return TRUE, otherwise return FALSE

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_X = P/I_X$ be the affine coordinate ring of X, and let $\mu = \dim_K(R_X)$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Boolean value.

- Compute a tuple of polynomials whose residue classes B = (b₁,...,b_µ) form a K-basis of R_X.
- (2) For i = 1, ..., n, compute the matrix $M_{b_i} \in \text{Mat}_{\mu}(K)$ representing the multiplication by b_i on R in the basis B.
- (3) Let z_1, \ldots, z_{μ} be new indeterminates, and let $C \in \text{Mat}_{\mu}(K[z_1, \ldots, z_{\mu}])$ be the matrix whose columns are $M_{b_i}^{\text{tr}} \cdot (z_1, \ldots, z_{\mu})^{\text{tr}}$ for $i = 1, \ldots, \mu$.

1) If $det(C) \neq 0$ return TRUE, otherwise return FALSE.

With the help of this theorem, we can write down an algorithm which checks whether R is a locally Gorenstein ring.

Algorithm (Checking Locally Gorenstein Schemes)

Let X be a 0-dimensional scheme in \mathbb{A}^n , let $R_X = P/I_X$ be the affine coordinate ring of X, and let $\mu = \dim_K(R_X)$. The following instructions define an algorithm which checks whether X is a locally Gorenstein scheme and returns the corresponding Boolean value.

- Compute a tuple of polynomials whose residue classes B = (b₁,...,b_µ) form a K-basis of R_X.
- (2) For i = 1, ..., n, compute the matrix $M_{b_i} \in \text{Mat}_{\mu}(K)$ representing the multiplication by b_i on R in the basis B.
- (3) Let z_1, \ldots, z_{μ} be new indeterminates, and let $C \in \text{Mat}_{\mu}(K[z_1, \ldots, z_{\mu}])$ be the matrix whose columns are $M_{b_i}^{\text{tr}} \cdot (z_1, \ldots, z_{\mu})^{\text{tr}}$ for $i = 1, \ldots, \mu$.
- (4) If $det(C) \neq 0$ return TRUE, otherwise return FALSE.

An Example

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let R = P/I, where *I* is the ideal of *P* generated by

$$\left\{ \begin{array}{l} x^2 - 18xy + 43y^2 + 12xz - \frac{170}{3}yz + \frac{218}{3}z^2 - 4x + \frac{340}{3}y - 216z + \frac{166}{3}, \\ xy^2 - 3xy - \frac{4}{9}y^2 + xz - \frac{32}{27}yz - \frac{28}{27}z^2 + \frac{64}{27}y + \frac{28}{9}z - \frac{32}{27}, \\ y^3 - \frac{17}{9}y^2 + \frac{17}{27}yz - \frac{2}{27}z^2 - \frac{88}{27}y + \frac{29}{9}z - \frac{10}{27}, \\ y^2z - \frac{10}{9}y^2 - \frac{17}{27}yz + \frac{83}{27}z^2 + \frac{34}{27}y - \frac{74}{9}z + \frac{64}{27}, \\ z^3 + \frac{2}{9}y^2 - \frac{11}{27}yz - \frac{40}{27}z^2 + \frac{22}{27}y - \frac{14}{14}z + \frac{16}{27}, \\ xz^2 - xy - \frac{1}{9}y^2 - \frac{8}{27}yz - \frac{7}{27}z^2 + \frac{16}{27}y + \frac{7}{9}z - \frac{8}{27}, \\ yz^2 + \frac{2}{9}y^2 - \frac{38}{27}yz - \frac{67}{27}z^2 - \frac{32}{27}y + \frac{49}{9}z - \frac{38}{27}, \\ xyz - \frac{1}{9}y^2 - 3xz - \frac{8}{27}yz - \frac{7}{27}z^2 + x + \frac{16}{27}y + \frac{7}{9}z - \frac{8}{27} \right\}.$$

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let R = P/I, where *I* is the ideal of *P* generated by

$$\left\{ \begin{array}{l} x^2 - 18xy + 43y^2 + 12xz - \frac{170}{3}yz + \frac{218}{3}z^2 - 4x + \frac{340}{3}y - 216z + \frac{166}{3}, \\ xy^2 - 3xy - \frac{4}{9}y^2 + xz - \frac{32}{27}yz - \frac{28}{27}z^2 + \frac{64}{27}y + \frac{28}{9}z - \frac{32}{27}, \\ y^3 - \frac{17}{9}y^2 + \frac{17}{27}yz - \frac{2}{27}z^2 - \frac{88}{27}y + \frac{29}{9}z - \frac{10}{27}, \\ y^2z - \frac{10}{9}y^2 - \frac{17}{27}yz + \frac{83}{27}z^2 + \frac{34}{27}y - \frac{74}{9}z + \frac{64}{27}, \\ z^3 + \frac{2}{9}y^2 - \frac{11}{27}yz - \frac{40}{27}z^2 + \frac{22}{27}y - \frac{14}{14}z + \frac{16}{27}, \\ xz^2 - xy - \frac{1}{9}y^2 - \frac{8}{27}yz - \frac{7}{27}z^2 + \frac{16}{27}y + \frac{7}{9}z - \frac{8}{27}, \\ yz^2 + \frac{2}{9}y^2 - \frac{38}{27}yz - \frac{67}{27}z^2 - \frac{32}{27}y + \frac{49}{9}z - \frac{38}{27}, \\ xyz - \frac{1}{9}y^2 - 3xz - \frac{8}{27}yz - \frac{7}{27}z^2 + x + \frac{16}{27}y + \frac{7}{9}z - \frac{8}{27} \right\}.$$

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], and let R = P/I, where *I* is the ideal of *P* generated by

$$\left\{ \begin{array}{l} x^2 - 18xy + 43y^2 + 12xz - \frac{170}{3}yz + \frac{218}{3}z^2 - 4x + \frac{340}{3}y - 216z + \frac{166}{3}, \\ xy^2 - 3xy - \frac{4}{9}y^2 + xz - \frac{32}{27}yz - \frac{28}{27}z^2 + \frac{64}{27}y + \frac{28}{9}z - \frac{32}{27}, \\ y^3 - \frac{17}{9}y^2 + \frac{17}{27}yz - \frac{2}{27}z^2 - \frac{88}{27}y + \frac{20}{9}z - \frac{10}{27}, \\ y^2z - \frac{10}{9}y^2 - \frac{17}{27}yz + \frac{83}{27}z^2 + \frac{34}{27}y - \frac{74}{9}z + \frac{64}{27}, \\ z^3 + \frac{2}{9}y^2 - \frac{11}{27}yz - \frac{40}{27}z^2 + \frac{227}{27}y - \frac{14}{9}z + \frac{16}{27}, \\ xz^2 - xy - \frac{1}{9}y^2 - \frac{8}{27}yz - \frac{7}{27}z^2 + \frac{16}{27}y + \frac{9}{9}z - \frac{8}{27}, \\ yz^2 + \frac{2}{9}y^2 - \frac{38}{27}yz - \frac{67}{27}z^2 - \frac{32}{27}y + \frac{49}{9}z - \frac{38}{27}, \\ xyz - \frac{1}{9}y^2 - 3xz - \frac{8}{27}yz - \frac{7}{27}z^2 + x + \frac{16}{27}y + \frac{7}{9}z - \frac{8}{27} \right\}.$$

As the computation of the determinant of the matrix $C \in K[z_1, ..., z_9]$ of size 9×9 in Step (4) of the Algorithm is quite demanding, we substitute in *C* the indeterminates $(z_1, ..., z_9)$ by the numbers $\lambda = (1, -3, -1, 2, 4, -1, -1, 1, 3)$ and get

$$C_{\lambda} = \begin{pmatrix} 1 & -3 & -1 & 2 & 4 & -1 & -1 & 1 & 3 \\ -3 & 4 & -1 & -1 & \frac{23}{27} & \frac{671}{27} & \frac{191}{27} & -\frac{1015}{27} & -\frac{25}{27} \\ -1 & -1 & 1 & 3 & \frac{671}{27} & -\frac{1015}{27} & -\frac{25}{27} & \frac{178}{27} & \frac{710}{27} \\ 2 & -1 & 3 & -\frac{2719}{3} & \frac{191}{27} & -\frac{25}{27} & \frac{108017}{27} & \frac{710}{27} & -\frac{107924}{27} \\ 4 & \frac{23}{27} & \frac{671}{27} & \frac{191}{27} & \frac{257}{27} & \frac{493}{27} & -\frac{25}{27} & \frac{338}{27} & \frac{200}{9} \\ -1 & \frac{671}{27} & -\frac{1015}{27} & -\frac{25}{27} & \frac{493}{27} & \frac{338}{27} & \frac{200}{9} & -\frac{2696}{27} & -\frac{266}{27} \\ -1 & \frac{191}{27} & -\frac{25}{27} & \frac{10807}{27} & -\frac{25}{27} & \frac{200}{27} & -\frac{2696}{27} & -\frac{266}{27} \\ 1 & -\frac{1015}{27} & \frac{178}{27} & \frac{710}{27} & \frac{338}{27} & -\frac{2696}{27} & -\frac{266}{27} & \frac{1163}{27} & \frac{1715}{27} \\ 3 & -\frac{25}{27} & \frac{710}{27} & -\frac{107924}{27} & \frac{200}{9} & -\frac{2666}{27} & \frac{348632}{27} & \frac{1715}{27} & -\frac{143783}{27} \end{pmatrix}$$

Since we have $\det(C_{\lambda}) = \frac{114824810760065082500447360}{10460353203} \neq 0$, we know that $\det(C) \neq 0$, and hence the ring *R* is locally Gorenstein.

