Efficient Algorithms in Computer Algebra (2024–2025)

https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-22

Alin Bostan

Pierre Lairez

alin.bostan@inria.fr pierre.lairez@inria.fr

Marc Mezzarobba

marc@mezzarobba.net

Vincent Neiger

vincent.neiger@lip6.fr

September 23, 2024

Introduction — Computer Algebra and Complexity — Fast Multiplication

Part I

Introduction

Organisation

Practical questions

- Ianguage: English or French?
- course is "breakable"
 - following the second part only is not reasonable
 - following the first part only is feasible (but not recommended)

Professors

- Alin Bostan (~12h), Inria Saclay webpage: https://mathexp.eu/bostan/ email:alin.bostan@inria.fr
- Pierre Lairez (~12h), Inria Saclay webpage: https://pierre.lairez.fr/ email: pierre.lairez@inria.fr
- Marc Mezzarobba (~12h), CNRS webpage: https://marc.mezzarobba.net/ email:marc@mezzarobba.net
- Vincent Neiger (~12h), Sorbonne Université webpage: https://vincent.neiger.science/ email:vincent.neiger@lip6.fr

Material

- webpage for the course, with info and material (frequent updates): https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-22
- all slides in English
- book in French, printed 2017 version is cheap ($\approx 15 {
 m (})$
- updated pdf, legally cost-free, is available here:

https://hal.archives-ouvertes.fr/AECF/

Calendar

- always refer to the webpage! ask us by email in case of doubts
- time: Mondays, 16:15-19:15; location: room 1004
- first period, exception: Thursday 14/11

How to work?

- with pen and paper + with a computer (SageMath, Maple, ...)
- in class: pay close attention, be proactive, ask questions
- ullet at home: weekly regular work \gg intense sprint 4 days before exam

To help you towards this:

- basic questions/exercises/examples/demos during each class take advantage of them!
- exercises proposed at the end of each session
 - it is in your interest to study them during the week
 - beginning of next session: one of you volunteers to correct it
- 3-hour tutored exercise session on 18/11 practice on exam-like exercises, with at least one professor available for you

Interested? Let's discuss soon!

- we provide research internship subjects in our respective teams MathExp, Inria Saclay & MAX, Polytechnique & PolSys, LIP6 / Sorbonne U.
- we can also provide advice for other internships/PhD opportunities with colleagues in computer algebra-related domains in Bordeaux, Grenoble, Lille, Limoges, Lyon, Montpellier, Nancy, Rennes, Toulouse, ...
- wide range of topics, with common denominators:
 - involve a variable, but nonnegligible, amount of mathematics/algebra
 - questions of effectiveness/efficiency of computations

Master's Internships?

Possible research subjects:

supervised by MAX team @ LIX/Polytechnique

(contact: Mezzarobba)

- . Numeric-symbolic polynomial system solving https://dl.vwx.fr/PoK06ZjlaVw1uFst/stage-odelix-polsys.pdf
- . Numerical approach of generalized flatness https://www.lix.polytechnique.fr/max/node/stage-node-e.en.html
- Algorithms for algebraic approximants and guess-and-prove approaches supervision/contact: Bostan & Neiger; detailed outline available soon
- examples of other subjects recently proposed in our teams:
 - . Fast evaluation of elementary functions with medium precision
 - . Sparse interpolation of rational functions
 - . Computing contiguity/multiplication matrices for statistical physics
 - . Algebraic cryptanalysis of new NIST multivariate signature schemes
 - . Méthodes algébriques pour le calcul de topologies d'ensembles semi-algébriques

contact us asap if interested

Master's Internships?

