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Part I

Introduction
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Organisation

Practical questions
language: English or French?
course is “breakable”

following the second part only is not reasonable
following the first part only is feasible (but not recommended)

Professors
Alin Bostan (∼12h), Inria Saclay
webpage: https://mathexp.eu/bostan/
email: alin.bostan@inria.fr

Pierre Lairez (∼12h), Inria Saclay
webpage: https://pierre.lairez.fr/
email: pierre.lairez@inria.fr

Marc Mezzarobba (∼12h), CNRS
webpage: https://marc.mezzarobba.net/
email: marc@mezzarobba.net

Vincent Neiger (∼12h), Sorbonne Université
webpage: https://vincent.neiger.science/
email: vincent.neiger@lip6.fr
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Organisation

Material
webpage for the course, with info and material (frequent updates):
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-22

all slides in English
book in French, printed 2017 version is cheap (≈ 15€)
updated pdf, legally cost-free, is available here:
https://hal.archives-ouvertes.fr/AECF/

Calendar
always refer to the webpage! ask us by email in case of doubts
time: Mondays, 16:15-19:15; location: room 1004
first period, exception: Thursday 14/11
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Organisation

How to work?
with pen and paper + with a computer (SageMath, Maple, . . . )
in class: pay close attention, be proactive, ask questions
at home: weekly regular work ≫ intense sprint 4 days before exam

To help you towards this:
basic questions/exercises/examples/demos during each class
take advantage of them!
exercises proposed at the end of each session

it is in your interest to study them during the week
beginning of next session: one of you volunteers to correct it

3-hour tutored exercise session on 18/11
practice on exam-like exercises, with at least one professor available for you
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Master’s Internships?

Interested? Let’s discuss soon!
we provide research internship subjects in our respective teams
MathExp, Inria Saclay & MAX, Polytechnique & PolSys, LIP6 / Sorbonne U.

we can also provide advice for other internships/PhD opportunities
with colleagues in computer algebra-related domains
in Bordeaux, Grenoble, Lille, Limoges, Lyon, Montpellier, Nancy, Rennes, Toulouse, . . .
wide range of topics, with common denominators:

involve a variable, but nonnegligible, amount of mathematics/algebra
questions of effectiveness/efficiency of computations
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Master’s Internships?

Possible research subjects:
supervised by MAX team @ LIX/Polytechnique (contact: Mezzarobba)
. Numeric-symbolic polynomial system solving

https://dl.vwx.fr/PoK06ZjlaYw1uFst/stage-odelix-polsys.pdf
. Numerical approach of generalized flatness

https://www.lix.polytechnique.fr/max/node/stage-node-e.en.html

Algorithms for algebraic approximants and guess-and-prove approaches
supervision/contact: Bostan & Neiger; detailed outline available soon

examples of other subjects recently proposed in our teams:
. Fast evaluation of elementary functions with medium precision
. Sparse interpolation of rational functions
. Computing contiguity/multiplication matrices for statistical physics
. Algebraic cryptanalysis of new NIST multivariate signature schemes
. Méthodes algébriques pour le calcul de topologies d’ensembles semi-algébriques

contact us asap if interested
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Master’s Internships?

ISSAC 2024 conference topics: Algorithmic aspects
Exact and symbolic linear, polynomial and differential algebra
Symbolic-numeric, homotopy, perturbation and series methods
Computational algebraic geometry, group theory and number theory,
quantifier elimination and logic
Computer arithmetic
Summation, recurrence equations, integration, solution of ODEs & PDEs
Symbolic methods in other areas of pure and applied mathematics
Complexity of algebraic algorithms and algebraic complexity

ISSAC 2024 conference topics: Software aspects
Design of symbolic computation packages and systems
Language design and type systems for symbolic computation
Data representation
Considerations for modern hardware
Algorithm implementation and performance tuning
Mathematical user interfaces
Use with systems for, e.g., digital libraries, courseware, simulation and optimization, automated
theorem-proving, computer-aided design, and automatic differentiation.
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Contents

This year:
power series, polynomials, matrices
linear recurrences and linear differential equations
polynomial matrices and Hermite-Padé approximation
factorization of polynomials, lattice reduction
binomial sums
opening to combinatorics

Related topics / courses:
techniques in cryptography and cryptanalysis → C-2-12-1
arithmetic algorithms for cryptology → C-2-12-2
error correcting codes and applications to cryptography → C-2-13-2
analysis of algorithms → C-2-15
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Our viewpoint

Computer Algebra = design of fast algebraic algorithms on exact
representations of mathematical objects in the computer.