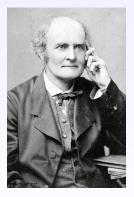
It turns out that $I = \mathfrak{Q}_1 \cap \mathfrak{M}_2 \cap \mathfrak{M}_3$ where $\mathfrak{Q}_1 = \langle (x - y^3 - 1)^2, y - z^2, z^3 - 3z + 1 \rangle$, $\mathfrak{M}_2 = \langle x, y^2 - 2, z - 2 \rangle$, $\mathfrak{M}_3 = \langle x - 1, y + 1, z \rangle$. As the computation of the determinant of the matrix $C \in K[z_1, ..., z_9]$ of size 9×9 in Step (4) of the Algorithm is quite demanding, we substitute in *C* the indeterminates $(z_1, ..., z_9)$ by the numbers $\lambda = (1, -3, -1, 2, 4, -1, -1, 1, 3)$ and get

$$C_{\lambda} = \begin{pmatrix} 1 & -3 & -1 & 2 & 4 & -1 & -1 & 1 & 3 \\ -3 & 4 & -1 & -1 & \frac{23}{27} & \frac{671}{27} & \frac{191}{27} & -\frac{1015}{27} & -\frac{25}{27} \\ -1 & -1 & 1 & 3 & \frac{671}{27} & -\frac{1015}{27} & -\frac{25}{27} & \frac{178}{27} & \frac{710}{27} \\ 2 & -1 & 3 & -\frac{2719}{3} & \frac{191}{27} & -\frac{25}{27} & \frac{108017}{27} & \frac{710}{27} & -\frac{107924}{27} \\ 4 & \frac{23}{27} & \frac{671}{27} & \frac{191}{27} & \frac{257}{27} & \frac{493}{27} & -\frac{25}{27} & \frac{338}{27} & \frac{200}{9} \\ -1 & \frac{671}{27} & -\frac{1015}{27} & -\frac{25}{27} & \frac{493}{27} & \frac{338}{27} & \frac{200}{9} & -\frac{2696}{27} & -\frac{266}{27} \\ -1 & \frac{191}{27} & -\frac{25}{27} & \frac{10807}{27} & -\frac{25}{27} & \frac{200}{9} & -\frac{35938}{293} & -\frac{266}{27} & \frac{348632}{27} \\ 1 & -\frac{1015}{27} & \frac{178}{27} & \frac{710}{27} & \frac{338}{27} & -\frac{2696}{27} & -\frac{266}{27} & \frac{1163}{27} & \frac{1715}{27} \\ 3 & -\frac{25}{27} & \frac{710}{27} & -\frac{107924}{27} & \frac{200}{9} & -\frac{266}{27} & \frac{348632}{27} & \frac{1715}{27} & -\frac{143783}{27} \end{pmatrix}$$

Since we have $\det(C_{\lambda}) = \frac{114824810760065082500447360}{10460353203} \neq 0$, we know that $\det(C) \neq 0$, and hence the ring *R* is locally Gorenstein.

It turns out that $I = \mathfrak{Q}_1 \cap \mathfrak{M}_2 \cap \mathfrak{M}_3$ where $\mathfrak{Q}_1 = \langle (x - y^3 - 1)^2, y - z^2, z^3 - 3z + 1 \rangle$, $\mathfrak{M}_2 = \langle x, y^2 - 2, z - 2 \rangle$, $\mathfrak{M}_3 = \langle x - 1, y + 1, z \rangle \rangle$.

Cayley and Bacharach

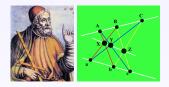


Arthur Cayley (1821 - 1895)

Isaak Bacharach (1854 - 1942)

The Story Begins

even the longest journey begins with the first step (Chinese Proverb)



1640: The theorem of Paso

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

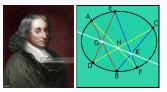
Santiago de Compostela, ACA-2018 20 / 35

The Story Begins

even the longest journey begins with the first step (Chinese Proverb)



1640: The theorem of Pasc



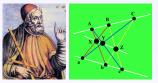
Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

Santiago de Compostela, ACA-2018 20 / 35

even the longest journey begins with the first step (Chinese Proverb)

ca. 320: The theorem of Pappos¹ (Pappus Alexandrinus).



1640: The theorem of Pascal²

¹Pappi Alexandrini, Mathematicae Collectiones, published by Franciscum de Franciscis Senense, Venice 1588.

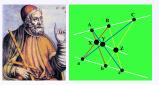
⁷B. Pascal, Essay pour les coniques, Paris, 1640.

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

even the longest journey begins with the first step (Chinese Proverb)

ca. 320: The theorem of Pappos¹ (Pappus Alexandrinus).



1640: The theorem of $Pascal^2$

¹Pappi Alexandrini, Mathematicae Collectiones, published by Franciscum de Franciscis Senense, Venice 1588.

²B. Pascal, Essay pour les coniques, Paris, 1640.

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

The Story Continues, I

1748: Cramer-Euler paradox

By remarks of Jacobi³ and Chasles⁴ it is clear that by that time it was "generally known" that 9 points of intersection of two cubics have the Cayley-Bacharach Property (CBP), i.e. every cubic which passes through 8 of the 9 points is forced to pass through the ninth.

²⁴ C.G. Jacobi, De relationibus, quae locum habere debent inter pacta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algbraici, J. reine angese. Math. 15 (1836), 205-308.

The Story Continues, I

1748: Cramer-Euler paradox.

1835:

By remarks of Jacobi³ and Chasles⁴ it is clear that by that time it was "generally known" that 9 points of intersection of two cubics have the Cayley-Bacharach Property (CBP), i.e. every cubic which passes through 8 of the 9 points is forced to pass through the ninth.

²C.G. Jacobi, De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

^{*}M. Chasles, Apercu historique sur l'origine et le développement des méthodes en géometrié, M. Hayez, Brussels, 1837.

The Story Continues, I

1748: Cramer-Euler paradox.

1835:

By remarks of Jacobi³ and Chasles⁴ it is clear that by that time it was "generally known" that 9 points of intersection of two cubics have the Cayley-Bacharach Property (CBP), i.e. every cubic which passes through 8 of the 9 points is forced to pass through the ninth.

³C.G. Jacobi, De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

⁴M. Chasles, Apercu historique sur l'origine et le développement des méthodes en géometrié, M. Hayez, Brussels, 1837.

The Story Continues, II

1836: C.G. Jacobi proved in' an algebraic version of the CBP for *nn* points complete intersection of two curves of degrees *m* and *n*.

1843: An hur Code Second Lannah anonger receive of the CB Robids.

of the URP for reduced complete intersections in the plane. The proof was based on the A \$2 - B\$2 Fundamentalisatz of M. Noether.

1887: Even if Cayley⁸ failed to gasp the error in his proof, the name Cayley-Bacharach Theorem became the commonly accepted one.

[&]quot;De relationibus, quae locum habere debent inter pacta intersectionis duraum cavaram vel trium superficierum algebraicarum dati ordinis, simul can esodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

A. Cayley, On the intersection of curves, Cambridge Math. J. 3 (1843), 211-213.

I. Bacharach, Über den Cayley'schen Schnittpunktsatz, Math. Ann. 26 (1886), 275-299.

1843: Arthur Cayley⁶ stated a much stronger version of the CBP which, even in the case of the usual CBP, has a gap.

1885: Isaac Bacharach⁷ gives the first explicit statement and a correct proof of the CBP for reduced complete intersections in the plane. The proof was based on the $A\Phi + B\Psi$ Fundamentalsatz of M. Noether.

1887: Even if Cayley⁸ failed to gasp the error in his proof, the name Cayley-Bacharach Theorem became the commonly accepted one.

A. Cayley, On the intersection of curves, Cambridge Math. J. 3 (1843), 211-213.

I. Bacharach, Über den Cayley'schen Schnittpunktsatz, Math. Ann. 26 (1886), 275-299.

^o A. Cayley, On the intersection of curves, Math. Ann. 30 (1887), 85-90

⁵De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

1843: Arthur Cayley⁶ stated a much stronger version of the CBP which, even in the case of the usual CBP, has a gap.

