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Master Internships

> Various topics in computer algebra; design / analyze / apply algorithms for:

e Numeric-symbolic polynomial system solving
http://dl.vwx.fr/PoK06ZjlaYwluFst/stage-odelix-polsys.pdf
MAX team, Saclay. Contact: Mezzarobba, or emails in the description.

e Numerical approach of generalized flatness
https://magix.lix.polytechnique.fr/node/stage-node-e.en.html
MAX team, Saclay. Contact: Mezzarobba, or emails in the description.

o Validated Numerical Software For Algebraic Curves With Singularities
https://cfhp.univ-1ille.fr/files/students/These-2025-NumPuiseux.pdf
CFHP team, Lille. Contact: Neiger, or emails in the description.

o Algorithms for algebraic approximants and guess-and-prove approaches
PolSys team, Paris 5. Contact: Bostan / Neiger

o Computational real algebraic geometry with a view towards optical system
destgn. PolSys team, Paris 5. Contact: Neiger

~» PhD funding available, contact us asap if interested


http://dl.vwx.fr/PoK06ZjlaYw1uFst/stage-odelix-polsys.pdf
https://magix.lix.polytechnique.fr/node/stage-node-e.en.html
https://cfhp.univ-lille.fr/files/students/These-2025-NumPuiseux.pdf

MPRI, C-2-22

Introduction
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Context

> Customary philosophy in mathematics:

‘a problem is trivialized when it is reduced to a linear algebra question”

> From a computational viewpoint, it is important to address efficiency issues

of the various linear algebra operations

> The most fundamental problems in linear algebra:

linear system solving Ax = b,

computation of the inverse A~! of a matrix A,

computation of determinant, rank,

computation of minimal polynomial, characteristic polynomial,

computation of canonical forms (LU / LDU / LUP decompositions,

echelon forms, Frobenius forms = block companion, ... ),

computation of row/column reduced forms.
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Warnings

> Natural mathematical ideas may lead to highly inefficient algorithms!
E.g., the definition of det(A), with exponential complexity in the size of A.

Also, Cramer’s formulas for system solving are not very useful in practice.

> In all what follows, we will work with a (commutative) effective field K, and

with the (non-commutative) algebra M,,(K) of square matrices over K.

> NB: most results extend to the case where K is replaced by a commutative

effective ring A, and to rectangular (instead of square) matrices.



MPRI, C-2-22
Gaussian elimination

Theorem 0

For any matrix A € M,,(K), one can compute in O(n”) operations in K:

1. the rank rk(A)
2. the determinant det(A)

the inverse A~!, if A is invertible

=

a (vector/affine) solutions basis of Ax = b, for any b in K"

5. an LUP decomposition (L = unit lower triangular, U = upper triangular,

P = permutation matrix)
6. an LDU decomposition (L/U = unit lower/upper triangular, D = diag)

7. a reduced row echelon form (Gauss-Jordan) of A.

> based on elementary row operations: (1) swapping rows; (2) multiplying

rows by scalars; (3) adding a multiple of one row to another row.
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Main messages

> One can do better than Gaussian elimination!

> There exists 2 < w < 3, the so-called “matrix multiplication exponent”, that

controls the complexity of all linear algebra operations.

> One can classify linear algebra algorithms in three categories:

e dense, without any structure (today) — their manipulation boils down
essentially to matriz multiplication: O(n°) — O(n*), where w < 2.38

e sparse (lect. 3, 6, 9) — algos based on linear recurrences: O(n®)— O(n?)

e structured (Vandermonde, Sylvester, Toeplitz, Hankel,. .., lect. 7, 9) —
based on displacement rank and polynomial matrices: O(n®) — O(n)
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Applications
Linear algebra is ubiquitous:
e computations with D-finite power series (lect. 3)
e computations with dense power series (lect. 5)
e computation of terms of a recurrent sequence (lect. 6)
e computations with polynomial matrices (lect. 8-9)
e Hermite-Padé approximants (lect. 9)
e polynomial factorization over finite fields (lect. 10)

e solutions of linear differential equations (lect. 15)

e integer factorization relies on (sparse) linear algebra over [y
e PageRank webpage ranking system relies on (sparse) linear algebra

e crypto-analysis: discrete logs (sparse)
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Matrix multiplication
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Matrix multiplication

Together with integer and polynomial multiplication, matrix multiplication is

one of the most basic and most important operations in computer algebra.

10
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Matrix-vector product

Theorem [Winograd’67]

The naive algorithm for multiplying a m X n generic matrix by a n x 1 vector

(using mn multiplications and m(n — 1) additions) is optimal.

> Natural question: is the naive matrix product in size n (using n® ® and

n3 —n? @) also optimal?

12
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Complexity of matrix product: main results

Theorem 1 [“naive multiplication is not optimal”|

One can multiply two matrices A, B € M,,(K) using:

1.
2.