ISSAC 2024 conference topics: Algorithmic aspects

- Exact and symbolic linear, polynomial and differential algebra
- Symbolic-numeric, homotopy, perturbation and series methods
- Computational algebraic geometry, group theory and number theory, quantifier elimination and logic
- Computer arithmetic
- Summation, recurrence equations, integration, solution of ODEs & PDEs
- Symbolic methods in other areas of pure and applied mathematics
- Complexity of algebraic algorithms and algebraic complexity

ISSAC 2024 conference topics: Software aspects

- Design of symbolic computation packages and systems
- Language design and type systems for symbolic computation
- Data representation
- Considerations for modern hardware
- Algorithm implementation and performance tuning
- Mathematical user interfaces
- Use with systems for, e.g., digital libraries, courseware, simulation and optimization, automated theorem-proving, computer-aided design, and automatic differentiation.

Contents

This year:

- power series, polynomials, matrices
- linear recurrences and linear differential equations
- polynomial matrices and Hermite-Padé approximation
- factorization of polynomials, lattice reduction
- binomial sums
- opening to combinatorics

Related topics / courses:

- $\bullet~$ techniques in cryptography and cryptanalysis \rightarrow C-2-12-1
- arithmetic algorithms for cryptology ightarrow C-2-12-2
- $\bullet~$ error correcting codes and applications to cryptography \rightarrow C-2-13-2
- $\bullet~$ analysis of algorithms \rightarrow C-2-15

Computer Algebra = design of fast algebraic algorithms on exact representations of mathematical objects in the computer.

This is a part of "doing mathematics" on the computer.

A computational proof of

Theorem (Ramanujan)

$$\sqrt[3]{\cos\frac{2\pi}{7}} + \sqrt[3]{\cos\frac{4\pi}{7}} + \sqrt[3]{\cos\frac{8\pi}{7}} = \sqrt[3]{\frac{5 - 3\sqrt[3]{7}}{2}}$$

is by combining resultants for elimination.

Motivating Examples

A computational proof of:

Theorem (Apéry, 1978)

 $\zeta(3) := 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots \notin \mathbb{Q}.$

" ζ (3) is irrational."

Proof: relies crucially on proving that both

$$a_{n} := \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2} \left(\sum_{m=1}^{n} \frac{1}{m^{3}} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^{3} {\binom{n}{m}} {\binom{n+m}{m}}}\right)$$

and
$$b_{n} := \sum_{k=0}^{n} {\binom{n}{k}}^{2} {\binom{n+k}{k}}^{2}$$

satisfy

$$n^3a_n - (2n-1)(17n^2 - 17n + 5)a_{n-1} + (n-1)^3a_{n-2} = 0$$
 (n ≥ 2).

Recurrence can be discovered and verified in a few seconds!

On the computer

List of Computer Algebra Systems (subjective selection)

Axiom, CoCoA, Derive, GAP, Macaulay2, Magma, Maple, Mathemagix, Mathematica, Maxima, MuPAD, PARI/GP, Reduce, SageMath, Singular

- more recently: development of optimized open-source libraries
- SageMath gathers many such state-of-the-art libraries

what you can compute in about 1 second					
wit	h fflas-ffpa	ck		with NTL	
> PLUQ	<i>m</i> = 3800	1.00s	> PolMul	d = 7 $ imes$ 10 ⁶	1.03s
> LinSys	<i>m</i> = 3800	1.00s	> Division	d = 4 $ imes$ 10 ⁶	0.96s
> MatMul	<i>m</i> = 3000	0.97s	> XGCD	d = 2 \times 10 ⁵	0.99s
> Inverse	<i>m</i> = 2800	1.01s	> MinPoly	d = 2 \times 10 ⁵	1.10s
> CharPoly	<i>m</i> = 2000	1.09s	> MPeval	$d = 1 \times 10^4$	1.01s

Part II

Computer algebra and computability/effectiveness

The Richardson–Matiyasevich Theorem

In the class of expressions obtained from a variable X and the constant 1 by application of the ring operations +, -, \times and composition with the function sin(·) and the absolute value function $|\cdot|$, the test of equivalence to 0 is undecidable.