1885: Isaac Bacharach⁷ gives the first explicit statement and a correct proof of the CBP for reduced complete intersections in the plane. The proof was based on the $A\Phi + B\Psi$ Fundamentalsatz of M. Noether.

1887: Even if Cayley⁸ failed to gasp the error in his proof, the name Cayley-Bacharach Theorem became the commonly accepted one.

A. Cayley, On the intersection of curves, Math. Ann. 30 (1887), 85-9

⁵De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

⁶A. Cayley, On the intersection of curves, Cambridge Math. J. 3 (1843), 211-213.

I. Bacharach, Uber den Cayley'schen Schnittpunktsatz, Math. Ann. 26 (1886), 275-29

1843: Arthur Cayley⁶ stated a much stronger version of the CBP which, even in the case of the usual CBP, has a gap.

1885: Isaac Bacharach⁷ gives the first explicit statement and a correct proof of the CBP for reduced complete intersections in the plane. The proof was based on the $A\Phi + B\Psi$ Fundamentalsatz of M. Noether.

1887: Even if Cayley⁸ failed to gasp the error in his proof, the name Cayley-Bacharach Theorem became the commonly accepted one.

⁵De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

⁶A. Cayley, On the intersection of curves, Cambridge Math. J. 3 (1843), 211-213.

⁷I. Bacharach, Über den Cayley'schen Schnittpunktsatz, Math. Ann. 26 (1886), 275-299.

A. Cayley, On the intersection of curves, Math. Ann. 30 (1887), 85-9

1843: Arthur Cayley⁶ stated a much stronger version of the CBP which, even in the case of the usual CBP, has a gap.

1885: Isaac Bacharach⁷ gives the first explicit statement and a correct proof of the CBP for reduced complete intersections in the plane. The proof was based on the $A\Phi + B\Psi$ Fundamentalsatz of M. Noether.

1887: Even if Cayley⁸ failed to gasp the error in his proof, the name Cayley-Bacharach Theorem became the commonly accepted one.

⁵De relationibus, quae locum habere debent inter pucta intersectionis duarum curvarum vel trium superficierum algebraicarum dati ordinis, simul cum enodatione paradoxi algbraici, J. reine angew. Math. 15 (1836), 205-308.

⁶A. Cayley, On the intersection of curves, Cambridge Math. J. 3 (1843), 211-213.

⁷I. Bacharach, Über den Cayley'schen Schnittpunktsatz, Math. Ann. 26 (1886), 275-299.

⁸ A. Cayley, On the intersection of curves, Math. Ann. 30 (1887), 85-90.

The Modern Era, I

1952: Starting with the work of Gorenstein? it became clear the the CBP can be extended beyond complete intersections.

E. Davis, A.V. Geramita, F. Orecchia¹⁰ extended the theory to level algebras and charachterised arithmetically Gorenstein sets of points in \mathbb{P}^n by the CBP and the symmetry of their Hilbert function.

Davie A.V. Geramita, and F. Orocchia. Goranstein algebras and the Cauley-Recharach theorem. Proc. Amer. Mater.

The Modern Era, I

1952: Starting with the work of Gorenstein⁹ it became clear the the CBP can be extended beyond complete intersections.

1985:

E. Davis, A.V. Geramita, F. Orecchia¹⁰ extended the theory to level algebras and charachterised arithmetically Gorenstein sets of points in \mathbb{P}^n by the CBP and the symmetry of their Hilbert function.

⁹D. Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc. 72 (1952), 414-436.

E. Davis, A.V. Geramita, and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93 (1985), 593-597

1952: Starting with the work of Gorenstein⁹ it became clear the the CBP can be extended beyond complete intersections.

1985:

E. Davis, A.V. Geramita, F. Orecchia¹⁰ extended the theory to level algebras and charachterised arithmetically Gorenstein sets of points in \mathbb{P}^n by the CBP and the symmetry of their Hilbert function.

⁹D. Gorenstein, An arithmetic theory of adjoint plane curves, Trans. Amer. Math. Soc. 72 (1952), 414-436.

¹⁰E. Davis, A.V. Geramita, and F. Orecchia, Gorenstein algebras and the Cayley-Bacharach theorem, Proc. Amer. Math. Soc. 93 (1985), 593-597.

The Modern Era, II

M. Kreuzer, A.V. Geramita, L. Robbiano¹¹ showed that the CBP of sets of points in Pⁿ is intrinsically related to the structure of the canonical module of their coordinate ring.

1992-1994: M. Kreuzer¹² extended previous results to arbitrary 0-dimensional projective schemes over an algebraically closed field.

⁴ Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc. 339 (1993), 163-189

M. Kreuzer, On 0-dimensional complete intersections, Math. Ann. 292 (1992), 43-58

The Modern Era, II

1993:

M. Kreuzer, A.V. Geramita, L. Robbiano¹¹ showed that the CBP of sets of points in \mathbb{P}^n is intrinsically related to the structure of the canonical module of their coordinate ring.

1992-1994: M. Kreuzer¹² extended previous results to arbitrary 0-dimensional projective schemes over an algebraically closed field.

¹¹ Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc. 339 (1993), 163-189.

M. Kreuzer, On 0-dimensional complete intersections, Math. Ann. 292 (1992), 43-58
 M. Kreuzer, On the canonical module of a 0-dimensional scheme, Can. J. Math. 141 (1994), 357-379

The Modern Era, II

1993:

M. Kreuzer, A.V. Geramita, L. Robbiano¹¹ showed that the CBP of sets of points in \mathbb{P}^n is intrinsically related to the structure of the canonical module of their coordinate ring.

1992-1994: M. Kreuzer¹² extended previous results to arbitrary 0-dimensional projective schemes over an algebraically closed field.

¹² M. Kreuzer, On 0-dimensional complete intersections, Math. Ann. 292 (1992), 43-58

¹¹ Cayley-Bacharach schemes and their canonical modules, Trans. Amer. Math. Soc. 339 (1993), 163-189.

M. Kreuzer, On the canonical module of a 0-dimensional scheme, Can. J. Math. 141 (1994), 357-379.

The Modern Era, III

1998

G. Valla¹⁵ discussed some of these conjectures and proved some partial results.

⁹ D. Elsenbud, M. Green, and J. Harris, Cayley-Bacharach theorems and conjectures, Bull, Amer. Math. Soc. 33 (1996), 295-324.

⁷D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo Theory, Asterisque, 218, (1993), 187-202.

G. Valla, Problems and Results on Hilbert Functions of Graded Algebras, Six lectures on Commutative Algebra,

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

The Modern Era, III

1996:

D. Eisenbud, M. Green, J. Harris¹³ reviewed the history of the CBP, put it in a general algebraic frame, and proposed conjectures and extensions (see also¹⁴).

1998:

G. Valla¹⁵ discussed some of these conjectures and proved some partial results.

13 D. Eisenbud, M. Green, and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295-324.

¹⁴D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo Theory, Asterisque, 218, (1993), 187–202.

G. Valla, Problems and Results on Hilbert Functions of Graded Algebras, Six lectures on Commutative Algebra, Elias, Giral, Miró-Roig, Zarzuela eds. Birkhäuser, 1998.

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

The Modern Era, III

1996:

D. Eisenbud, M. Green, J. Harris¹³ reviewed the history of the CBP, put it in a general algebraic frame, and proposed conjectures and extensions (see also¹⁴). 1998:

G. Valla¹⁵ discussed some of these conjectures and proved some partial results.

13 D. Eisenbud, M. Green, and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295-324.

¹⁴D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo Theory, Asterisque, 218, (1993), 187–202.

15 G. Valla, Problems and Results on Hilbert Functions of Graded Algebras, Six lectures on Commutative Algebra, Elias, Giral, Miró-Roig, Zarzuela eds. Birkhäuser, 1998.

The Modern Era, IV

2016: M. Kreuzer and L. Robbiano¹⁶ defined the CBP for 0-dimensional affine *K*-algebras with any *K*, and linear maximal ideals, and provided several algorithms to check it.

Meanwhile, Le Ngoc Long, in his PhD thesis¹⁷ gave the most general definition of the CBP on arbitrary 0-dimensional affine *K*-algebras.

Kreuzer and L. Robbiano, Computational Linear and Commutative Algebra, Springer, Heidelberg, 20.

The Modern Era, IV

2016: M. Kreuzer and L. Robbiano¹⁶ defined the CBP for 0-dimensional affine *K*-algebras with any *K*, and linear maximal ideals, and provided several algorithms to check it.

2015:

Meanwhile, Le Ngoc Long, in his PhD thesis¹⁷ gave the most general definition of the CBP on arbitrary 0-dimensional affine *K*-algebras.

¹⁶M. Kreuzer and L. Robbiano, Computational Linear and Commutative Algebra, Springer, Heidelberg, 2016.