B

S

n?[2] +2n| 2] ~ in® 4+ n? multiplications in K [Pan’66-Winograd’68]

S

2274+ (2n — 1) 2] ~ in® + n? — 2 multiplications in K [Waksman’69)

n?-37477) operations in K [Coppersmith & Winograd, .JSC, 1990]
2.372864) operations in K [Le Gall, ISSAC, 2014]

/\/\/9/\/\
3

;3

2.371866) gperations in K [Duan, Wu & Zhou, FOCS, 2023]

O( 2.371552

arXiv, 2023]

)
)
n?-372800) gperations in K [Alman & Vassilevska Williams, SODA, 2021]
)
)

operations in K [Vassilevska Williams, Xu, Xu & Zhou,

13


https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://www.issac-conference.org/2014/papers.html
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https://arxiv.org/abs/2307.07970v1/
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A Refined Laser Method and Faster Matrix Multiplication

Josh Alman*

Abstract

The complexity of matrix multiplication is measured
in terms of w, the smallest real number such that two
n X n matrices can be multiplied using O(n**€) field
operations for all € > 0; the best bound until now is
w < 2.37287 [Le Gall’l4]. All bounds on w since 1986
have been obtained using the so-called laser method, a
way to lower-bound the ‘value’ of a tensor in designing
matrix multiplication algorithms. The main result of
this paper is a refinement of the laser method that
improves the resulting value bound for most sufficiently
large tensors. Thus, even before computing any specific
values, it is clear that we achieve an improved bound on
w, and we indeed obtain the best bound on w to date:

w < 2.37286.

The improvement is of the same magnitude as the im-
provement that [Le Gall’14] obtained over the previous
bound [Vassilevska W.’12]. Our improvement to the
laser method is quite general, and we believe it will have
further applications in arithmetic complexity.

Virginia Vassilevska Williams'

has developed a powerful toolbox of techniques, culmi-
nating in the best bound to date of w < 2.37287.

In this paper, we add one more tool to the toolbox
and lower the best bound on the matrix multiplication
exponent to

w < 2.37286.

The main contribution of this paper is a new refined
version of the laser method which we then use to ob-
tain the new bound on w. The laser method (as coined
by Strassen [Str86]) is a powerful mathematical tech-
nique for analyzing tensors. In our context, it is used
to lower bound the “value” of a tensor in designing ma-
trix multiplication algorithms. The laser method also
has applications beyond bounding w itself, including to
other problems in arithmetic complexity like comput-
ing the “asymptotic subrank” of tensors [Alm19|, and
to problems in extremal combinatorics like construct-
ing tri-colored sum-free sets [KSS18]. We believe our
improved laser method may have other diverse applica-
tions.

We will see that our new method achieves better

11 1 1 1 11 1 . 1 1 1- 1

14



MPRI, C-2-22

[cs.DS] 5 Apr 2023

Faster Matrix Multiplication via Asymmetric Hashing

Ran Duan * Hongxun Wu 7 Renfei Zhou *
Tsinghua University UC Berkeley Tsinghua University
April 6, 2023
Abstract

Fast matrix multiplication is one of the most fundamental problems in algorithm research. The expo-
nent of the optimal time complexity of matrix multiplication is usually denoted by w. This paper discusses
new ideas for improving the laser method for fast matrix multiplication. We observe that the analysis of
higher powers of the Coppersmith-Winograd tensor [Coppersmith & Winograd 1990] incurs a “combi-
nation loss”, and we partially compensate for it using an asymmetric version of CW’s hashing method.
By analyzing the eighth power of the CW tensor, we give a new bound of w < 2.371866, which improves
the previous best bound of w < 2.372860 [Alman & Vassilevska Williams 2020]. Our result breaks the
lower bound of 2.3725 in [Ambainis, Filmus & Le Gall 2015] because of the new method for analyzing
component (constituent) tensors.

15



MPRI, C-2-22

[cs.DS] 16 Jul 2023

New Bounds for Matrix Multiplication: from Alpha to Omega

Virginia Vassilevska Williams*  Yinzhan Xu' Zixuan Xu* Renfei Zhou®

Abstract

The main contribution of this paper is a new improved variant of the laser method for designing matrix
multiplication algorithms. Building upon the recent techniques of [Duan, Wu, Zhou FOCS’2023], the
new method introduces several new ingredients that not only yield an improved bound on the matrix
multiplication exponent w, but also improves the known bounds on rectangular matrix multiplication by
[Le Gall and Urrutia SODA’2018].

In particular, the new bound on w is

w < 2.371552 (improved from w < 2.371866).

For the dual matrix multiplication exponent « defined as the largest o for which w(1, a, 1) = 2, we obtain
the improvement

a > 0.321334 (improved from a > 0.31389).

Similar improvements are obtained for various other exponents for multiplying rectangular matrices.

16
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Exponent of matrix multiplication

Def. 6 € [2,3] is a feasible exponent for matrix multiplication over K if one can
multiply any A and B in M,,(K) using O(n’) ops. in K.

Def. Exponent of matrix multiplication w = inf{f | 0 is a feasible exponent}.