- equality test is a zero test (as soon as subtraction exists)
- no "good" simplify(); it is made of heuristics
- computer algebra: work with algebraic constructs that preserve the decidability of the zero test

Definition

An algebraic structure (group, ring, field, vector space, ...) is *effective* if it is endowed with:

- a data structure to represent its elements;
- algorithms to perform its inner operations and to test equality and other predicates.

- e.g. an effective ring comes with algorithms for: equality, addition, subtraction, multiplication
- composition of data structures via lists/arrays

Integers and variants

Machine integers / word-size integers

processor "integers" = integers modulo 2^w

(usually
$$w = 32$$
 or $w = 64$)

• operations =, +, -, \times in hardware

Big integers, a.k.a. bignums

- unique writing $N = (-1)^{\varepsilon} \times (a_0 + a_1B + \cdots + a_kB^k)$ for a fixed base B
- Lemma: the ring $\ensuremath{\mathbb{Z}}$ of relative integers is effective.

Modular integers

- core tool: Euclidean division with remainder in $\ensuremath{\mathbb{Z}}$
- Lemma: for any integer $n \ge 2$, the ring $\mathbb{Z}/n\mathbb{Z}$ is effective
- → avoid intermediate expression swell
- ~~ reconstructions by the Chinese Remainder Theorem (CRT)
- allows probabilistic heuristics by calculations modulo n
- →→ algorithms with deterministic outputs by controlling sizes and bad *n*

Vector: typically an array of pointers to the coefficients (or simply, a memory-contiguous array if a coefficient fits into a machine word)

Proposition

If $\mathbb K$ is an effective field,

- the vector space \mathbb{K}^n is effective,
- the ring $\mathcal{M}_n(\mathbb{K}) = \mathbb{K}^{n \times n}$ is effective.

Depending on the application, dense or sparse representation $$\rightarrow$$ different algorithms!

Polynomials, fractions

Depending on the application, dense or sparse representation $$\rightarrow$$ different algorithms!

Proposition

If \mathbb{A} is an effective ring, then so is $\mathbb{A}[X]$.

- multivariate polynomials by iteration (not necessarily done this way in practice)
- strong connection between univariate polynomials and big integers

Proposition

If \mathbbm{A} is an effective domain, then its fraction field is effective.

- provides \mathbb{Q} and $\mathbb{K}(X)$
- representation variants: Frac($\mathbb{Z}[X, Y]$), Frac(Frac($\mathbb{F}rac(\mathbb{Z})[X]$)[Y]), ...

Truncated formal power series

- truncated series a₀ + a₁X + · · · + a_{N-1}X^{N-1} + O(X^N)
 → represented as a polynomial of degree < N
- optimized algorithm for the *short product* [Schönhage: "*Never waste a factor of* 2!"]

Proposition

If \mathbb{A} is an effective ring and if $N \in \mathbb{N}$, then $\mathbb{A}[X]/(X^N)$ is an effective ring.

- computing approximations
- representing (exactly) rational fractions if numerators and denominators are with bounded degrees
- reconstructing linear differential equations with polynomial coefficients (*guessing*); analogue for linear recurrence equations
- reconstructing bivariate polynomials from univariate series solutions: for factorization and for solving polynomial systems

Non-explicit or infinite mathematical objects can be represented exactly on the computer when they are solutions to finite equations:

- $\sqrt{2}$ = just a symbol whose square is 2,
- $\ln x = \text{just a symbol whose derivative is } 1/x$.

\longrightarrow algorithms on **implicit representations**

Proposition

If $\mathbb K$ is an effective field, then so is its algebraic closure $\bar{\mathbb K}.$

Calculations by resultants, series, gcd.

Consequence: "easy" computational proof of

$$\frac{\sin(\frac{2\pi}{7})}{\sin^2(\frac{3\pi}{7})} - \frac{\sin(\frac{\pi}{7})}{\sin^2(\frac{2\pi}{7})} + \frac{\sin(\frac{3\pi}{7})}{\sin^2(\frac{\pi}{7})} = 2\sqrt{7}$$

SageMath example </>>

Proposition

Let \mathbb{K} be an effective field, and f_1, \ldots, f_m be polynomials from the ring $\mathbb{K}[X_1, \ldots, X_n]$. Then the quotient ring $\mathbb{K}[X_1, \ldots, X_n]/(f_1, \ldots, f_m)$ is effective.