^{&#}x27; Various differents for 0-dimensional schemes and appplications, dissertation, University of Passau, Passau, 2015.

The Modern Era, IV

2016: M. Kreuzer and L. Robbiano¹⁶ defined the CBP for 0-dimensional affine *K*-algebras with any *K*, and linear maximal ideals, and provided several algorithms to check it.

2015:

Meanwhile, Le Ngoc Long, in his PhD thesis¹⁷ gave the most general definition of the CBP on arbitrary 0-dimensional affine *K*-algebras.

¹⁶M. Kreuzer and L. Robbiano, *Computational Linear and Commutative Algebra*, Springer, Heidelberg, 2016.

¹⁷ Various differents for 0-dimensional schemes and appplications, dissertation, University of Passau, Passau, 2015.

Divisors

divide et impera

Divisors

divide et impera

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

Lorenzo Robbiano (University of Genoa, Italy)

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

-) The ideal J in P is called a Ω_i -divisor of I if J is of the form
- $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in P such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.
- b) The ideal J in P is called a minimal Ω_i -divisor of I if it is a Ω_i -divisor of I and $\dim_K(J/I) = \ell_i = \dim_K(P/\mathfrak{M}_i).$

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

(a) The ideal *J* in *P* is called a \mathfrak{Q}_i -divisor of *I* if *J* is of the form

 $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in P such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.

b) The ideal J in P is called a minimal \mathfrak{Q}_i -divisor of I if it is a \mathfrak{Q}_i -divisor of I and $\dim_{\mathcal{K}}(J/I) = \ell_i = \dim_{\mathcal{K}}(P/\mathfrak{M}_i).$

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

- (a) The ideal *J* in *P* is called a \mathfrak{Q}_i -divisor of *I* if *J* is of the form $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in *P* such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.
- (b) The ideal *J* in *P* is called a minimal Q_i-divisor of *I* if it is a Q_i-divisor of *I* and dim_K(*J*/*I*) = ℓ_i = dim_K(*P*/𝔅_i).

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

- (a) The ideal *J* in *P* is called a \mathfrak{Q}_i -divisor of *I* if *J* is of the form $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in *P* such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.
- (b) The ideal *J* in *P* is called a minimal Q_i-divisor of *I* if it is a Q_i-divisor of *I* and dim_K(*J*/*I*) = ℓ_i = dim_K(*P*/𝔅_i).

Example

Let *K* be a field, let P = K[x, y], and let $\mathfrak{Q} = \langle x^2, y^2 \rangle$. Clearly, the ideal \mathfrak{Q} is \mathfrak{M} -primary for $\mathfrak{M} = \langle x, y \rangle$, and we have $\ell = \dim_K(P/\mathfrak{M}) = 1$.

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

- (a) The ideal *J* in *P* is called a \mathfrak{Q}_i -divisor of *I* if *J* is of the form $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in *P* such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.
- (b) The ideal *J* in *P* is called a minimal \mathfrak{Q}_i -divisor of *I* if it is a \mathfrak{Q}_i -divisor of *I* and $\dim_K(J/I) = \ell_i = \dim_K(P/\mathfrak{M}_i).$

Example

Let *K* be a field, let P = K[x, y], and let $\mathfrak{Q} = \langle x^2, y^2 \rangle$. Clearly, the ideal \mathfrak{Q} is \mathfrak{M} -primary for $\mathfrak{M} = \langle x, y \rangle$, and we have $\ell = \dim_K(P/\mathfrak{M}) = 1$.

Now we consider the ideal $J_1 = \Omega + \langle x \rangle = \langle x, y^2 \rangle$. Clearly J_1 is \mathfrak{M} -primary and hence a Ω -divisor of Ω . Since we have $\dim_K(J_1/\Omega) = 2 > \ell$, the ideal J_1 is not a minimal Ω -divisor of Ω .

Next we look at the ideal $J_2 = \Omega + \langle xy \rangle = \langle x^2, xy, y^2 \rangle$. Again it is clear that J_2 is \mathfrak{M} -primary, and therefore a Ω -divisor of Ω . In this case we get the equality $\dim_{\mathcal{K}}(J_2/\Omega) = 1 = \ell$, whence J_2 is even a minimal Ω -divisor of Ω .

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

- (a) The ideal *J* in *P* is called a \mathfrak{Q}_i -divisor of *I* if *J* is of the form $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in *P* such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.
- (b) The ideal *J* in *P* is called a minimal \mathfrak{Q}_i -divisor of *I* if it is a \mathfrak{Q}_i -divisor of *I* and $\dim_K(J/I) = \ell_i = \dim_K(P/\mathfrak{M}_i).$

Example

Let *K* be a field, let P = K[x, y], and let $\mathfrak{Q} = \langle x^2, y^2 \rangle$. Clearly, the ideal \mathfrak{Q} is \mathfrak{M} -primary for $\mathfrak{M} = \langle x, y \rangle$, and we have $\ell = \dim_K(P/\mathfrak{M}) = 1$.

Now we consider the ideal $J_1 = \Omega + \langle x \rangle = \langle x, y^2 \rangle$. Clearly J_1 is \mathfrak{M} -primary and hence a Ω -divisor of Ω . Since we have $\dim_K(J_1/\Omega) = 2 > \ell$, the ideal J_1 is not a minimal Ω -divisor of Ω .

Next we look at the ideal $J_2 = \Omega + \langle xy \rangle = \langle x^2, xy, y^2 \rangle$. Again it is clear that J_2 is \mathfrak{M} -primary, and therefore a Ω -divisor of Ω . In this case we get the equality $\dim_{\mathcal{K}}(J_2/\Omega) = 1 = \ell$, whence J_2 is even a minimal Ω -divisor of Ω .

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

- (a) The ideal *J* in *P* is called a \mathfrak{Q}_i -divisor of *I* if *J* is of the form $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in *P* such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.
- (b) The ideal *J* in *P* is called a minimal \mathfrak{Q}_i -divisor of *I* if it is a \mathfrak{Q}_i -divisor of *I* and $\dim_K(J/I) = \ell_i = \dim_K(P/\mathfrak{M}_i).$

Example

Let *K* be a field, let P = K[x, y], and let $\mathfrak{Q} = \langle x^2, y^2 \rangle$. Clearly, the ideal \mathfrak{Q} is \mathfrak{M} -primary for $\mathfrak{M} = \langle x, y \rangle$, and we have $\ell = \dim_K(P/\mathfrak{M}) = 1$. Now we consider the ideal $J_1 = \mathfrak{Q} + \langle x \rangle = \langle x, y^2 \rangle$. Clearly J_1 is \mathfrak{M} -primary and hence a \mathfrak{Q} -divisor of \mathfrak{Q} . Since we have $\dim_K(J_1/\mathfrak{Q}) = 2 > \ell$, the ideal J_1 is not a minimal \mathfrak{Q} -divisor of \mathfrak{Q} .

Next we look at the ideal $J_2 = \Omega + \langle xy \rangle = \langle x^2, xy, y^2 \rangle$. Again it is clear that J_2 is \mathfrak{M} -primary, and therefore a Ω -divisor of Ω . In this case we get the equality $\dim_{\mathcal{K}}(J_2/\Omega) = 1 = \ell$, whence J_2 is even a minimal Ω -divisor of Ω .

Definition

Let *I* be a 0-dimesional ideal in *P* and let $I \subset J$.

- (a) The ideal *J* in *P* is called a \mathfrak{Q}_i -divisor of *I* if *J* is of the form $J = \mathfrak{Q}_1 \cap \cdots \cap \mathfrak{Q}'_i \cap \cdots \cap \mathfrak{Q}_s$ with an ideal \mathfrak{Q}'_i in *P* such that $\mathfrak{Q}_i \subset \mathfrak{Q}'_i \subseteq \mathfrak{M}_i$.
- (b) The ideal *J* in *P* is called a minimal \mathfrak{Q}_i -divisor of *I* if it is a \mathfrak{Q}_i -divisor of *I* and $\dim_K(J/I) = \ell_i = \dim_K(P/\mathfrak{M}_i).$

Example

Let *K* be a field, let P = K[x, y], and let $\mathfrak{Q} = \langle x^2, y^2 \rangle$. Clearly, the ideal \mathfrak{Q} is \mathfrak{M} -primary for $\mathfrak{M} = \langle x, y \rangle$, and we have $\ell = \dim_K(P/\mathfrak{M}) = 1$.

Now we consider the ideal $J_1 = \mathfrak{Q} + \langle x \rangle = \langle x, y^2 \rangle$. Clearly J_1 is \mathfrak{M} -primary and hence a \mathfrak{Q} -divisor of \mathfrak{Q} . Since we have $\dim_K(J_1/\mathfrak{Q}) = 2 > \ell$, the ideal J_1 is not a minimal \mathfrak{Q} -divisor of \mathfrak{Q} .