Def. MM : N — N is a matrix multiplication function (for a field K) if:
e one can multiply any A, B in M,,(K) using at most MM(n) ops. in K
e MM satisfies MM(n) < MM(2n)/4 for all n € N

e n+— MM(n)/n? is increasing

> w € [2,2.38]
> if K C L then wg = wy, [Schonhage’72], so wg only depends on char(K)
> Conjectured: w does not depend on K

> Big open problem: Is w = 27

17
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Winograd's algorithm
Naive algorithm for n = 2

b
R " _ axr + 0z

cx + dz

requires 8 ® and 4 &

ay + bt

cy + dt

> Naive algorithm for arbitrary n requires n° ©@ and (n® — n?) @

Winograd’s idea (1967): Karatsuba-like scheme

R —

> Drawbacks: uses commutativity (e.g., zb = bz); not yet profitable for n = 2

(a+2)b+x)—ab—zx (a+1t)(b+y)—ab—ty
(c+2)d+x)—cd—zx (c+t)(d+y)—cd—ty |

19
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Winograd's algorithm

Same idea for n = 2k: for £ := (a1, - ,a,) and ¢ := (v1, -+ ,2,)%

(llc) = (a1 + z2)(az + 1) + - + (a2k—1 + war ) (a2k + T2x—1) — 0 () — o(c),
where o(f) := ajas + - -+ + asip_10a2; and o(c) := r1x9 + - -+ + Top_1Tok
The element r; ; of R = AX is the scalar product (¢;|c;), where ¢1,...,¢, are
the rows of A and c¢q,...,c, are the columns of X
Winograd's algorithm:

e precompute o(¥;) for 1 <i<n — nk=" ® and n(k — 1) %Q—n@

e precompute o(c;) for 1 <j3<n — nk="% ® and n(k —1) ”72—71@

e compute all r; ; := (;|c;) —> n?k = ”73 ® and n*(n+k+1) = % +n? @

> Total: %nB +n? ® and %n?’ + 22 —2n P
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Waksman's algorithm

Idea for n = 2: write

B a b x Yy ar + bz ay + bt
= X =
c d z 1 cr+dz cy+dt
as
R—l (a+z)b+z)—(a—2)b—2) (a+t)(b+y)—(a—1t)(b—y)

2 (c+2)d+z)—(c—2)d—2) (c+t)d+y)—(c—1t)(d—1y)

and observe that the sum of the 4 products in red is equal to the sum of the 4
products in blue (and equal to ab+ zzx + cd + ty)

> 2 X 2 matrix product in 7 commutative ®, when char(K) # 2

> Idea generalizes to n X n matrices — %n?’ +n? — 5 & for even n
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Winograd /Waksman: summary

> They have cubic complexity, but are nevertheless useful in several contexts,
e.g. products of small matrices containing large integers

> They already show that naive multiplication is not optimal

> Their weakness is the use of commutativity of the base ring, which does not

allow a recursive use on blocks

> Natural question: can we do 7 non-commutative ®7

22
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Matrix multiplication

Strassen’s algorithm

23
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Matrix multiplication

Strassen’s algorithm

Strassen was attempting to prove, by process of elimination, that such an
algorithm does not exist when he arrived at it.

“First I had realized that an estimate tensor rank < 8 for two by two
matrix multiplication would give an asymptotically faster algorithm.
Then I worked over Z/27Z (as far as I remember) to simplify matters.”

24
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Strassen’s matrix multiplication algorithm

Same idea as for Karatsuba’s algorithm: trick in low size + recursion

Additional difficulty: Formulas should be non-commutative

Crucial remark: If € € {0,1} and « € K, then 1 multiplication suffices for F - v,

S|

o O O

b
d
0
0

0
0
a

C

0
0
b
d

X
Z

Y
t

where v is a vector, and F is a matrix of one of the following types:

EQ

EQ

EQ

—E&X

EX

—EX

25
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Strassen’s matrix multiplication algorithm

Problem: Write

b
d
0
0

0
0
a

C

S| O O

as a sum of (strictly) less than 8 elementary matrices.

S U S

SRR

b—a

c—a d—a

a—d b—d
c—d
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Strassen’s matrix multiplication algorithm

Problem: Write

S QL

0
0
a

C

as a sum of less than 8 elementary matrices.

d—a a—d
d—a a—d

M—E — By =

QL o4 O O
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Strassen’s matrix multiplication algorithm

Problem: Write

M—F, —Ey— E3 =

S Qo

0
0
a

C

QL o4 O O
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Strassen’s matrix multiplication algorithm

Problem: Write

M—E,—Eo—F5 =

S QL

0
0
a

C

QL o4 O O
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Strassen’s matrix multiplication algorithm

Problem: Write

o b 0 0|

c d 0 O
M =

O 0 a b

_OO cd_

as a sum of less than 8 elementary matrices.