- algorithms by resultants or by Gröbner bases
- very strong connection to geometry

Linear differential equations, linear recurrence equations

If $\mathbb K$ is an effective field, the set. . .

 $\Big\{$ formal power series $\sum_{n\in\mathbb{N}} a_n X^n \in \mathbb{K}[[X]]$ that are solutions to

linear differential equations with coefficients from $\mathbb{K}[X]$ is an effective ring.

If $\mathbb K$ is an effective field, the set. . .

```
\left\{	ext{ sequences } (a_n)_{n\in\mathbb{N}}\in\mathbb{K}^{\mathbb{N}} 	ext{ that are solutions to } 
ight.
```

```
linear recurrences with coefficients in \mathbb{K}[n]
```

is an effective ring.

- special functions in mathematical physics; combinatorial sequences
- algorithms by a non-commutative variant of resultants
- equality test reduces to the identification of initial conditions

Algorithms (of *creative telescoping*) make possible the automatic proof of identities like:

$$\sum_{k=0}^{n} \left(\sum_{j=0}^{k} \binom{n}{j} \right)^{3} = n2^{3n-1} + 2^{3n} - 3n2^{n-2} \binom{2n}{n},$$
$$\int_{0}^{+\infty} x J_{1}(ax) J_{1}(ax) Y_{0}(x) K_{0}(x) \, dx = -\frac{\ln(1-a^{4})}{2\pi a^{2}}.$$

(binomial coefficients, Bessel functions, etc)

Part III

Computer algebra and complexity/efficiency

Measures of (time) complexity

Random access machines (RAM)

- two tapes + arbitrarily many registers, all containing integers
- read, write, addition, subtraction, product, division, jumps

Arithmetic complexity

- counts operations on some effective algebraic structure A (arithmetic operations and tests of predicates)
- does not count copies, operations on loop counters, indirections
- okay if operations in A are preponderant and on similar sizes
- caution: memory is neglected, e.g. matrix transposition is free, etc.

Bit complexity

- counts operations on digits of integers written in B
- better if intermediate calculations are with integers of variable sizes

Notation $O(\cdot)$ and variations

Various "size" parameters of data structures: number of digits, degrees, matrix dimensions, etc.

Comparaisons of complexities as functions of "sizes"

- f(n) = O(g(n)) as $n \to \infty$ if $\exists K > 0, \exists N > 0, \forall n > N, |f(n)| \le K |g(n)|$
- be cautious if there are several parameters
- simplification to hide logarithms: $f(n) = \tilde{O}(g(n))$ as $n \to \infty$ if $\exists k \ge 0, f(n) = O(g(n) \log^k |g(n)|)$
- $f(n) = \Theta(g(n))$ as $n \to \infty$ if $\exists K > 0, \exists K' > 0, \exists N > 0, \forall n > N, K' |g(n)| \le |f(n)| \le K |g(n)|$
- remark: $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and g(n) = O(f(n))

Caution: a few chapters in the book write $f(X) := g(X) + O(X^N)$ to mean "compute and store the polynomial remainder $f(X) := \text{rem}(g(X), X^N)$ ". This is a ternary notation "? := ? + $O(X^2)$ ", not to be confused with "? = ? + $O(X^2)$ ".

What efficiency?

- generally speaking: worst-case time complexity
- often, this reflects the average-case complexity at least for operations concerning fundamental algebraic structures

An algorithm is quasi-optimal...

if its complexity is some \tilde{O} of the sum of the sizes of its input and output

(We will slightly extend this definition for linear algebra.)

ultimate goal

design quasi-optimal algorithms

The programming paradigm "divide and conquer" (DAC)

m recursive calls, on *p* times smaller data, down to threshold $s \ge p$

When is this of interest? Where are the most costly manipulations?