Next we look at the ideal $J_2 = \mathfrak{Q} + \langle xy \rangle = \langle x^2, xy, y^2 \rangle$. Again it is clear that J_2 is \mathfrak{M} -primary, and therefore a \mathfrak{Q} -divisor of \mathfrak{Q} . In this case we get the equality $\dim_K(J_2/\mathfrak{Q}) = 1 = \ell$, whence J_2 is even a minimal \mathfrak{Q} -divisor of \mathfrak{Q} .

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let R be a 0-dimensional affine K-algebra and let $i \in \{1, ..., s\}$. TFAE

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let *R* be a 0-dimensional affine *K*-algebra and let $i \in \{1, ..., s\}$. TFAE

) We have $\operatorname{Ann}_R(f) = \mathfrak{m}_i$.

) The image of f is a non-zero element in the socle of the local ring R/q_i and, for $j \neq i$, the image of f is zero in R/q_i .

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let *R* be a 0-dimensional affine *K*-algebra and let $i \in \{1, ..., s\}$. TFAE (a) The element *f* is a separator for \mathfrak{m}_i .

c) The image of f is a non-zero element in the socle of the local ring R/q_i and, for $j \neq i$, the image of f is zero in R/q_i .

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let R be a 0-dimensional affine K-algebra and let $i \in \{1, ..., s\}$. TFAE

- (a) The element f is a separator for \mathfrak{m}_i .
- (b) We have $\operatorname{Ann}_R(f) = \mathfrak{m}_i$.

The image of f is a non-zero element in the socle of the local ring R/q_1 and, for $j \neq i$, the image of f is zero in R/q_1 .

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let R be a 0-dimensional affine K-algebra and let $i \in \{1, ..., s\}$. TFAE

- (a) The element f is a separator for \mathfrak{m}_i .
- (b) We have $\operatorname{Ann}_R(f) = \mathfrak{m}_i$.
- (c) The image of f is a non-zero element in the socle of the local ring R/q_i and, for $j \neq i$, the image of f is zero in R/q_j .

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let R be a 0-dimensional affine K-algebra and let $i \in \{1, ..., s\}$. TFAE

- (a) The element f is a separator for \mathfrak{m}_i .
- (b) We have $\operatorname{Ann}_R(f) = \mathfrak{m}_i$.
- (c) The image of f is a non-zero element in the socle of the local ring R/q_i and, for $j \neq i$, the image of f is zero in R/q_j .

Proposition

Let $F \in P$, let f be the residue class of F in R, and let $i \in \{1, \ldots, s\}$. TFAE

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let R be a 0-dimensional affine K-algebra and let $i \in \{1, ..., s\}$. TFAE

- (a) The element f is a separator for \mathfrak{m}_i .
- (b) We have $\operatorname{Ann}_R(f) = \mathfrak{m}_i$.
- (c) The image of f is a non-zero element in the socle of the local ring R/\mathfrak{q}_i and, for $j \neq i$, the image of f is zero in R/\mathfrak{q}_j .

Proposition

Let $F \in P$, let f be the residue class of F in R, and let $i \in \{1, ..., s\}$. TFAE

The element f is a separator for \mathfrak{m}_i .

) The ideal $J = I + \langle F \rangle$ is a minimal \mathfrak{Q}_i -divisor of I.

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let R be a 0-dimensional affine K-algebra and let $i \in \{1, ..., s\}$. TFAE

- (a) The element f is a separator for \mathfrak{m}_i .
- (b) We have $\operatorname{Ann}_R(f) = \mathfrak{m}_i$.
- (c) The image of f is a non-zero element in the socle of the local ring R/\mathfrak{q}_i and, for $j \neq i$, the image of f is zero in R/\mathfrak{q}_j .

Proposition

Let $F \in P$, let f be the residue class of F in R, and let $i \in \{1, ..., s\}$. TFAE (a) The element f is a separator for \mathfrak{m}_i .

Definition

For $i \in \{1, ..., s\}$, an element $f \in R$ is called a separator for \mathfrak{m}_i if we have $\dim_K \langle f \rangle = \ell_i = \dim_K (R/\mathfrak{m}_i)$ and $f \in \mathfrak{q}_j$ for every $j \neq i$.

Theorem

Let R be a 0-dimensional affine K-algebra and let $i \in \{1, ..., s\}$. TFAE

- (a) The element f is a separator for \mathfrak{m}_i .
- (b) We have $\operatorname{Ann}_R(f) = \mathfrak{m}_i$.
- (c) The image of f is a non-zero element in the socle of the local ring R/\mathfrak{q}_i and, for $j \neq i$, the image of f is zero in R/\mathfrak{q}_j .

Proposition

Let $F \in P$, let f be the residue class of F in R, and let $i \in \{1, ..., s\}$. TFAE (a) The element f is a separator for \mathfrak{m}_i .

(b) The ideal $J = I + \langle F \rangle$ is a minimal \mathfrak{Q}_i -divisor of I.

The following is a fundamental remark.

Definition

For $f \in R \setminus \{0\}$, let $\operatorname{ord}_{\mathcal{F}}(f) = \min\{i \in \mathbb{Z} \mid f \in F_i R \setminus F_{i-1} R\}$. This number is called the order of f with respect to \mathcal{F} .

The following is a fundamental remark.

Definition

For $f \in R \setminus \{0\}$, let $\operatorname{ord}_{\mathcal{F}}(f) = \min\{i \in \mathbb{Z} \mid f \in F_i R \setminus F_{i-1} R\}$. This number is called the order of f with respect to \mathcal{F} .

The following is a fundamental remark.

For $f \in R \setminus \{0\}$, let $\operatorname{ord}_{\mathcal{F}}(f) = \min\{i \in \mathbb{Z} \mid f \in F_i R \setminus F_{i-1} R\}$. This number is called the order of f with respect to \mathcal{F} .

The following is a fundamental remark.

For $f \in R \setminus \{0\}$, let $\operatorname{ord}_{\mathcal{F}}(f) = \min\{i \in \mathbb{Z} \mid f \in F_i R \setminus F_{i-1} R\}$. This number is called the order of f with respect to \mathcal{F} .

The following is a fundamental remark.

Remark

Given a maximal ideal \mathfrak{m}_i of R, the separators for \mathfrak{m}_i may not be uniquely determined in two different ways:

It is possible that two separators f, g for \mathfrak{m}_i correspond to the same minimal \mathfrak{Q}_i -divisor of I. Then the ideals $\langle \overline{f} \rangle$ and $\langle \overline{g} \rangle$ in R/\mathfrak{q}_i are equal, but if we have $\ell_i = \dim_K(R/\mathfrak{m}_i) > 1$, the orders of f and g with respect to \mathcal{F} may not be equal.

(2) If dim_K(Soc(R/q_i)) > l_i, there exist separators f, g for m_i which correspond to different Q_i-divisors of I. In this case, the ideals ⟨f⟩ and ⟨ḡ⟩ in R/q_i are not equal.

For $f \in R \setminus \{0\}$, let $\operatorname{ord}_{\mathcal{F}}(f) = \min\{i \in \mathbb{Z} \mid f \in F_i R \setminus F_{i-1} R\}$. This number is called the order of f with respect to \mathcal{F} .

The following is a fundamental remark.

Remark

Given a maximal ideal \mathfrak{m}_i of R, the separators for \mathfrak{m}_i may not be uniquely determined in two different ways:

(1) It is possible that two separators f, g for \mathfrak{m}_i correspond to the same minimal \mathfrak{Q}_i -divisor of I. Then the ideals $\langle \overline{f} \rangle$ and $\langle \overline{g} \rangle$ in R/\mathfrak{q}_i are equal, but if we have $\ell_i = \dim_K(R/\mathfrak{m}_i) > 1$, the orders of f and g with respect to \mathcal{F} may not be equal.

(2) If $\dim_K(\operatorname{Soc}(R/\mathfrak{q}_i)) > \ell_i$, there exist separators f, g for \mathfrak{m}_i which correspond to different \mathfrak{Q}_i -divisors of I. In this case, the ideals $\langle \overline{f} \rangle$ and $\langle \overline{g} \rangle$ in R/\mathfrak{q}_i are not equal.

For $f \in R \setminus \{0\}$, let $\operatorname{ord}_{\mathcal{F}}(f) = \min\{i \in \mathbb{Z} \mid f \in F_i R \setminus F_{i-1} R\}$. This number is called the order of f with respect to \mathcal{F} .

The following is a fundamental remark.