Conclusion
M =FE) +Ey+ E3+ By + Bs + Eg + Er

—> one can multiply 2 X 2 matrices using 7 non-comm products instead of 8

DAC Theorem:
MM(r) = 7-MM(r/2) + O(r?2) = MM(r) = O(r'°e:(7) = O(r2-81)
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a a x a(x + z)
a a z | | alz+2)
Y
- - —t— b -
E;l - - _
d—a a—d
X
d—a a—d
T
Z _
b—d - b—d Y (b—d)(z+1)
- = —t—
E,

y zZ
d Y
d| |t
_ | d=a)(z~v)
(d—a)(z —y)
- -
X

—(b—a)

31
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x T
c—a c—a NN (c—a)(xz+y) —c—d) . —(c—d)y
Y - | Y -
I 1 Lt] | 1 1 c—d | | t]| | (e=d)y |
N ~ _ N ~ _

> In summary, 7 ® (non-comm.) and 18 ®:

a b 0 0 x a(x+2)+(b—a)z

c d 0 O . a(x+2)+(d—a)(z—y)+ (c—a)(x+y)— (c — d)y

0 0 a b Y dy+t)+(d—a)(z—y)+ b—-d)(z+t)— (b—a)z
| 0 0 ¢ d| |[t]| [ dly+t)+ (c—d)y ]

> —n(n —1)/2 non-comm. ® for n x n [Fiduccia’72]

> BExtension: n
> 7 non-comm. ® and 15 & [Winograd’71] (instead of 18 & for [Strassen’69])

> Optimality: [Winograd’71], [Hopcroft & Kerr’71] (7 ®); [Probert’73] (15 @)
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Input Two matrices A, X € M, (K), with n = 2~.
Output The product AX.

1. If n =1, return AX.

3. Compute recursively the products

@1 = a(z + 2), q2 = d(y +1),
gs = (d —a)(z — y), ga = (b—d)(z+1t)
g5 = (b—a)z, g = (c—a)(zr+y), qr=(c—dy

4. Compute the sums

r1,1 = q1 + g5, r1,2 = q2 + g3 + q4 — g5,
re1 = q1 + g3 + qs — qr, re2 = q2 + qr.
r1,1 T1,2

5. Return
r2,1 12,2

_ a b x Yy _
2. Write A = , X = , with a,b,¢c,d, z,y, 2,t € M,,/2(K).

33
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In practice

> in a good implementation, Winograd & Waksman algorithms are interesting

for small sizes
> Strassen’s algorithm then becomes the best for n ~ 64

> Kaporin’s algorithm becomes the best for n ~ 500

(note: these thresholds depend on the field /ring of coefficients and on the implementation)

> best practical algorithm is [Kaporin’04]: it uses n3/3 + 4n? + 8n non-comm.
® in size n. Choosing n = 48 leads to O(n/'°81s(16464)) — O (n2.776)

> the vast majority of the other algorithms rely on techniques that are too
complex, and that implies very big constants in the O(-) — interesting for
sizes over millions or billions (“galactic algorithms”)

34
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Other linear algebra problems
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Complexity of linear algebra: main results

Theorem 2 [“Gaussian elimination is not optimal”|

Let 6 be a feasible exponent for matrix multiplication in M,,(K). Then, one

can compute:
1. the inverse A~ and the determinant det(A) of A € GL,,(K) [Strassen’69]
2. the solution of Az = b for any A € GL,(K) and b € K™ [Strassen’69]
3. the LUP and LDU decompositions of A [Bunch & Hopcroft’74]
4. the rank rk(A) and an echelon form [Schonhage’72| of any A € M, (K)

5. the characteristic polynomial x4 (x) and the minimal polynomial g4 (x) of
any A € M,,(K) [Keller-Gehrig’85]

using O(n’) operations in K.
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Complexity of linear algebra: main results

Theorem 3 [“equivalence of linear algebra problems”|

The following problems on matrices in M, (K)
e multiplication
e inversion
e determinant
e characteristic polynomial
e LUP decomposition for matrices of full rank

all have the same asymptotic complexity, up to logarithmic factors.

In other words, the exponent w controls the complexity of all these problems:

W = Winy — Wdet — Wcharpoly — WLUP

> Open: are wsove and Wrank and Wisinvertible also equal to w?

37
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Inversion I1s not harder than multiplication

> [Strassen’69] showed how to reduce matrix inversion (and also linear system

solving) to matrix multiplication
> His result is: one can invert a (generic) n x n matrix in O(n’) ops.

— “(aussian elimination is not optimal”

> [Klyuyev & Kokovkin-Shcherbak’65] had previously proven that Gaussian

elimination is optimal if one restricts to row and column operations.