Theorem

Let *T* be an increasing function and let *C* be a function ruled by the inequality

$$C(n) \leq \begin{cases} T(n) + mC(\lceil n/p \rceil), & \text{if } n \ge s \ge p \\ \kappa & \text{otherwise,} \end{cases}$$

with m > 0 and $\kappa > 0$, and so that there exist q and r with $\mathbf{1} < q \leq r$ satisfying

 $qT(n) \le T(pn) \le rT(n)$, for all sufficiently large n.

Then, when $n \to \infty$,

[dominant cost:]

$$C(n) = \begin{cases} O(T(n)), & \text{if } q > m, & [top of tree] \\ O(T(n) \log_p n), & \text{if } q = m, & [all levels] \\ O(n^{\log_p(m/p)}T(n)) & \text{if } q < m. & [bottom of tree] \end{cases}$$

Part IV

Fast polynomial multiplication

A long history (and a spoiler)

Theorem (for the dense representation and coefficients in a ring \mathbb{A})

The multiplication of polynomials of degree at most n in $\mathbb{A}[X]$ requires:

- $O(n^2)$ operations in \mathbb{A} by the naive algorithm (dates back to Antiquity);
- $O(n^{\log_2 3})$ ops in A by the algorithm by Karatsuba (and Ofman) (1963);
- *O*(*n* log *n*) operations in A when A contains enough "good" roots of unity via Fast Fourier Transform (FFT), known to Gauss (1805), rediscovered by Cooley and Tukey (1965)
- $O(n \log n \log \log n)$ operations in \mathbb{A} by the algorithm by Schönhage and Strassen (1971) generalizing the FFT applicability by introducing "virtual" roots of unity
- *O*(*n* log log *n*) operations in A by Cantor and Kaltofen (1991), for general A arbitrary (possibly non-commutative) algebra, *O*(*n* log *n*) mul. and *O*(*n* log *n* log log *n*) add./sub.

recently, after the breakthrough of Fürer's algorithm (2007) which multiplies integers of size n in $O(n \log n K^{\log^* n})$ bit operations (constant K):

- *bit complexity O*($n \log(p) \log(n \log(p)) 8^{\log^*(n \log(p))}$) by Harvey, van der Hoeven, Lecerf (JACM 2017), for polynomials over \mathbb{F}_p with p prime $\log^* n = \min$ number k such that $\log^{\circ k} n \le 1$
- under a number-theoretic conjecture: for polynomials over \mathbb{F}_q , bit complexity $O(n \log(q) \log(n \log(q)))$ (Harvey and van der Hoeven, JACM 2022).

Naive multiplication algorithm

$$F = f_0 + \dots + f_n X^n, \ G = g_0 + \dots + g_n X^n \quad \longrightarrow \quad H := FG = h_0 + \dots + h_{2n} X^{2n}$$

$$\left(h_{i} = \sum_{j=0}^{i} f_{j}g_{i-j}, \qquad h_{2n-i} = \sum_{j=0}^{i} f_{n-j}g_{n-i+j}, \qquad (0 \le i \le n)\right)$$

$$\sum_{i=0}^{n} {\binom{i+1 \text{ multiplications}}{i \text{ additions}}} + \sum_{i=0}^{n-1} {\binom{i+1 \text{ multiplications}}{i \text{ additions}}} = {\binom{(n+1)^2 \text{ multiplications}}{n^2 \text{ additions}}}$$

Karatsuba's multiplication: the idea in degree 1

 $F = f_0 + f_1 X$, $G = g_0 + g_1 X \longrightarrow H := FG = h_0 + h_1 X + h_2 X^2$ Naively, 4 multiplications: $h_0 = f_0 g_0$, $h_1 = f_0 g_1 + f_1 g_0$, $h_2 = f_1 g_1$

Some easy evaluations

(up to some interpretation at infinity)

$$h_0 = H(0) = F(0)G(0) = f_0g_0$$

$$h_0 + h_1 + h_2 = H(1) = F(1)G(1) = (f_0 + f_1)(g_0 + g_1)$$

$$h_2 = H(\infty) = F(\infty)G(\infty) = f_1g_1$$

Gain of one multiplication

$$(h_1 = (f_0 + f_1)(g_0 + g_1) - f_0g_0 - f_1g_1)$$

Karatsuba's algorithm

Input F, G of degrees at most n - 1. Output H = FG.