Remark

Given a maximal ideal \mathfrak{m}_i of R, the separators for \mathfrak{m}_i may not be uniquely determined in two different ways:

- (1) It is possible that two separators f, g for \mathfrak{m}_i correspond to the same minimal \mathfrak{Q}_i -divisor of I. Then the ideals $\langle \overline{f} \rangle$ and $\langle \overline{g} \rangle$ in R/\mathfrak{q}_i are equal, but if we have $\ell_i = \dim_K(R/\mathfrak{m}_i) > 1$, the orders of f and g with respect to \mathcal{F} may not be equal.
- (2) If dim_K(Soc(R/q_i)) > ℓ_i , there exist separators f, g for \mathfrak{m}_i which correspond to different \mathfrak{Q}_i -divisors of I. In this case, the ideals $\langle \bar{f} \rangle$ and $\langle \bar{g} \rangle$ in R/\mathfrak{q}_i are not equal.

We have $I \rightarrow \Omega_1$ (1, Ω_2 , where $\Omega_1 \rightarrow (y, x^2 + 1)$ and $\Omega_2 \rightarrow (xy, x^2, y^2)$. And Ω_3 ($y \rightarrow Rad(\Omega_3) \rightarrow \Omega_1$ and Ω_3 ($y \rightarrow Rad(\Omega_3) \rightarrow (x, y)$. The affinishing him effort of Rad(Y, X, Y) and hence $Rd(Y) \rightarrow X$. The affinishing him effort of Rad(Y, X, Y) for m_1 , and hence $Rd(Y) \rightarrow X$. The affinishing him effort of Rad(Y, Y) (Y) is a parameter of m_1 . There effects are 2 and 3. Thus Ω_3 ($x') \rightarrow \Omega_1$) $(Y') \rightarrow (Y') \rightarrow (Y')$ is a parameter of m_1 . There exists of the first kind. This resulting classes of y' and $x' \rightarrow (x)$ are reparators for m_2 . There exists only $Rad(Y') \rightarrow (X')$ and Ω_2 Notice that the two ideals $\Omega_2 \rightarrow (y')$ and $\Omega_2 \rightarrow (x') + (x')$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I.

We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^2 \rangle$. And $\mathfrak{M}_2 = \mathsf{Rad}(\mathfrak{Q}_2) = \mathfrak{Q}_2$ and $\mathfrak{M}_2 = \mathsf{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$.

The affine Hilbert function of *R* is (1, 3, 5, 6, 6, ...), and hence ri(R) = 3. The residue classes of x^2 and x^3 in *R* are separators for m_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for m_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I.

We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^2 \rangle$. And $\mathfrak{M}_2 = \mathsf{Rad}(\mathfrak{Q}_2) = \mathfrak{Q}_2$ and $\mathfrak{M}_2 = \mathsf{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$.

The affine Hilbert function of *R* is (1, 3, 5, 6, 6, ...), and hence ri(R) = 3. The residue classes of x^2 and x^3 in *R* are separators for m_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for m_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Example

Let
$$K = \mathbb{Q}$$
, let $P = K[x, y]$, let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let $R = P/I$.
We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$.
And the residue classes of x and x is $\langle 1, 3, 5, 6, 6 \rangle$, and hence $\Gamma(R) = 3$.
The residue classes of x and x is $\langle 1, 3, 5, 6, 6 \rangle$, and hence $\Gamma(R) = 3$.
The residue classes of x and x is $\langle 1, 3, 5, 6, 6 \rangle$, and hence $\Gamma(R) = 3$.
The residue classes of x and x is $\langle 1, 3, 5, 6, 6 \rangle$. Their orders are 2 and 3.
The residue classes of x and x is $\langle 1, 3, 5, 6, 6 \rangle$. Their orders are 2 and 3.
Notice that the two ideals $\mathfrak{Q}_2 = \langle y^2 \rangle$ and $\mathfrak{Q}_2 = \langle x^2 + x \rangle$ are different. Consequently,
this is a case of non-uniqueness of the second kind.

Example

Let
$$K = \mathbb{Q}$$
, let $P = K[x, y]$, let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let $R = P/I$.
We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$.
And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$.

The affine Hilbert function of *R* is (1, 3, 5, 6, 6, ...), and hence fl(R) = 3. The residue classes of x^2 and x^3 in *R* are separators for \mathfrak{m}_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for \mathfrak{m}_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I. We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$. And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$. The affine Hilbert function of R is $(1, 3, 5, 6, 6, \dots)$, and hence $\operatorname{ri}(R) = 3$. The residue classes of Y and Y are separators for M. Their orders are 2 and 3. The residue classes of Y and Y are separators for M. Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_1 = \langle Y \rangle$ and $\mathfrak{Q}_2 = \langle Y, Y \rangle$.

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I. We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$. And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$. The affine Hilbert function of R is $(1, 3, 5, 6, 6, \ldots)$, and hence $\operatorname{ri}(R) = 3$. The residue classes of x^2 and x^3 in R are separators for \mathfrak{m}_1 , Their orders are 2 and 3. The residue classes of x^2 and x^3 in R are separators for \mathfrak{m}_2 . Their orders are 2 and 3.

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I. We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$. And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$. The affine Hilbert function of R is $(1, 3, 5, 6, 6, \ldots)$, and hence $\operatorname{ri}(R) = 3$. The residue classes of x^2 and x^3 in R are separators for \mathfrak{m}_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for \mathfrak{m}_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I. We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$. And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$. The affine Hilbert function of R is $(1, 3, 5, 6, 6, \ldots)$, and hence $\operatorname{ri}(R) = 3$. The residue classes of x^2 and x^3 in R are separators for \mathfrak{m}_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for \mathfrak{m}_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above, let $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ be the maximal ideals of *R*, and let $i \in \{1, \ldots, s\}$.

Fiven a minimal \mathfrak{Q}_i -divisor J of I and its image J in R, we let

Then the number sepdeg(\mathfrak{m}_i) = min{ri(\overline{J}) | J is a minimal \mathfrak{Q}_i -divisor of I} is called

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I. We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$. And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$. The affine Hilbert function of R is $(1, 3, 5, 6, 6, \ldots)$, and hence $\operatorname{ri}(R) = 3$. The residue classes of x^2 and x^3 in R are separators for \mathfrak{m}_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for \mathfrak{m}_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above, let $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ be the maximal ideals of *R*, and let $i \in \{1, \ldots, s\}$.

Fiven a minimal \mathfrak{Q}_i -divisor J of I and its image J in R, we let

Then the number sepdeg(\mathfrak{m}_i) = min{ri(\overline{J}) | J is a minimal \mathfrak{Q}_i -divisor of I} is called

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I. We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$. And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$. The affine Hilbert function of R is $(1, 3, 5, 6, 6, \ldots)$, and hence $\operatorname{ri}(R) = 3$. The residue classes of x^2 and x^3 in R are separators for \mathfrak{m}_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for \mathfrak{m}_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above, let $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ be the maximal ideals of R, and let $i \in \{1, \ldots, s\}$. Given a minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, we let $\mathsf{ri}(\overline{J}) = \max\{\mathsf{ord}_{\mathcal{F}}(f) \mid f \in \overline{J} \setminus \{0\}\}.$

Example

Let $K = \mathbb{Q}$, let P = K[x, y], let $I = \langle xy, y^3, x^4 + x^2 \rangle$, and let R = P/I. We have $I = \mathfrak{Q}_1 \cap \mathfrak{Q}_2$, where $\mathfrak{Q}_1 = \langle y, x^2 + 1 \rangle$ and $\mathfrak{Q}_2 = \langle xy, x^2, y^3 \rangle$. And $\mathfrak{M}_1 = \operatorname{Rad}(\mathfrak{Q}_1) = \mathfrak{Q}_1$ and $\mathfrak{M}_2 = \operatorname{Rad}(\mathfrak{Q}_2) = \langle x, y \rangle$. The affine Hilbert function of R is $(1, 3, 5, 6, 6, \ldots)$, and hence $\operatorname{ri}(R) = 3$. The residue classes of x^2 and x^3 in R are separators for \mathfrak{m}_1 , Their orders are 2 and 3. Thus $\mathfrak{Q}_1 + \langle x^2 \rangle = \mathfrak{Q}_1 + \langle x^3 \rangle = \langle 1 \rangle$ shows a case of non-uniqueness of the first kind. The residue classes of y^2 and $x^3 + x$ are separators for \mathfrak{m}_2 . Their orders are 2 and 3. Notice that the two ideals $\mathfrak{Q}_2 + \langle y^2 \rangle$ and $\mathfrak{Q}_2 + \langle x^3 + x \rangle$ are different. Consequently, this is a case of non-uniqueness of the second kind.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra as above, let $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ be the maximal ideals of *R*, and let $i \in \{1, \ldots, s\}$. Given a minimal \mathfrak{Q}_i -divisor *J* of *I* and its image \overline{J} in *R*, we let $\mathsf{ri}(\overline{J}) = \max\{\mathsf{ord}_{\mathcal{F}}(f) \mid f \in \overline{J} \setminus \{0\}\}$. Then the number $\mathsf{sepdeg}(\mathfrak{m}_i) = \min\{\mathsf{ri}(\overline{J}) \mid J \text{ is a minimal } \mathfrak{Q}_i\text{-divisor of } I\}$ is called the $\mathsf{separator}$ degree of \mathfrak{m}_i in *R*.