> Strassen’s method is a Gaussian elimination by blocks, applied recursively

> His algo requires 2 inversions, 6 multiplications and 2 additions, in size 3:

(n) < 21(n/2) + 6MM(n/2) + n*/2 < 3> "2 - MM(n/2°) + O(n*) = O(MM(n))
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Inversion of dense matrices

> Starting point is the (non commutative!) identity (a, b, c,d € K*)

M —

a

C

d

1

—1

ca

0
1

where z = d — ca'b is the Schur complement of a in M.
> It is a consequence of Gauss pivoting on M (LDU decomposition)

> The U DL matrix factorization of the inverse of M follows:

-1 - - - - - -

a 1 —a1b a1 0 1 0
c d 0 1 0 21 —ca~ 1 1
al+atbz7tea™ ! a 1bz~1

—z tea™d 71

> This identity being non-commutative, it also holds for matrices a, b, c,d
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Inversion of dense matrices
[Strassen, 1969]
. . A B .
To invert a dense matrix M = € M, (K), with A, B,C, D € M= (K)
C D

0. If n = 1, then return M 1!,
1. Invert A (recursively): E := A1,
2. Compute the Schur complement: 7 := D — CEB.

3. Invert Z (recursively): T := Z~1.

4. Recover the inverse of M as

E+EBTCE —-EBT
—TCE T

M=

DAC Theorem: I(n) =2-1(%2) + O(MM(n)) = I(n) = O(MM(n))

Corollary: inversion M ~! and system solving x = M ~1b in time O(MM(n))
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Determinant of dense matrices
[Strassen, 1969]
A B .
To compute det(M) for M = € M, (K), with A, B,C, D € M= (K)
C D

0. If n =1, then return M.

1. Compute E := A~ and (recursively) d4 := det(A).
2. Compute the Schur complement: Z := D — CEB.

3. Compute (recursively) dz := det(2).

4. Recover the determinant det(M) as da - dz.

DAC Theorem:
D(n)=2-D(2)+2-1(2)+0O(MM(n)) = D(n)=0(MM(n))

Corollary: Determinant det(M) in time O(MM(n))
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Multiplication is not harder than inversion
[Munro, 1973]

Let A and B two n x n matrices. To compute C' = AB, set

I, A O
D=0 I, B
0 0 I,
Then the following identity holds:
I, —A AB |
D*'=|0 1, -B
0 0 I, |

Thus n x n multiplication reduces to inversion in size 3n X 3n: Wpu < Winy-

Exercise. Let T(n) be the complexity of multiplication of n x n lower triangular

matrices. Show that one can multiply n x n matrices in O(T(n)) ops.
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Computation of the characteristic polynomial
[Keller-Gehrig, 1985]

> Assume A € M,,(K) generic, in particular y 4 := det(xl,, — A) irred. in K|z]
> This implies xa(z) = pa(z) and B := {v, Av, ..., A" v} is a K-basis of K"

Lemma. If v € K™ \ {0}, then P := [v|Av]|---|A""!v] is invertible and
C := P~1AP is in companion form

1

Proof. If xa(z) = 2™ — pp_12" " — -+ — p1x — po, then the matrix C of

f:w— Aw w.r.t. Bis companion, with last column [pg,...,pn_1]".
Algorithm.
e Compute the matrix P := [v|Av]|---|A" 1] O(n")
e Compute the inverse M := P~1 O(n?)

e Return the last column of M AP O(n?)

43
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Computation of the characteristic polynomial
[Keller-Gehrig, 1985]

> Remaining task: fast computation of the Krylov sequence

{v, Av, ..., A" 1}

> Naive algorithm: v A A A A2y A A gny O(n?)

> Keller-Gehrig algorithm: Compute
1. Ag:= A and Ay := A2_, for k=1,2,... (binary powering) O(n’log(n))

2. [A2k11| - |A2k+1_1v} = Ap X {v| - |A2k_1v} for k=1,2,... O(n?log(n))

> Conclusion: Krylov sequence, and thus x4 (), in O(n?log(n))
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The Keller-Gehrig algorithm

Input A matrix A € M, (K), with n = 2~
Output Its characteristic polynomial x4 (x) = det(xI,, — A).

1. Choose v in K™\ {0}.
2. Set M := A and P :=v.

3. For ¢ from 1 to k, replace P by the horizontal concatenation of P and
MP, then M by M?.

4. Compute C := P71AP and let [py,...,pn_1]* be its last column.

n—1 _ .

5. Return 2" — p,,_1x - — Po.
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Deterministic computation of the characteristic )
polynomial in the time of matrix multiplication ™ S

Vincent Neiger?, Clément Pernet >*

@ Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
b Université Grenoble Alpes, Laboratoire Jean Kuntzmann, CNRS, UMR 5224, 700 avenue centrale, IMAG - CS
40700, 38058 Grenoble cedex 9, France

ARTICLE INFO ABSTRACT

Article history: This paper describes an algorithm which computes the characteris-
Received 9 October 2020 . tic polynomial of a matrix over a field within the same asymptotic
Received in revised form 6 April 2021 complexity, up to constant factors, as the multiplication of two

Accepted 9 April 2021

Available online 16 April 2021 square matrices. Previously, this was only achieved by resorting

to genericity assumptions or randomization techniques, while
the best known complexity bound with a general deterministic

K rds:

cﬁﬁfafﬁsﬁc polynomial algorithm was obtained by Keller-Gehrig in 1985 and involves
Polynomial matrices logarithmic factors. Our algorithm computes more generally the
Determinant determinant of a univariate polynomial matrix in reduced form,
Fast linear algebra and relies on new subroutines for transforming shifted reduced

matrices into shifted weak Popov matrices, and shifted weak Popov
matrices into shifted Popov matrices.
© 2021 Elsevier Inc. All rights reserved.

