polynomial matrices:

introduction, motivations, and basic algorithms

exercises and solutions

Algorithmes Efficaces en Calcul Formel

Master Parisien de Recherche en Informatique
18 November 2024

exercise: matrix equation AU =V

let A € K[X]™*™ be nonsingular with all entries of degree < d;
let V € K[X]™** with all entries of degree < d»

1» show that A=1V can be represented as a fraction with numerator
a matrix U in K[X]™*¥ and denominator a polynomial A in K[X]

2» give an upper bound on degdet(A)
3> give an upper bound on deg(A) and on the degrees of entries of U
4» prove that A1 € K[X]™ ™ & det(A) € K\ {0}

exercise: matrix equation AU =V

let A € K[X]™*™ be nonsingular with all entries of degree < d;
let V € K[X]™** with all entries of degree < d»

1» show that A=1V can be represented as a fraction with numerator
a matrix U in K[X]™*¥ and denominator a polynomial A in K[X]

2» give an upper bound on degdet(A)
3> give an upper bound on deg(A) and on the degrees of entries of U
4» prove that A1 € K[X]™ ™ & det(A) € K\ {0}

the solution is based on Cramer's rule / Laplace formula:
a1 T
det(A)

where C € K[X]™*™ is the matrix of cofactors of A, that is,
(=1)""cy; is the determinant of A after removing row i and column j

exercise: matrix equation AU =V

let A € K[X]™*™ be nonsingular with all entries of degree < d;
let V € K[X]™** with all entries of degree < d»

1» show that A=1V can be represented as a fraction with numerator
a matrix U in K[X]™*¥ and denominator a polynomial A in K[X]

2» give an upper bound on degdet(A)
3> give an upper bound on deg(A) and on the degrees of entries of U
4» prove that A1 € K[X]™ ™ & det(A) € K\ {0}

1» Cramer's ruIe' Al = det C , with ¢ij = (—1)11 det(Ay ;)
so ATV = C V, and one can take:

et
A = det(A)
. U = C"V which has polynomial entries

exercise: matrix equation AU =V

let A € K[X]™*™ be nonsingular with all entries of degree < d;
let V € K[X]™** with all entries of degree < d»

1» show that A=1V can be represented as a fraction with numerator
a matrix U in K[X]™*¥ and denominator a polynomial A in K[X]

2» give an upper bound on degdet(A)
3> give an upper bound on deg(A) and on the degrees of entries of U
4» prove that A1 € K[X]™ ™ & det(A) € K\ {0}

2> degdet(A) = deg (¥ res,, [1i Qin(i) < Maxpes,, D ; deg(ai (i)

and the latter quantity is less than or equal to:
. |[rdeg (A)| (sum of row degrees)

. |cdeg (A)| (sum of column degrees)

. mdeg(A) < md;

exercise: matrix equation AU =V

let A € K[X]™*™ be nonsingular with all entries of degree < d;
let V € K[X]™** with all entries of degree < d»

1» show that A=1V can be represented as a fraction with numerator
a matrix U in K[X]™** and denominator a polynomial A in K[X]

2» give an upper bound on degdet(A)
3> give an upper bound on deg(A) and on the degrees of entries of U
4» prove that A1 € K[X]™ ™ & det(A) € K\ {0}

3» according to 1, one can take A = det(A) and U=CTV.