This is a part of “doing mathematics” on the computer.
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Motivating Examples

A computational proof of

Theorem (Ramanujan)

3

√
cos

2π

7
+ 3

√
cos

4π

7
+ 3

√
cos

8π

7
=

3

√
5 − 3 3

√
7

2

is by combining resultants for elimination.
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Motivating Examples

A computational proof of:

Theorem (Apéry, 1978)

ζ(3) := 1 + 1
23 + 1

33 + 1
43 + · · · ̸∈ Q. “ζ(3) is irrational.”

Proof: relies crucially on proving that both

an :=
n∑

k=0

(
n
k

)2(n + k
k

)2
(

n∑
m=1

1
m3 +

k∑
m=1

(−1)m−1

2m3
(n

m

)(n+m
m

))

and bn :=
n∑

k=0

(
n
k

)2(n + k
k

)2

satisfy

n3an − (2n − 1)(17n2 − 17n + 5)an−1 + (n − 1)3an−2 = 0 (n ≥ 2).

Recurrence can be discovered and verified in a few seconds!
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On the computer

List of Computer Algebra Systems (subjective selection)
Axiom, CoCoA, Derive, GAP, Macaulay2, Magma, Maple, Mathemagix,
Mathematica, Maxima, MuPAD, PARI/GP, Reduce, SageMath, Singular

more recently: development of optimized open-source libraries
SageMath gathers many such state-of-the-art libraries

what you can compute in about 1 second
with fflas-ffpack with NTL

> PLUQ m = 3800 1.00s

> LinSys m = 3800 1.00s

> MatMul m = 3000 0.97s

> Inverse m = 2800 1.01s

> CharPoly m = 2000 1.09s

> PolMul d = 7 × 106 1.03s

> Division d = 4 × 106 0.96s

> XGCD d = 2 × 105 0.99s

> MinPoly d = 2 × 105 1.10s

> MPeval d = 1 × 104 1.01s
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Part II

Computer algebra and
computability/effectiveness
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A negative result

The Richardson–Matiyasevich Theorem
In the class of expressions obtained from a variable X and the constant 1
by application of the ring operations +, −, × and composition with the
function sin(·) and the absolute value function | · |, the test of equivalence
to 0 is undecidable.

equality test is a zero test (as soon as subtraction exists)

no “good” simplify(); it is made of heuristics
computer algebra: work with algebraic constructs that preserve the
decidability of the zero test

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Effective algebraic structures

Definition
An algebraic structure (group, ring, field, vector space, . . . ) is effective if it
is endowed with:

a data structure to represent its elements;
algorithms to perform its inner operations and to test equality and
other predicates.

e.g. an effective ring comes with algorithms for:
equality, addition, subtraction, multiplication
composition of data structures via lists/arrays

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Integers and variants

Machine integers / word-size integers
processor “integers” = integers modulo 2w (usually w = 32 or w = 64)

operations =, +, −, × in hardware

Big integers, a.k.a. bignums

unique writing N = (−1)ε × (a0 + a1B + · · · + akBk) for a fixed base B
Lemma: the ring Z of relative integers is effective.

Modular integers
core tool: Euclidean division with remainder in Z
Lemma: for any integer n ≥ 2, the ring Z/nZ is effective

⇝ avoid intermediate expression swell
⇝ reconstructions by the Chinese Remainder Theorem (CRT)
⇝ allows probabilistic heuristics by calculations modulo n
⇝ algorithms with deterministic outputs by controlling sizes and bad n

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Vectors and matrices

Vector: typically an array of pointers to the coefficients
(or simply, a memory-contiguous array if a coefficient fits into a machine word)

Proposition
If K is an effective field,

the vector space Kn is effective,
the ring Mn(K) = Kn×n is effective.

Depending on the application, dense or sparse representation
→ different algorithms!
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Polynomials, fractions

Depending on the application, dense or sparse representation
→ different algorithms!

Proposition
If A is an effective ring, then so is A[X].

multivariate polynomials by iteration
(not necessarily done this way in practice)

strong connection between univariate polynomials and big integers

Proposition
If A is an effective domain, then its fraction field is effective.

provides Q and K(X)
representation variants: Frac(Z[X, Y]), Frac(Frac(Frac(Z)[X])[Y]), . . .
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Truncated formal power series

truncated series a0 + a1X + · · · + aN−1XN−1 + O(XN)
⇝ represented as a polynomial of degree < N
optimized algorithm for the short product

[Schönhage: “Never waste a factor of 2!”]

