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exercise: matrix equation AU = V

let A ∈ K[X]m×m be nonsingular with all entries of degree ⩽ d1

let V ∈ K[X]m×k with all entries of degree ⩽ d2

1▶ show that A−1V can be represented as a fraction with numerator
a matrix U in K[X]m×k and denominator a polynomial ∆ in K[X]

2▶ give an upper bound on deg det(A)

3▶ give an upper bound on deg(∆) and on the degrees of entries of U

4▶prove that A−1 ∈ K[X]m×m ⇔ det(A) ∈ K \ {0}
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exercise: matrix equation AU = V

let A ∈ K[X]m×m be nonsingular with all entries of degree ⩽ d1

let V ∈ K[X]m×k with all entries of degree ⩽ d2

1▶ show that A−1V can be represented as a fraction with numerator
a matrix U in K[X]m×k and denominator a polynomial ∆ in K[X]

2▶ give an upper bound on deg det(A)

3▶ give an upper bound on deg(∆) and on the degrees of entries of U

4▶prove that A−1 ∈ K[X]m×m ⇔ det(A) ∈ K \ {0}

the solution is based on Cramer’s rule / Laplace formula:

A−1 =
1

det(A)
CT

where C ∈ K[X]m×m is the matrix of cofactors of A, that is,

(−1)i+jci,j is the determinant of A after removing row i and column j
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exercise: matrix equation AU = V

let A ∈ K[X]m×m be nonsingular with all entries of degree ⩽ d1

let V ∈ K[X]m×k with all entries of degree ⩽ d2

1▶ show that A−1V can be represented as a fraction with numerator
a matrix U in K[X]m×k and denominator a polynomial ∆ in K[X]

2▶ give an upper bound on deg det(A)

3▶ give an upper bound on deg(∆) and on the degrees of entries of U

4▶prove that A−1 ∈ K[X]m×m ⇔ det(A) ∈ K \ {0}

1▶Cramer’s rule: A−1 = 1
det(A)C

T, with ci,j = (−1)i+j det(Ai,j)

so A−1V = 1
det(A)C

TV, and one can take:

. ∆ = det(A)

. U = CTV which has polynomial entries
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exercise: matrix equation AU = V

let A ∈ K[X]m×m be nonsingular with all entries of degree ⩽ d1

let V ∈ K[X]m×k with all entries of degree ⩽ d2

1▶ show that A−1V can be represented as a fraction with numerator
a matrix U in K[X]m×k and denominator a polynomial ∆ in K[X]

2▶ give an upper bound on deg det(A)

3▶ give an upper bound on deg(∆) and on the degrees of entries of U

4▶prove that A−1 ∈ K[X]m×m ⇔ det(A) ∈ K \ {0}

2▶ deg det(A) = deg
(∑

π∈Sm
±

∏
i ai,π(i)

)
⩽ maxπ∈Sm

∑
i deg(ai,π(i))

and the latter quantity is less than or equal to:
. |rdeg(A)| (sum of row degrees)
. |cdeg(A)| (sum of column degrees)
. m deg(A) ⩽ md1
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exercise: matrix equation AU = V

let A ∈ K[X]m×m be nonsingular with all entries of degree ⩽ d1

let V ∈ K[X]m×k with all entries of degree ⩽ d2

1▶ show that A−1V can be represented as a fraction with numerator
a matrix U in K[X]m×k and denominator a polynomial ∆ in K[X]

2▶ give an upper bound on deg det(A)

3▶ give an upper bound on deg(∆) and on the degrees of entries of U

4▶prove that A−1 ∈ K[X]m×m ⇔ det(A) ∈ K \ {0}

3▶ according to 1, one can take ∆ = det(A) and U = CTV.