- There is an algorithm which checks whether the maximal ideal m_i of *R* has maximal separator degree, i.e. sepdeg(m_i) = ri(*R*).
- The ring R of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Lorenzo Robbiano (University of Genoa, Italy)

Zero-Dimensional Ideals: new Algorithms

Proposition

The following conditions are equivalent.

- (a) For every minimal Ω_i-divisor J of I and its image J in R, there is a generator f of J such that ord_F(f) = ri(R).
- (b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal m, of R has maximal separator degree, i.e. sepdeg(m_i) = ri(R).
- The ring *R* of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Proposition

The following conditions are equivalent.

(a) For every minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, there is a generator f of \overline{J} such that $\operatorname{ord}_{\mathcal{F}}(f) = \operatorname{ri}(R)$.

(b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal m, of R has maximal separator degree, i.e. sepdeg(m_i) = ri(R).
- The ring *R* of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Proposition

The following conditions are equivalent.

- (a) For every minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, there is a generator f of \overline{J} such that $\operatorname{ord}_{\mathcal{F}}(f) = \operatorname{ri}(R)$.
- (b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal m, of R has maximal separator degree, i.e. sepdeg(m_i) = ri(R).
- The ring *R* of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Proposition

The following conditions are equivalent.

- (a) For every minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, there is a generator f of \overline{J} such that $\operatorname{ord}_{\mathcal{F}}(f) = \operatorname{ri}(R)$.
- (b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal m, of R has maximal separator degree, i.e. sepdeg(m_i) = ri(R).
- The ring R of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Proposition

The following conditions are equivalent.

- (a) For every minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, there is a generator f of \overline{J} such that $\operatorname{ord}_{\mathcal{F}}(f) = \operatorname{ri}(R)$.
- (b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal m, of R has maximal separator degree, i.e. sepdeg(m_i) = ri(R).
- The ring R of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Proposition

The following conditions are equivalent.

- (a) For every minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, there is a generator f of \overline{J} such that $\operatorname{ord}_{\mathcal{F}}(f) = \operatorname{ri}(R)$.
- (b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal \mathfrak{m}_i of R has maximal separator degree, i.e. sepdeg $(\mathfrak{m}_i) = ri(R)$.
- The ring *R* of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Proposition

The following conditions are equivalent.

- (a) For every minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, there is a generator f of \overline{J} such that $\operatorname{ord}_{\mathcal{F}}(f) = \operatorname{ri}(R)$.
- (b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal \mathfrak{m}_i of R has maximal separator degree, i.e. sepdeg $(\mathfrak{m}_i) = ri(R)$.
- The ring *R* of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Proposition

The following conditions are equivalent.

- (a) For every minimal \mathfrak{Q}_i -divisor J of I and its image \overline{J} in R, there is a generator f of \overline{J} such that $\operatorname{ord}_{\mathcal{F}}(f) = \operatorname{ri}(R)$.
- (b) For the maximal ideal \mathfrak{m}_i of R we have $\operatorname{sepdeg}(\mathfrak{m}_i) = \operatorname{ri}(R)$.

Definition

- There is an algorithm which checks whether the maximal ideal \mathfrak{m}_i of R has maximal separator degree, i.e. sepdeg $(\mathfrak{m}_i) = ri(R)$.
- The ring *R* of the above example does not have the CBP.
- The coordinate ring of the classical nine points which are the complete intersection of two plane cubics has the CBP.

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra.

-) If we equip the *K*-vector space $\omega_R = \text{Hom}_K(R, K)$ with the *R*-module structure defined by $f \cdot \varphi(g) = \varphi(fg)$ for $f, g \in R$ and $\varphi \in \omega_R$, we obtain the canonical module of *R*.
- (b) For every $i \in \mathbb{Z}$, let $G_i \omega_R = \{ \varphi \in \omega_R \mid \varphi(F_{-i-1}R) = 0 \}$. Then the family $\mathcal{G} = (G_i \omega_R)_{i \in \mathbb{Z}}$ is a \mathbb{Z} -filtration of ω_R which we call the degree filtration of ω_R
- (c) The map $\mathsf{HF}^a_{\omega_R} : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $\mathsf{HF}^a_{\omega_R}(i) = \dim_K(G_i\omega_R)$ for all $i \in \mathbb{Z}$ is called the affine Hilbert function of ω_R .

Remark

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra.

(a) If we equip the *K*-vector space $\omega_R = \text{Hom}_K(R, K)$ with the *R*-module structure defined by $f \cdot \varphi(g) = \varphi(fg)$ for $f, g \in R$ and $\varphi \in \omega_R$, we obtain the canonical module of *R*.

(b) For every i ∈ Z, let G_iω_R = {φ ∈ ω_R | φ(F_{-i-1}R) = 0}. Then the family G = (G_iω_R)_{i∈Z} is a Z-filtration of ω_R which we call the degree filtration of ω_R.
(c) The map HF^a_{ω_R} : Z → Z defined by HF^a_{ω_R}(i) = dim_K(G_iω_R) for all i ∈ Z is called the affine Hilbert function of ω_R.

Remark

Definition

Let R = P/I be a 0-dimensional affine *K*-algebra.

- (a) If we equip the *K*-vector space $\omega_R = \text{Hom}_K(R, K)$ with the *R*-module structure defined by $f \cdot \varphi(g) = \varphi(fg)$ for $f, g \in R$ and $\varphi \in \omega_R$, we obtain the canonical module of *R*.
- (b) For every $i \in \mathbb{Z}$, let $G_i \omega_R = \{ \varphi \in \omega_R \mid \varphi(F_{-i-1}R) = 0 \}$. Then the family $\mathcal{G} = (G_i \omega_R)_{i \in \mathbb{Z}}$ is a \mathbb{Z} -filtration of ω_R which we call the degree filtration of ω_R .

called the affine Hilbert function of ω_R .

Remark

Let R = P/I be a 0-dimensional affine *K*-algebra.

- (a) If we equip the *K*-vector space $\omega_R = \text{Hom}_K(R, K)$ with the *R*-module structure defined by $f \cdot \varphi(g) = \varphi(fg)$ for $f, g \in R$ and $\varphi \in \omega_R$, we obtain the canonical module of *R*.
- (b) For every $i \in \mathbb{Z}$, let $G_i \omega_R = \{ \varphi \in \omega_R \mid \varphi(F_{-i-1}R) = 0 \}$. Then the family $\mathcal{G} = (G_i \omega_R)_{i \in \mathbb{Z}}$ is a \mathbb{Z} -filtration of ω_R which we call the degree filtration of ω_R .
- (c) The map $\mathsf{HF}^a_{\omega_R} : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $\mathsf{HF}^a_{\omega_R}(i) = \dim_K(G_i\omega_R)$ for all $i \in \mathbb{Z}$ is called the affine Hilbert function of ω_R .

Remark

Let R = P/I be a 0-dimensional affine *K*-algebra.

- (a) If we equip the *K*-vector space $\omega_R = \text{Hom}_K(R, K)$ with the *R*-module structure defined by $f \cdot \varphi(g) = \varphi(fg)$ for $f, g \in R$ and $\varphi \in \omega_R$, we obtain the canonical module of *R*.
- (b) For every $i \in \mathbb{Z}$, let $G_i \omega_R = \{ \varphi \in \omega_R \mid \varphi(F_{-i-1}R) = 0 \}$. Then the family $\mathcal{G} = (G_i \omega_R)_{i \in \mathbb{Z}}$ is a \mathbb{Z} -filtration of ω_R which we call the degree filtration of ω_R .
- (c) The map $\mathsf{HF}^a_{\omega_R} : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $\mathsf{HF}^a_{\omega_R}(i) = \dim_K(G_i\omega_R)$ for all $i \in \mathbb{Z}$ is called the affine Hilbert function of ω_R .

Remark

Theorem

Let R = P/I be a 0-dimensional affine K-algebra. TFAE

- a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-ri(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE (a) The ring R has the Cayley-Bacharach property.
 - (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
- (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
- (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
- (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- 1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order $\operatorname{tri}(R)$.
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
- (3) For $j = 1, ..., \Delta$, form the matrix $V_j \in Mat_d(K)$ whose i-th column is the $(d \Delta + j)$ -th column of $(M_{b_i})^{tr}$ for i = 1, ..., d.
- (4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).
- (5) If $Ker(W) = \{0\}$, return TRUE. Otherwise, return FALSE.

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- (1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order ri(R).
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
- (3) For $j = 1, ..., \Delta$, form the matrix $V_j \in Mat_d(K)$ whose i-th column is the $(d \Delta + j)$ -th column of $(M_{b_j})^{tr}$ for i = 1, ..., d.
- (4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).
- (5) If $Ker(W) = \{0\}$, return TRUE. Otherwise, return FALSE.