Proposition

If A is an effective ring and if N ∈ N, then A[X]/(XN) is an effective ring.

computing approximations
representing (exactly) rational fractions if numerators and
denominators are with bounded degrees
reconstructing linear differential equations with polynomial
coefficients (guessing); analogue for linear recurrence equations
reconstructing bivariate polynomials from univariate series
solutions: for factorization and for solving polynomial systems

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)



16 / 42

Equations as the right data structures

Non-explicit or infinite mathematical objects can be represented exactly
on the computer when they are solutions to finite equations:√

2 = just a symbol whose square is 2,
ln x = just a symbol whose derivative is 1/x.

−→ algorithms on implicit representations

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Algebraic numbers = univariate polynomials

Proposition

If K is an effective field, then so is its algebraic closure K̄.

Calculations by resultants, series, gcd.

Consequence: “easy” computational proof of

sin( 2π
7 )

sin2( 3π
7 )

−
sin( π

7 )
sin2( 2π

7 )
+

sin( 3π
7 )

sin2( π
7 )

= 2
√

7

¥ SageMath example /
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Polynomial systems

Proposition
Let K be an effective field, and f1, . . . , fm be polynomials from the ring
K[X1, . . . , Xn]. Then the quotient ring K[X1, . . . , Xn]/(f1, . . . , fm) is effective.

algorithms by resultants or by Gröbner bases
very strong connection to geometry

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Linear differential equations, linear recurrence equations

If K is an effective field, the set. . .{
formal power series

∑
n∈N anXn ∈ K[[X]] that are solutions to

linear differential equations with coefficients from K[X]
}

is an effective ring.

If K is an effective field, the set. . .{
sequences (an)n∈N ∈ KN that are solutions to

linear recurrences with coefficients in K[n]
}

is an effective ring.

special functions in mathematical physics; combinatorial sequences
algorithms by a non-commutative variant of resultants
equality test reduces to the identification of initial conditions
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Systems of linear differential and recurrence equations

Algorithms (of creative telescoping) make possible the automatic proof of
identities like:

n∑
k=0

( k∑
j=0

(
n
j

))3

= n23n−1 + 23n − 3n2n−2
(

2n
n

)
,

∫ +∞

0
xJ1(ax)I1(ax)Y0(x)K0(x) dx = − ln(1 − a4)

2πa2 .

(binomial coefficients, Bessel functions, etc)
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Part III

Computer algebra and
complexity/efficiency
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Measures of (time) complexity

Random access machines (RAM)
two tapes + arbitrarily many registers, all containing integers
read, write, addition, subtraction, product, division, jumps

Arithmetic complexity
counts operations on some effective algebraic structure A
(arithmetic operations and tests of predicates)
does not count copies, operations on loop counters, indirections

okay if operations in A are preponderant and on similar sizes
caution: memory is neglected, e.g. matrix transposition is free, etc.

Bit complexity
counts operations on digits of integers written in B
better if intermediate calculations are with integers of variable sizes

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Notation O(·) and variations

Various “size” parameters of data structures: number of digits, degrees,
matrix dimensions, etc.

Comparaisons of complexities as functions of “sizes”
f (n) = O(g(n)) as n → ∞ if ∃K > 0, ∃N > 0, ∀n > N, |f (n)| ≤ K |g(n)|
be cautious if there are several parameters
simplification to hide logarithms: f (n) = Õ(g(n)) as n → ∞ if
∃k ≥ 0, f (n) = O(g(n) logk |g(n)|)
f (n) = Θ(g(n)) as n → ∞ if
∃K > 0, ∃K′ > 0, ∃N > 0, ∀n > N, K′ |g(n)| ≤ |f (n)| ≤ K |g(n)|
remark: f (n) = Θ(g(n)) iff f (n) = O(g(n)) and g(n) = O(f (n))

Caution: a few chapters in the book write f (X) := g(X) + O(XN) to mean “compute and store
the polynomial remainder f (X) := rem(g(X), XN)”. This is a ternary notation “? := ? + O(X?)”,
not to be confused with “? = ? + O(X?)”.