If n = 1, return FG.

Set $k = \lfloor n/2 \rfloor$ and decompose *F* et *G* according to the equation

$$F = F^{(0)} + F^{(1)}X^k$$
, $G = G^{(0)} + G^{(1)}X^k$,

- Secursively compute $H_0 = F^{(0)}G^{(0)}$ and $H_2 = F^{(1)}G^{(1)}$.
- Ompute $A = F^{(0)} + F^{(1)}$ et $B = G^{(0)} + G^{(1)}$.
- Recursively compute C = AB.
- **o** Compute $H_1 = C H_0 H_2$.
- Return $H_0 + H_1 X^k + H_2 X^{2k}$.

Remark: *A*, *B* have degree < k; H_0 , H_1 , H_2 , *C* have degree < n.

Theorem

If *n* is a power of 2, Karatsuba's algorithm computes the product of two polynomials of degrees at most n - 1 in at most $9n^{\log_2 3}$ operations in A.

Proof: For $n = 2^{\ell}$, that is to say $\ell = \log_2 n$:

$$\begin{split} & \kappa(n) \leq 3\kappa(n/2) + 4n \\ & \leq 3^2\kappa(n/2^2) + 4n(3/2+1) \\ & \leq \dots \\ & \leq 3^\ell\kappa(n/2^\ell) + 4n((3/2)^{\ell-1} + \dots + 3/2+1) \\ & \leq 3^\ell\kappa(1) + 4n\frac{(3/2)^\ell - 1}{3/2 - 1} \\ & \leq 3^\ell(1+4\cdot 2) = 9n^{\log_2 3}. \end{split}$$

Algorithms by Cook (1963), Toom (1966), Schönhage (1966), Knuth (1969)

Theorem

For a given $\epsilon > 0$, by increasing the number of evaluation points one obtains an algorithm of complexity $O(n^{1+\epsilon})$.

Multiplication by DFT (Discrete Fourier Transform): the idea

Relies on a suitable choice of points for evaluation/interpolation

$$\mathsf{DFT}: \mathbb{A}[X]_{< n} \xrightarrow{\sim} \mathbb{A}^{n}$$
$$P \longmapsto \left(P(\omega^{0}), \dots, P(\omega^{n-1}) \right)$$

Input F and G two polynomials, n an integer, and ω a principal *n*th root of unity (*definition to come*).

Output rem(FG, $X^n - 1$).

- **9** *Precomputation.* Compute the powers $\omega^2, \ldots, \omega^{n-1}$.
- 2 *Evaluation.* Compute $(u_i)_{i=0}^{n-1} := DFT(F)$ et $(v_i)_{i=0}^{n-1} := DFT(G)$.
- Source of the contract of the
- Interpolation. Compute and return DFT⁻¹(W).

there remains to design a fast algorithm for DFT and $\rm DFT^{-1}$

Roots of unity of a general ring \mathbb{A}

Finer and finer definitions

- ω is an *n*th root of unity if $\omega^n = 1$
- ω is a primitive *n*th root of unity if $\omega^n = 1$ and if 0 < t < n $\Rightarrow \omega^t - 1$ non-zero
- ω is a principal nth root of unity if ωⁿ = 1 and if
 0 < t < n ⇒ ω^t − 1 non-zero and non-zero-divisor

Properties

- ω is a primitive *n*th root of $1 \Rightarrow \omega^{-1}$ is a primitive *n*th root of 1
- n = pq and ω is a primitive nth root of $1 \Rightarrow$

 ω^{p} is a primitive qth root of 1

- ω is a primitive *n*th root of 1 and $0 < \ell < n \Rightarrow \sum_{j=0}^{n-1} \omega^{\ell j} = 0$
- three analogous statements for principal roots of unity

DFT (evaluation) by FFT (Fast Fourier Transform)

Input $P = p_0 + \cdots + p_{n-1}X^{n-1}$; the powers $1, \omega, \cdots, \omega^{n-1}$ of some principal *n*th root of unity ω, n being a power of 2.