= we have the above bounds for deg(A) = degdet(A)

= using cij = (—1)"" det(A;;), and similar bounds on det(A),
we obtain deg(C) < (m — 1)d;, and deg(U) < (m—1)d; + d»

(there are refined bounds when considering row degrees or column degrees s)

note: if there is a nonconstant divisor common to det(A) and all en-
tries of C, then we may take another A and U with smaller degrees

exercise: matrix equation AU =V

let A € K[X]™*™ be nonsingular with all entries of degree < d;
let V € K[X]™** with all entries of degree < d»

1» show that A=1V can be represented as a fraction with numerator
a matrix U in K[X]™*¥ and denominator a polynomial A in K[X]

2» give an upper bound on degdet(A)
3> give an upper bound on deg(A) and on the degrees of entries of U
4» prove that A1 € K[X]™ ™ & det(A) € K\ {0}

4> we prove both directions:

. from A1 = mCT, it follows that if det(A) is constant, then

A~ has polynomial entries

. from det(A)det(A™1) = det(AA™1) = 1, it follows that if A~!
has polynomial entries, then det(A 1) is a polynomial and therefore
det(A) must be constant

exercise: evaluation-interpolation based algorithms

1. adapting the evaluation-interpolation paradigm to
matrices in K[X]™>™,

» give an explicit multiplication algorithm

» give a determinant algorithm

L

> give an inversion algorithm s
computing the inverse over the fractions K(X)
2. for each of these algorithms,

» give a required lower bound on the cardinality of K

» state and prove an upper bound on the complexity

directions and hints:
» use known degree bounds on the output
» for inversion, assume you can do quasi-linear Cauchy interpolation

further perspective:
» could your complexity bounds take into account degree measures that
refine the matrix degree such as the average row or column degree? s

exercise: evaluation-interpolation based algorithms

multiplication algorithm

given A and B in K[X]™*™ of degree < d,
we know that C = AB has degree at most 2d, so:

1. pick points: pairwise distinct oy, ..., qpq11 € K Card(K) > 2d+1
2. evaluate: A(o;) and B(oy), fori=1,...,2d +1 O(m?M(d) log(d))
3. multiply: A(o)B(ai), fori=1,...,2d+1 O(m«ad)
4. interpolate: find C in K[X]™*™ of degree < 2d such that

C(ei) = A(ay)B(oy), fori=1,...,2d +1 O(m?M(d) log(d))
5. return C

excellent algorithm:

. linear in d in the term m®d (recall Cantor-Kaltofen: m® d log(d))

. exponent w of matrix multiplication

. the m?M(d) log(d) term can be improved via points in geometric sequence
. downside: restriction on K (large degrees 4+ small finite fields do arise)

exercise: evaluation-interpolation based algorithms

determinant algorithm

given A in K[X]™*™ of degree < d,
we know that A = det(A) has degree at most md, so:

1. pick points: pairwise distinct o1, ..., dmar1 € K Card(K) > md +1
2. evaluate: A(o;) fori=1,..., md+1 O(m3M(d) log(d))
3. determinant: B; = det(A(w;)), fori=1,..., md+1 O(mw+id)
4. interpolate: find A in K[X] of degree < md such that

Aloy) =By, fori=1,... md+1 O(M(mad) log(md))
5. return A

. quasi-linear in degree d: fast for large d, small m
. exponent > 3 on matrix dimension m: slow for large m
. best known today: O”(m®d)

exercise: evaluation-interpolation based algorithms

inversion algorithm

given A in K[X]™*™ of degree < d,
we know that C = A1 = %U with
deg(A) < md and deg(U) < (m —1)d, so:

0.setn=(2m—1)d+1 n =0(md)
1. pick points: pairwise distinct o1, ..., 0q € K Card(K) > (2m— 1)d+1
2. evaluate: A(oy), fori=1,...,n O(m>M(d) log(d))
3. invert: A(oy)7 L fori=1,...,n O(mw+ld)

4. interpolate: using Cauchy interpolation find C in K(X)™*™ with all
numerators of degree < (m — 1)d and all denominators of degree < md
such that C(o;) = A(o) "L, fori=1,...,n O(m?M(md) log(md))

5. return C

. quasi-linear in degree d: fast for large d, small m

. exponent > 3 on dimension m but recall size of A~ is typically @(m3d)
. best known today: O”(m3d), and even O~(m®d) for factorized form

. note: one could compute det(A) to avoid Cauchy interpolation