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)



24 / 42

What efficiency?

generally speaking: worst-case time complexity
often, this reflects the average-case complexity
at least for operations concerning fundamental algebraic structures

An algorithm is quasi-optimal. . .

if its complexity is some Õ of the sum of the sizes of its input and output

(We will slightly extend this definition for linear algebra.)

ultimate goal

design quasi-optimal algorithms

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)



25 / 42

The programming paradigm “divide and conquer” (DAC)

size = n

size ≤ n/psize ≤ n/p size ≤ n/p

...
...

...
...

...
...

...
...

...

size ≤ ssize ≤ s size ≤ s

...
...

size ≤ s size ≤ s

m recursive calls

m2 recursive calls

...

m recursive calls, on p times smaller data, down to threshold s ≥ p

When is this of interest? Where are the most costly manipulations?

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Complexity analysis of “divide and conquer”

Theorem
Let T be an increasing function and let C be a function ruled by the
inequality

C(n) ≤

{
T(n) + mC(⌈n/p⌉), if n ≥ s ≥ p
κ otherwise,

with m > 0 and κ > 0, and so that there exist q and r with 1 < q ≤ r
satisfying

qT(n) ≤ T(pn) ≤ rT(n), for all sufficiently large n.

Then, when n → ∞, [dominant cost:]

C(n) =


O(T(n)), if q > m, [top of tree]
O(T(n) logp n), if q = m, [all levels]
O
(

nlogp(m/p)T(n)
)

if q < m. [bottom of tree]
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Part IV

Fast polynomial multiplication
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A long history (and a spoiler)

Theorem (for the dense representation and coefficients in a ring A)

The multiplication of polynomials of degree at most n in A[X] requires:
O(n2) operations in A by the naive algorithm (dates back to Antiquity);

O(nlog2 3) ops in A by the algorithm by Karatsuba (and Ofman) (1963);

O(n log n) operations in A when A contains enough “good” roots of unity
via Fast Fourier Transform (FFT), known to Gauss (1805), rediscovered by Cooley and Tukey (1965)

O(n log n log log n) operations in A by the algorithm by Schönhage and Strassen (1971)
generalizing the FFT applicability by introducing “virtual” roots of unity

O(n log n log log n) operations in A by Cantor and Kaltofen (1991), for general A
arbitrary (possibly non-commutative) algebra, O(n log n) mul. and O(n log n log log n) add./sub.

recently, after the breakthrough of Fürer’s algorithm (2007) which multiplies
integers of size n in O(n log n Klog∗ n) bit operations (constant K):

bit complexity O(n log(p) log(n log(p)) 8log∗(n log(p))) by Harvey, van der Hoeven,
Lecerf (JACM 2017), for polynomials over Fp with p prime
log∗ n = minimal number k such that log◦k n ≤ 1

under a number-theoretic conjecture: for polynomials over Fq, bit complexity
O(n log(q) log(n log(q))) (Harvey and van der Hoeven, JACM 2022).

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Naive multiplication algorithm

F = f0 + · · · + fnXn, G = g0 + · · · + gnXn −→ H := FG = h0 + · · · + h2nX2n

�
�

�
�hi =

i∑
j=0

fjgi−j, h2n−i =
i∑

j=0

fn−jgn−i+j, (0 ≤ i ≤ n)

n∑
i=0

(
i + 1 multiplications

i additions

)
+

n−1∑
i=0

(
i + 1 multiplications

i additions

)
=
(

(n + 1)2 multiplications
n2 additions

)
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Karatsuba’s multiplication: the idea in degree 1

F = f0 + f1X, G = g0 + g1X −→ H := FG = h0 + h1X + h2X2

Naively, 4 multiplications: h0 = f0g0, h1 = f0g1 + f1g0, h2 = f1g1

Some easy evaluations (up to some interpretation at infinity)

h0 = H(0) = F(0)G(0) = f0g0

h0 + h1 + h2 = H(1) = F(1)G(1) = (f0 + f1)(g0 + g1)
h2 = H(∞) = F(∞)G(∞) = f1g1

Gain of one multiplication�� ��h1 = (f0 + f1)(g0 + g1) − f0g0 − f1g1

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)
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Karatsuba’s algorithm

Input F, G of degrees at most n − 1.
Output H = FG.

1 If n = 1, return FG.
2 Set k = ⌈n/2⌉ and decompose F et G according to the equation

F = F(0) + F(1)Xk, G = G(0) + G(1)Xk,

3 Recursively compute H0 = F(0)G(0) and H2 = F(1)G(1).
4 Compute A = F(0) + F(1) et B = G(0) + G(1).
5 Recursively compute C = AB.
6 Compute H1 = C − H0 − H2.
7 Return H0 + H1Xk + H2X2k.