Output $(P(\omega^0), \ldots, P(\omega^{n-1}))$.

If n = 1, return p_0 , otherwise, set k = n/2 and calculate

$$R_0(X) := \sum_{j=0}^{k-1} (p_j + p_{j+k}) X^j, \qquad \bar{R}_1(X) := R_1(\omega X) = \sum_{j=0}^{k-1} (p_j - p_{j+k}) \omega^j X^j.$$

Recursively compute the DFT of R₀ and R
₁ on the family (1, ω²,..., (ω²)^{k-1}). ("time decimation")
 Return (R₀(1), R
₁(1), R₀(ω²), R
₁(ω²),..., R₀((ω²)^{k-1}), R
₁((ω²)^{k-1})).

Correctness

n = 2k and ω is a primitive/principal nth root of $1 \Rightarrow \omega^k = -1$

$$P = (X^k - 1)Q_0 + R_0 = (X^k + 1)Q_1 + R_1 \Rightarrow P(\omega^\ell) = \begin{cases} R_0(\omega^\ell) & \text{if } \ell \text{ even,} \\ R_1(\omega^\ell) & \text{if } \ell \text{ odd.} \end{cases}$$

Complexity analysis of the FFT algorithm

Theorem

For *n* a power of 2, Fast Fourier Transform (FFT) requires $\simeq \frac{3n}{2} \log n$ operations in A. Each multiplication in A done by the algorithm is between an element of A and some power of ω .

Proof: For $n = 2^{\ell}$, that is to say $\ell = \log_2 n$:

ł

$$F(n) \le 2F(n/2) + \frac{3n}{2}$$

$$\le 2^2F(n/2^2) + \frac{3n}{2}(2/2+1)$$

$$\le \dots$$

$$\le 2^\ell F(n/2^\ell) + \frac{3n}{2}(2^{\ell-1}/2^{\ell-1} + \dots + 2/2+1)$$

$$\le nF(1) + \frac{3n}{2}\ell = \frac{1+3\log_2 n}{2}n.$$

Interpolate is evaluate (!)

Given the Vandermonde matrix V_{ω} :=

$$egin{pmatrix} 1 & 1 & \cdots & 1 \ 1 & \omega & \cdots & \omega^{n-1} \ dots & & dots \ 1 & \omega^{n-1} & \cdots & \omega^{(n-1)^2} \end{pmatrix}$$
, we

have:

$$\mathsf{DFT}(P) = \left(P(\omega^0), \ldots, P(\omega^{n-1})\right) = (p_0, \ldots, p_{n-1})V_{\omega}$$

Lemma

If $\omega \in \mathbb{A}$ is a principal *n*th root of unity, then $V_{\omega^{-1}}V_{\omega} = nI_n$.

Proof:

$$\sum_{k=0}^{n-1} \omega^{-(i-1)k} \omega^{k(j-1)} = \sum_{k=0}^{n-1} \omega^{(j-i)k} = n \delta_{i,j}.$$

Said differently:
$$(\mathsf{DFT}_{\omega})^{-1} = \frac{1}{n}\mathsf{DFT}_{\omega^{-1}}$$
.

Complexity analysis of multiplication by FFT when \mathbb{A} contains roots of unity for all $n = 2^k$

Input *F* and *G* two polynomials, *n* an integer, and ω a principal *n*th root of unity, assumed to exist in \mathbb{A} .

Output *FG*, assumed to be of degree < n, a power of 2.