> Best Paper Award of the Journal of Complexity 2021
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On the complexity of computing characteristic polynomials g
by Clément Pernet

28 sept. 2023, 14:00
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Q@ Amphithéatre Hermite / Darboux (Institut Henri Poincaré)

Description

Abstract. : Among the classical problems in computational linear algebra, the computation of the characteristic polynomial is
of great relevance for applications as it reflects most invariants of the input matrix. It is a key component in the solution of
many other related problems, such as computing eigenvalues, invariant factors and invariant subspace decomposition,
testing matrices for similarity, Krylov methods etc. Computing characteristic polynomials efficiently is surprisingly
challenging and has lead to a very diverse algorithmic landscape, as it lies in-between scalar linear algebra and modules of
polynomial matrices. For instance, finding a deterministic reduction to dense matrix multiplication was an open-problem until
recently. We will introduce some of these algorithmic techniques to present recent complexity improvements for the
computation of characteristic polynomials: with dense matrices, first, we will present a recent work achieving the first
reduction to matrix multiplication, based on polynomial matrix arithmetic. Then, in the context of matrices with a
displacement rank structure, we will present algorithms, leading to the first sub-quadratic time cost.

This talk is based on joint work with P. Karpman, V. Neiger, H. Signargout and G. Villard.
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A right kernel basis of A € K[x]™*©™) with constant degree can be computed in reduced form in

O(m®) field operations.

Corollary

The Krylov matrix K, v = {v Av ... Amlv} with A € K™*™ can be computed in O(m®).

Sketch of proof.

{Im—xA = } H _

s/t = (Im —xA) v = Z x“Akv.
i=0

A truncated series expansion of s/t at order m produces the Krylov iterates.
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Two exercises for next Monday

(1) Let T(n) be the complexity of multiplication of n x n lower triangular

matrices. Show that one can multiply any two n x n matrices in O(T(n)) ops.

(2) Let K be a field, let P € K|z] be of degree less than n and 8 be a feasible

exponent for matrix multiplication in M., (K).

(a) Find an algorithm for the simultaneous evaluation of P at [y/n | elements

of K using O(n?/?) operations in K.

(b) If @ is another polynomial in K[X] of degree less than n, show how to

0+1

compute the first n coefficients of Po @ := P(Q(z)) in O(n 2 ) ops. in K.

> Hint: Write P(z) as Y., Pi(x)(xz?), where d is well-chosen and the P;'s have

degrees less than d.
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Bonus
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1. Multiplication in small sizes

Contributed Paper

ISSAC ’21, July 18-23, 2021, Virtual Event, Russian Federation

The Tensor Rank of 5 X 5 Matrices Multiplication is Bounded
by 98 and Its Border Rank by 89

Alexandre Sedoglavic
UMR CNRS 9189 CRISTAL
Université de Lille
F-59000 Lille, France

ABSTRACT

We present a non-commutative algorithm for the product of 3 X 5
by 5 X 5 matrices using 58 multiplications. This algorithm allows
to construct a non-commutative algorithm for multiplying 5 X 5
(resp. 10 X 10,15 X 15) matrices using 98 (resp. 686, 2088) multipli-
cations. Furthermore, we describe an approximate algorithm that
requires 89 multiplications and computes this product with an arbi-
trary small error.

CCS CONCEPTS

« Computing methodologies — Exact arithmetic algorithms;
Linear algebra algorithms.

Alexey V. Smirnov
Russian Federal Center of Forensic Science
Department of Justice
Moscow, Russia

This non-commutative scheme is classically interpreted as a tensor
(see precise encoding in Section 2) and we recall that the number r
of its summands is the rank of that tensor. In this work, the no-
tations {(m X n X p : r) stands for a tensor of rank r encoding the
product Mm, n,p. We denote by (m X n X p) the whole family of such
schemes independently of their rank. The tensor rank R{(m X n X p) of
the considered matrix product is the smallest integer r such that there
isatensor(mXnXp:ryin{mXnXp). Similarly,  mxXnxp:r}
denotes a computational scheme of rank r involving a parameter €
whose limit computes the matrix product M, n p exactly as € tends
to zero. The border rank of M, n,p is the smallest integer r such that
there exists an approximate scheme {m X nXp : r}.
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1. Multiplication in small sizes

52

Algorithm t:::i:r tlé?lls‘:; construction ratio complexity stabilizer
rank

(2x2x2:7) 7|8 Strassen 1969 [DOI] 8750000000 | 2.807354922 | (S3)XS3

(3x3x3:23) 23|27 Laderman 1976 [DOI] 8518518518 | 2.854049830 | (C2xCy)XS;3

(4x4x4:49) 49| 64 (2x2x2:7) ® (2x2x2:7) 7656250000 | 2.807354922 | S3%S3

(5x5%5:97) 97| 125 Kauers and Moosbauer 2022 [arXiv] 7760000000 | 2.842427746 | C4