Remark: A, B have degree < k; H0, H1, H2, C have degree < n.
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Complexity analysis of Karatsuba’s algorithm

Theorem
If n is a power of 2, Karatsuba’s algorithm computes the product of two
polynomials of degrees at most n − 1 in at most 9nlog2 3 operations in A.

Proof: For n = 2ℓ, that is to say ℓ = log2 n:

K(n) ≤ 3K(n/2) + 4n
≤ 32K(n/22) + 4n(3/2 + 1)
≤ . . .

≤ 3ℓK(n/2ℓ) + 4n((3/2)ℓ−1 + · · · + 3/2 + 1)

≤ 3ℓK(1) + 4n
(3/2)ℓ − 1

3/2 − 1
≤ 3ℓ(1 + 4 · 2) = 9nlog2 3.
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Algorithms by Cook (1963), Toom (1966), Schönhage
(1966), Knuth (1969)

Theorem
For a given ϵ > 0, by increasing the number of evaluation points one
obtains an algorithm of complexity O(n1+ϵ).
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Multiplication by DFT (Discrete Fourier Transform): the idea

Relies on a suitable choice of points for evaluation/interpolation
DFT : A[X]<n

∼−−→An

P 7−→
(

P(ω0), . . . , P(ωn−1)
)

Input F and G two polynomials, n an integer, and
ω a principal nth root of unity (definition to come).

Output rem(FG, Xn − 1).
1 Precomputation. Compute the powers ω2, . . . , ωn−1.
2 Evaluation. Compute (ui)n−1

i=0 := DFT(F) et (vi)n−1
i=0 := DFT(G).

3 Coordinate-wise product. Compute W := (uivi)n−1
i=0 .

4 Interpolation. Compute and return DFT−1(W).

�� ��there remains to design a fast algorithm for DFT and DFT−1
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Roots of unity of a general ring A

Finer and finer definitions
ω is an nth root of unity if ωn = 1
ω is a primitive nth root of unity if ωn = 1 and if
0 < t < n ⇒ ωt − 1 non-zero
ω is a principal nth root of unity if ωn = 1 and if
0 < t < n ⇒ ωt − 1 non-zero and non-zero-divisor

Properties

ω is a primitive nth root of 1 ⇒ ω−1 is a primitive nth root of 1
n = pq and ω is a primitive nth root of 1 ⇒

ωp is a primitive qth root of 1
ω is a primitive nth root of 1 and 0 < ℓ < n ⇒

∑n−1
j=0 ωℓj = 0

three analogous statements for principal roots of unity
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DFT (evaluation) by FFT (Fast Fourier Transform)
Input P = p0 + · · · + pn−1Xn−1; the powers 1, ω, · · · , ωn−1 of some principal

nth root of unity ω, n being a power of 2.
Output

(
P(ω0), . . . , P(ωn−1)

)
.

1 If n = 1, return p0, otherwise, set k = n/2 and calculate

R0(X) :=
k−1∑
j=0

(pj + pj+k)X j, R̄1(X) := R1(ωX) =
k−1∑
j=0

(pj − pj+k)ωjX j.

2 Recursively compute the DFT of R0 and R̄1 on the family(
1, ω2, . . . , (ω2)k−1). (“time decimation”)

3 Return
(

R0(1), R̄1(1), R0(ω2), R̄1(ω2), . . . , R0
(

(ω2)k−1), R̄1
(

(ω2)k−1)).

Correctness

n = 2k and ω is a primitive/principal nth root of 1 ⇒ ωk = −1

P = (Xk − 1)Q0 + R0 = (Xk + 1)Q1 + R1 ⇒ P(ωℓ) =

{
R0(ωℓ) if ℓ even,

R1(ωℓ) if ℓ odd.

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)



37 / 42

Complexity analysis of the FFT algorithm

Theorem
For n a power of 2, Fast Fourier Transform (FFT) requires ≃ 3n

2 log n
operations in A. Each multiplication in A done by the algorithm is
between an element of A and some power of ω.

Proof: For n = 2ℓ, that is to say ℓ = log2 n:

F(n) ≤ 2F(n/2) +
3n
2

≤ 22F(n/22) +
3n
2

(2/2 + 1)

≤ . . .