- *Precomputation.* Calculate the powers $\omega^2, \ldots, \omega^{n-1}$.
- 2 Evaluation. Compute $(u_i)_{i=0}^{n-1} := \text{DFT}_{\omega}(F)$ and $(v_i)_{i=0}^{n-1} := \text{DFT}_{\omega}(G)$ by FFT.
- Solution Coordinate-wise product. Compute $W := (u_i v_i)_{i=0}^{n-1}$.
- Solution Interpolation. Compute, using FFT, and return $\frac{1}{n}$ DFT $_{\omega^{-1}}(W)$.

Theorem

If 2 is invertible in A, if *n* is some power of 2, and if ω is a principal *n*th root of unity in A, the product of two polynomials whose sum of degrees is < n can be computed in $\frac{9}{2}n \log n + O(n)$ operations in A. Only *n* of the products are between two elements of A that are general elements (that is, not powers of ω or 1/n).

Proposition

The finite field \mathbb{F}_q with q elements contains a primitive nth root of unity if and only if n divides q - 1

Good prime numbers

A prime p is called *FFT prime* if it has the form $p = 2^e \ell + 1$ for e "big enough"

 $p := 4179340454199820289 = 29 \times 2^{57} + 1, \ \mathbb{A} := \mathbb{F}_p, \ n := 2^{57}, \\ \omega := 21 \text{ is a primitive } n \text{th root of unity}$

Sketch of the Schönhage–Strassen algorithm

"Virtual" roots of unity

If 2 is invertible in \mathbb{A} and if *n* is a power of 2, then $\omega = X + (X^n + 1)$ is a principal (2*n*)th root of 1 in $\mathbb{A}[X]/(X^n + 1)$ (which is not always a domain, even for a field \mathbb{A}).

Input F and G of degrees $< n = 2^k$, for k > 2. Output rem(FG, $X^n + 1$).

Let $d = 2^{\lfloor k/2 \rfloor}$ and $\delta = n/d$. Rewrite *F* and *G* in the form

 $\bar{F}(X,Y)=F_0(X)+\cdots+F_{\delta-1}(X)Y^{\delta-1},\quad \bar{G}(X,Y)=G_0(X)+\cdots+G_{\delta-1}(X)Y^{\delta-1},$

with F_i , G_i of degrees < d and s.t. $F(X) = \overline{F}(X, X^d)$ and $G(X) = \overline{G}(X, X^d)$.

- Compute $\overline{H} := \operatorname{rem}(\overline{FG}, Y^{\delta} + 1)$ in $\mathbb{B}[Y]$ by a variation of FFT, where $\mathbb{B} = \mathbb{A}[X]/(X^{2d} + 1)$ and by recursive calls for products in \mathbb{B} .
- Seturn $H(X, X^d)$.

Theorem

Let \mathbb{A} be a ring in which 2 is invertible, with known inverse. Then, two polynomials of $\mathbb{A}[X]$ of degrees < n can be multiplied in $O(n \log n \log \log n)$ operations in \mathbb{A} .

Multiplication functions

Abstraction of cost functions Expression of complexity independent of the multiplication algorithm

Definition

 $M: \mathbb{N}_{>0} \to \mathbb{R}_{>0}$ is a multiplication function for $\mathbb{A}[X]$ if:

- all P, Q of degree < n in A[X] can be multiplied in at most M(n) arithmetic operations in A;
- $n \mapsto M(n)/n$ is an increasing function of $n \in \mathbb{N}_{>0}$;
- for all m and n of $\mathbb{N}_{>0}$, $M(mn) \leq m^2 M(n)$.

Properties

- (superlinearity) $n \leq M(n)$; $M(m) + M(n) \leq M(m + n)$; $m M(n) \leq M(mn)$.
- (usual special cases) $2M(n) \le M(2n)$; $\sum_i M(n_i) \le M(\sum_i n_i)$.
- (at most quadratic) $M(n) \le n^2$.