(6x6x6:160) 160 | 216 (3%x3%6:40) ® (2x2x1:4) 7407407407 | 2.832508438 | (CoxCp)XSyxCorxCy

(TxTx7:250) 250|343 (4x4x4:49) + 3 (3x3x4:29) + 3 (3x4x4:38) | 7288629738 | 2.837469613 | C;

(8x8x8:343) 343|512 (2x2x2:7) @ {(4x4x4:49) 6699218750 | 2.807354922 | S3xS3%S3

(9%9x9:498) 498 | 729 6 (3x3x4:29) + 9 (3x3x5:36) 6831275720 | 2.826565905 | Cy
(10x10x10:679) 679 | 1000 (2x2x2:7) ® {5%5x5:97) 6790000000 | 2.831869774 | S3
(11x11x11:896) | 8961331 12;2:’2‘2 3135)’;’53 izfjj§;20;6f4%:3>‘3"5:36> 6731780616 | 2.834961347 | C
{12x12x12:1040) 1040 | 1728 (2x4x4:26) ® (6x3x3:40) 6018518518 | 2.795668800 | Cox(CyxCp) XSy
(13x13x13:1443) | 1443|2197 ;?;;;Zf:f;j;;i’;f; 718+ 6568047337 | 2.836110404 | C
{14x14x14:1720) 1720 | 2744 (TxTx7:250) + 3 TA(TXTXT), (IXTXT)) 6268221574 | 2.823007854 | C4
(15x15%15:2088) 2088 | 3375 (3%x3%5:36) ® (5x5%3:58) 6186666667 | 2.822681037 | Cy
(16x16x16:2401) 2401 | 4096 (2x2x2:7) @ (8x8x8:343) 5861816406 | 2.807354922 | S3xS3%S3xS3

> Sedoglavic: online catalogue of 5426 fast matrix multiplication algorithms


https://fmm.univ-lille.fr
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1. Multiplication in small sizes

> Nature. 2022 Oct;610(7930):47-53. doi: 10.1038/s41586-022-05172-4. Epub 2022 Oct 5.

Discovering faster matrix multiplication algorithms
with reinforcement learning

Alhussein Fawzi # 1, Matej Balog # 2, Aja Huang # 2, Thomas Hubert # 2,
Bernardino Romera-Paredes # 2, Mohammadamin Barekatain 2, Alexander Novikov 2,
Francisco J R Ruiz 2, Julian Schrittwieser 2, Grzegorz Swirszcz 2, David Silver 2,
Demis Hassabis 2, Pushmeet Kohli 2

Abstract

Improving the efficiency of algorithms for fundamental computations can have a widespread
impact, as it can affect the overall speed of a large amount of computations. Matrix multiplication is
one such primitive task, occurring in many systems-from neural networks to scientific computing
routines. The automatic discovery of algorithms using machine learning offers the prospect of
reaching beyond human intuition and outperforming the current best human-designed algorithms.
However, automating the algorithm discovery procedure is intricate, as the space of possible
algorithms is enormous. Here we report a deep reinforcement learning approach based on
AlphaZero' for discovering efficient and provably correct algorithms for the multiplication of
arbitrary matrices. Our agent, AlphaTensor, is trained to play a single-player game where the
objective is finding tensor decompositions within a finite factor space. AlphaTensor discovered
algorithms that outperform the state-of-the-art complexity for many matrix sizes. Particularly
relevant is the case of 4 x 4 matrices in a finite field, where AlphaTensor's algorithm improves on
Strassen's two-level algorithm for the first time, to our knowledge, since its discovery 50 years
ago?. We further showcase the flexibility of AlphaTensor through different use-cases: algorithms
with state-of-the-art complexity for structured matrix multiplication and improved practical
efficiency by optimizing matrix multiplication for runtime on specific hardware. Our results highlight
AlphaTensor's ability to accelerate the process of algorithmic discovery on a range of problems,
and to optimize for different criteria.
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1. Multiplication in small sizes
Flip Graphs for Matrix Multiplication

Manuel Kauers*
Jakob Moosbauer!

ABSTRACT

We introduce a new method for discovering matrix multiplication
schemes based on random walks in a certain graph, which we
call the flip graph. Using this method, we were able to reduce
the number of multiplications for the matrix formats (4, 4,5) and
(5,5, 5), both in characteristic two and for arbitrary ground fields.