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- (1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order ri(R).
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
 - 3) For $j = 1, ..., \Delta$, form the matrix $V_j \in Mat_d(K)$ whose *i*-th column is the $(d \Delta + j)$ -th column of $(M_{b_i})^{\text{tr}}$ for i = 1, ..., d.
- (4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).
- (5) If $Ker(W) = \{0\}$, return TRUE. Otherwise, return FALSE.

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- (1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order ri(R).
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
- (3) For $j = 1, ..., \Delta$, form the matrix $V_j \in \text{Mat}_d(K)$ whose *i*-th column is the $(d \Delta + j)$ -th column of $(M_{b_i})^{\text{tr}}$ for i = 1, ..., d.

(4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).

(5) If $\text{Ker}(W) = \{0\}$, return TRUE. Otherwise, return FALSE

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- (1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order ri(R).
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
- (3) For $j = 1, ..., \Delta$, form the matrix $V_j \in \text{Mat}_d(K)$ whose *i*-th column is the $(d \Delta + j)$ -th column of $(M_{b_i})^{\text{tr}}$ for i = 1, ..., d.
- (4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).

(5) If $\text{Ker}(W) = \{0\}$, return TRUE. Otherwise, return FALSE

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- (1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order ri(R).
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
- (3) For $j = 1, ..., \Delta$, form the matrix $V_j \in \text{Mat}_d(K)$ whose *i*-th column is the $(d \Delta + j)$ -th column of $(M_{b_i})^{\text{tr}}$ for i = 1, ..., d.
- (4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).
- (5) If $Ker(W) = \{0\}$, return TRUE. Otherwise, return FALSE.

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- (1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order ri(R).
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
- (3) For $j = 1, ..., \Delta$, form the matrix $V_j \in \text{Mat}_d(K)$ whose *i*-th column is the $(d \Delta + j)$ -th column of $(M_{b_i})^{\text{tr}}$ for i = 1, ..., d.
- (4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).
- (5) If $Ker(W) = \{0\}$, return TRUE. Otherwise, return FALSE.

Theorem

- Let R = P/I be a 0-dimensional affine K-algebra. TFAE
 - (a) The ring R has the Cayley-Bacharach property.
- (b) The bilinear map $R \otimes_K G_{-\operatorname{ri}(R)} \omega_R \longrightarrow \omega_R$ is non-degenerate.
- (c) We have $\operatorname{Ann}_R(G_{-\operatorname{ri}(R)}\omega_R) = \{0\}.$

Algorithm

Let R = P/I be a 0-dimensional affine K-algebra.

- (1) Compute a degree filtered K-basis $B = (b_1, \ldots, b_d)$ of R. Let $\Delta \ge 1$ be such that $b_{d-\Delta+1}, \ldots, b_d$ are the elements of B of order ri(R).
- (2) For i = 1, ..., d, compute the matrix $M_{b_i} \in Mat_d(K)$ representing the multiplication by b_i in B.
- (3) For $j = 1, ..., \Delta$, form the matrix $V_j \in \text{Mat}_d(K)$ whose *i*-th column is the $(d \Delta + j)$ -th column of $(M_{b_i})^{\text{tr}}$ for i = 1, ..., d.
- (4) Form the block column matrix $W = \text{Col}(V_1, \ldots, V_{\Delta})$ and compute Ker(W).
- (5) If $Ker(W) = \{0\}$, return TRUE. Otherwise, return FALSE.

 $W = Col(V_0, V_0)$ has a trivial leaved, we conclude that R has the CBP.

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], let I be the ideal of P generated by $\{z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z\}$, and let R = P/I.

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], let I be the ideal of P generated by $\{z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z\}$, and let R = P/I.

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], let *I* be the ideal of *P* generated by $\{z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z\}$, and let R = P/I. The primary decomposition of *I* is $I = \mathfrak{M}_1 \cap \mathfrak{M}_2$, where we have $\mathfrak{M}_1 = \langle x, y, z \rangle$ and $\mathfrak{M}_2 = \langle z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z, xy - 2yz - z - 1 \rangle$. Here \mathfrak{M}_1 and \mathfrak{M}_2 are maximal ideals, \mathfrak{M}_1 is a linear maximal ideal, and \mathfrak{M}_2 corresponds to a residue field extension $K \subset L_2$ of degree 5.

function of *R* is (1, 4, 6, 6, ...), and hence f(R) = 2. A degree filtered *K*-basis of *R* is given by the residue classes of $\{1, z, y, x, yz, xy\}$. Thus we have d = 6 and $\Delta_R = 2$. The two matrices V_1 and V_2 computed in Step (3) of the algorithm are

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], let *I* be the ideal of *P* generated by $\{z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z\}$, and let R = P/I. The primary decomposition of *I* is $I = \mathfrak{M}_1 \cap \mathfrak{M}_2$, where we have $\mathfrak{M}_1 = \langle x, y, z \rangle$ and $\mathfrak{M}_2 = \langle z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z, xy - 2yz - z - 1 \rangle$. Here \mathfrak{M}_1 and \mathfrak{M}_2 are maximal ideals, \mathfrak{M}_1 is a linear maximal ideal, and \mathfrak{M}_2 corresponds to a residue field extension $K \subset L_2$ of degree 5. The affine Hilbert function of *R* is $(1, 4, 6, 6, \dots)$, and hence ri(R) = 2.

 $\Delta_R = 2$. The two matrices V_1 and V_2 computed in Step (3) of the algorithm are

 $V_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -2 & -4 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -4 & -8 \\ -1 & -2 & 0 & -4 & 1 & 1 \\ 0 & -4 & 1 & -8 & 1 & -2 \end{pmatrix} \text{ and } V_{2} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 4 \\ 0 & 1 & 0 & 2 & 0 & 1 \\ 1 & 2 & 0 & 4 & 1 & 5 \end{pmatrix}$

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], let *I* be the ideal of *P* generated by $\{z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z\}$, and let R = P/I. The primary decomposition of *I* is $I = \mathfrak{M}_1 \cap \mathfrak{M}_2$, where we have $\mathfrak{M}_1 = \langle x, y, z \rangle$ and $\mathfrak{M}_2 = \langle z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z, xy - 2yz - z - 1 \rangle$. Here \mathfrak{M}_1 and \mathfrak{M}_2 are maximal ideals, \mathfrak{M}_1 is a linear maximal ideal, and \mathfrak{M}_2 corresponds to a residue field extension $K \subset L_2$ of degree 5. The affine Hilbert function of *R* is (1, 4, 6, 6, ...), and hence ri(R) = 2. A degree filtered *K*-basis of *R* is given by the residue classes of $\{1, z, y, x, yz, xy\}$.

$$V_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & -2 & -4 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & -4 & -8 \\ -1 & -2 & 0 & -4 & 1 & 1 \\ 0 & -4 & 1 & -8 & 1 & -2 \end{pmatrix} \text{ and } V_{2} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 2 & 4 \\ 0 & 1 & 0 & 2 & 0 & 1 \\ 1 & 2 & 0 & 4 & 1 & 5 \end{pmatrix}$$

Example

Let $K = \mathbb{Q}$, let P = K[x, y, z], let *I* be the ideal of *P* generated by $\{z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z\}$, and let R = P/I. The primary decomposition of *I* is $I = \mathfrak{M}_1 \cap \mathfrak{M}_2$, where we have $\mathfrak{M}_1 = \langle x, y, z \rangle$ and $\mathfrak{M}_2 = \langle z^2 - x + 2z, xz - 2x - y + 4z, y^2 - x + z, x^2 - yz - 4x - 4y + 8z, xy - 2yz - z - 1 \rangle$. Here \mathfrak{M}_1 and \mathfrak{M}_2 are maximal ideals, \mathfrak{M}_1 is a linear maximal ideal, and \mathfrak{M}_2 corresponds to a residue field extension $K \subset L_2$ of degree 5. The affine Hilbert function of *R* is $(1, 4, 6, 6, \dots)$, and hence ri(R) = 2. A degree filtered *K*-basis of *R* is given by the residue classes of $\{1, z, y, x, yz, xy\}$. Thus we have d = 6 and $\Delta_R = 2$. The two matrices V_1 and V_2 computed in Step (3) of the algorithm are

						0 \			$\sqrt{0}$	0	0	0	0	1
$V_1 =$	0	0	1	0	-2	-4			0	0	0	0	1	2
	0	1	0	0	0	1	and	$V_2 =$	0	0	0	1	0	0
	0	0	0	1	-4	-8		$v_2 =$	0	0	1	0	2	4
	-1	$^{-2}$	0	-4	1	1			0	1	0	2	0	1
	\ 0	-4	1	$^{-8}$	1	-2 /			$\backslash 1$	2	0	4	1	5/