≤ 2ℓF(n/2ℓ) +
3n
2

(2ℓ−1/2ℓ−1 + · · · + 2/2 + 1)

≤ nF(1) +
3n
2

ℓ =
1 + 3 log2 n

2
n.

Alin Bostan, Pierre Lairez, Marc Mezzarobba, Vincent Neiger Efficient algorithms in computer algebra (MPRI C-2-22)



38 / 42

Interpolate is evaluate (!)

Given the Vandermonde matrix Vω :=


1 1 · · · 1
1 ω · · · ωn−1

...
...

1 ωn−1 · · · ω(n−1)2

, we

have:
DFT(P) =

(
P(ω0), . . . , P(ωn−1)

)
= (p0, . . . , pn−1)Vω.

Lemma
If ω ∈ A is a principal nth root of unity, then Vω−1 Vω = nIn.

Proof:
n−1∑
k=0

ω−(i−1)kωk(j−1) =
n−1∑
k=0

ω(j−i)k = nδi,j.

�



�
	Said differently: (DFTω)−1 =

1
n

DFTω−1 .
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Complexity analysis of multiplication by FFT when A
contains roots of unity for all n = 2k

Input F and G two polynomials, n an integer, and ω a principal nth root of
unity, assumed to exist in A.

Output FG, assumed to be of degree < n, a power of 2.
1 Precomputation. Calculate the powers ω2, . . . , ωn−1.
2 Evaluation. Compute (ui)n−1

i=0 := DFTω(F) and (vi)n−1
i=0 := DFTω(G) by FFT.

3 Coordinate-wise product. Compute W := (uivi)n−1
i=0 .

4 Interpolation. Compute, using FFT, and return 1
n DFTω−1 (W).

Theorem
If 2 is invertible in A, if n is some power of 2, and if ω is a principal nth root
of unity in A, the product of two polynomials whose sum of degrees is < n
can be computed in 9

2 n log n + O(n) operations in A. Only n of the products
are between two elements of A that are general elements (that is, not
powers of ω or 1/n).
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“Practical” remark: Fourier primes

Proposition
The finite field Fq with q elements contains a primitive nth root of unity if
and only if n divides q − 1

Good prime numbers
A prime p is called FFT prime if it has the form p = 2eℓ + 1 for e “big enough”

�



�
	p := 4179340454199820289 = 29 × 257 + 1, A := Fp, n := 257,

ω := 21 is a primitive nth root of unity
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Sketch of the Schönhage–Strassen algorithm
“Virtual” roots of unity
If 2 is invertible in A and if n is a power of 2, then ω = X + (Xn + 1) is a
principal (2n)th root of 1 in A[X]/(Xn + 1) (which is not always a domain,
even for a field A).

Input F and G of degrees < n = 2k, for k > 2.
Output rem(FG, Xn + 1).

1 Let d = 2⌊k/2⌋ and δ = n/d. Rewrite F and G in the form

F̄(X, Y) = F0(X) + · · ·+ Fδ−1(X)Yδ−1, Ḡ(X, Y) = G0(X) + · · ·+ Gδ−1(X)Yδ−1,

with Fi, Gi of degrees < d and s.t. F(X) = F̄(X, Xd) and G(X) = Ḡ(X, Xd).
2 Compute H̄ := rem(F̄Ḡ, Yδ + 1) in B[Y] by a variation of FFT, where

B = A[X]/(X2d + 1) and by recursive calls for products in B.
3 Return H(X, Xd).

Theorem
Let A be a ring in which 2 is invertible, with known inverse. Then, two
polynomials of A[X] of degrees < n can be multiplied in O(n log n log log n)
operations in A.
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Multiplication functions�



�
	Abstraction

of cost functions
−→ Expression of complexity independent

of the multiplication algorithm

Definition
M : N>0 → R>0 is a multiplication function for A[X] if:

all P, Q of degree < n in A[X] can be multiplied in at most M(n)
arithmetic operations in A;
n 7→ M(n)/n is an increasing function of n ∈ N>0;
for all m and n of N>0, M(mn) ≤ m2M(n).

Properties
(superlinearity) n ≤ M(n); M(m) + M(n) ≤ M(m + n); m M(n) ≤ M(mn).
(usual special cases) 2M(n) ≤ M(2n);

∑
i M(ni) ≤ M

(∑
i ni
)

.
(at most quadratic) M(n) ≤ n2.
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