ISSAC 2023, July 24-27, 2023, Tromse, Norway M. Kauers and J. Moosbauer

Strassen’s
o algorit

\.‘- o ;

Figure 1: In the (2, 2, 2)-flip graph of rank at most 8, this figure shows the component containing the standard algorithm. Flips
are depicted by undirected edges and reductions by directed edges.
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(n,m,p) | K | previously best | our rank
known rank
(2,2,2) | any 7 [18] 7
(2,2,3) | any 11 [11] 11
(2,2,4) | any 14 [11] 14
(2,3,3) | any 15 [11] 15
(2,2,5) | any 18 [11] 18
(2,3,4) | any 20 [11] 20
(3,3,3) | any 23 [14] 23
(2,3,5) | any 25 [11] 25
(2,4,4) | any 26 [11] 26
(3,3,4) | any 29 [17] 29
(2,4,5) | any 33 [11] 33
(3,3,5) | any 36 [17] 36
(3,4,4) | any 38 [17] 38
(2,5,5) | any 40 [11] 40
(3,4,5) | any 47 [8] 47
(4,4,4) | Z, 47 [8] 47
(4,4,4) | any 49 [18] 49
(3,5,5) | any 58 [16] 58
(4,4,5) | Z; 63 [8] 60
(4,4,5) | any 63 [8] 62
(4,5,5) | any 76 [8] 76
(5,5,5) | Z, 96 [8] 95
(5,5,5) | any 98 [16] 97

> [Kauers & Moosbauer, 2023] — best paper award ISSAC’23


https://www.issac-conference.org/2023/awards.php
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2. Is w =27

Matrix Multiplication via Matrix Groups

—— Abstract

In 2003, Cohn and Umans proposed a group-theoretic approach to bounding the exponent of matrix

multiplication. Previous work within this approach ruled out certain families of groups as a route to
obtaining w = 2, while other families of groups remain potentially viable. In this paper we turn our
attention to matrix groups, whose usefulness within this framework was relatively unexplored.

We first show that groups of Lie type cannot prove w = 2 within the group-theoretic approach.
This is based on a representation-theoretic argument that identifies the second-smallest dimension
of an irreducible representation of a group as a key parameter that determines its viability in this
framework. Our proof builds on Gowers’ result concerning product-free sets in quasirandom groups.
We then give another barrier that rules out certain natural matrix group constructions that make
use of subgroups that are far from being self-normalizing.

Our barrier results leave open several natural paths to obtain w = 2 via matrix groups. To
explore these routes we propose working in the continuous setting of Lie groups, in which we
develop an analogous theory. Obtaining the analogue of w = 2 in this potentially easier setting is a
key challenge that represents an intermediate goal short of actually proving w = 2. We give two
constructions in the continuous setting, each of which evades one of our two barriers.

2012 ACM Subject Classification Theory of computation — Algebraic complexity theory

Keywords and phrases Fast matrix multiplication, representation theory, matrix groups

© Jonah Blasiak, Henry Cohn, Joshua A. Grochow, Kevin Pratt, and Chris Umans;
BY licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).

Editor: Yael Tauman Kalai; Article No. 19; pp. 19:1-19:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany
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3. Better constant for Strassen-Winograd

Matrix Multiplication, a Little Faster

ELAYE KARSTADT and ODED SCHWARTZ, The Hebrew University of Jerusalem

Strassen’s algorithm (1969) was the first sub-cubic matrix multiplication algorithm. Winograd (1971) im-
proved the leading coefficient of its complexity from 6 to 7. There have been many subsequent asymptotic
improvements. Unfortunately, most of these have the disadvantage of very large, often gigantic, hidden con-
stants. Consequently, Strassen-Winograd’s O(nl°827) algorithm often outperforms other fast matrix multipli-
cation algorithms for all feasible matrix dimensions. The leading coefficient of Strassen-Winograd’s algorithm
has been generally believed to be optimal for matrix multiplication algorithms with a 2 X 2 base case, due to
the lower bounds by Probert (1976) and Bshouty (1995).

Surprisingly, we obtain a faster matrix multiplication algorithm, with the same base case size and asymp-
totic complexity as Strassen-Winograd’s algorithm, but with the leading coefficient reduced from 6 to 5. To
this end, we extend Bodrato’s (2010) method for matrix squaring, and transform matrices to an alternative
basis. We also prove a generalization of Probert’s and Bshouty’s lower bounds that holds under change of
basis, showing that for matrix multiplication algorithms with a 2 X 2 base case, the leading coefficient of
our algorithm cannot be further reduced, and is therefore optimal. We apply our method to other fast ma-
trix multiplication algorithms, improving their arithmetic and communication costs by significant constant
factors.

CCS Concepts: » Mathematics of computing — Computations on matrices; - Computing methodolo-
gies — Linear algebra algorithms;

Additional Key Words and Phrases: Fast matrix multiplication, bilinear algorithms

ACM Reference format:

Elaye Karstadt and Oded Schwartz. 2020. Matrix Multiplication, a Little Faster. . ACM 67, 1, Article 1 (January
2020), 31 pages.

https://doi.org/10.1145/3364504
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Table 1. 2 X 2 Fast Matrix Multiplication Algorithms?

_ . Arithmetic .
Algorithm Additions Complexity I0-Complexity
log, 7
Strassen [58] 18 7n°%7 —6n? | 12. M (\/3. \/Lﬂ) 12 — 18n?
0g, 7
Strassen-Winograd [61] 15 6n°&7 —5n2 | 10.5.-M (\/5 \/LH) ©_15p2
\/_ log, 7
log,7 _ 4,2 9M( 3'i)
Ours 12 in3 ;1 an VM

> This seems to contradict Probert’s optimality result of the constant 15

> Can you see what happens here?
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