⇒ we have the above bounds for deg(∆) = deg det(A)
⇒ using ci,j = (−1)i+j det(Ai,j), and similar bounds on det(Ai,j),
we obtain deg(C) ⩽ (m− 1)d1, and deg(U) ⩽ (m− 1)d1 + d2

(there are refined bounds when considering row degrees or column degrees K)

note: if there is a nonconstant divisor common to det(A) and all en-
tries of C, then we may take another ∆ and U with smaller degrees
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exercise: matrix equation AU = V

let A ∈ K[X]m×m be nonsingular with all entries of degree ⩽ d1

let V ∈ K[X]m×k with all entries of degree ⩽ d2

1▶ show that A−1V can be represented as a fraction with numerator
a matrix U in K[X]m×k and denominator a polynomial ∆ in K[X]

2▶ give an upper bound on deg det(A)

3▶ give an upper bound on deg(∆) and on the degrees of entries of U

4▶prove that A−1 ∈ K[X]m×m ⇔ det(A) ∈ K \ {0}

4▶we prove both directions:
. from A−1 = 1

det(A)C
T, it follows that if det(A) is constant, then

A−1 has polynomial entries
. from det(A) det(A−1) = det(AA−1) = 1, it follows that if A−1

has polynomial entries, then det(A−1) is a polynomial and therefore
det(A) must be constant
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exercise: evaluation-interpolation based algorithms

1. adapting the evaluation-interpolation paradigm to
matrices in K[X]m×m,

▶give an explicit multiplication algorithm

▶give a determinant algorithm

▶give an inversion algorithm K
computing the inverse over the fractions K(X)

2. for each of these algorithms,

▶give a required lower bound on the cardinality of K
▶ state and prove an upper bound on the complexity

directions and hints:
▶use known degree bounds on the output
▶ for inversion, assume you can do quasi-linear Cauchy interpolation

further perspective:
▶ could your complexity bounds take into account degree measures that
refine the matrix degree such as the average row or column degree? KK
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exercise: evaluation-interpolation based algorithms

multiplication algorithm

given A and B in K[X]m×m of degree ⩽ d,
we know that C = AB has degree at most 2d, so:

1. pick points: pairwise distinct α1, . . . ,α2d+1 ∈ K Card(K) ⩾ 2d+ 1

2. evaluate: A(αi) and B(αi), for i = 1, . . . , 2d+ 1 O(m2M(d) log(d))

3. multiply: A(αi)B(αi), for i = 1, . . . , 2d+ 1 O(mωd)

4. interpolate: find C in K[X]m×m of degree ⩽ 2d such that
C(αi) = A(αi)B(αi), for i = 1, . . . , 2d+ 1 O(m2M(d) log(d))

5. return C

excellent algorithm:
. linear in d in the term mωd (recall Cantor-Kaltofen: mωd log(d))
. exponent ω of matrix multiplication
. the m2M(d) log(d) term can be improved via points in geometric sequence
. downside: restriction on K (large degrees + small finite fields do arise)
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exercise: evaluation-interpolation based algorithms

determinant algorithm

given A in K[X]m×m of degree ⩽ d,
we know that ∆ = det(A) has degree at most md, so:

1. pick points: pairwise distinct α1, . . . ,αmd+1 ∈ K Card(K) ⩾ md+ 1

2. evaluate: A(αi) for i = 1, . . . ,md+ 1 O(m3M(d) log(d))

3. determinant: βi = det(A(αi)), for i = 1, . . . ,md+ 1 O(mω+1d)

4. interpolate: find ∆ in K[X] of degree ⩽ md such that
∆(αi) = βi, for i = 1, . . . ,md+ 1 O(M(md) log(md))

5. return ∆

. quasi-linear in degree d: fast for large d, small m

. exponent > 3 on matrix dimension m: slow for large m

. best known today: O (̃mωd)
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exercise: evaluation-interpolation based algorithms

inversion algorithm

given A in K[X]m×m of degree ⩽ d,
we know that C = A−1 = 1

∆
U with

deg(∆) ⩽ md and deg(U) ⩽ (m− 1)d, so:

0. set n = (2m− 1)d+ 1 n = Θ(md)

1. pick points: pairwise distinct α1, . . . ,αn ∈ K Card(K) ⩾ (2m− 1)d+ 1

2. evaluate: A(αi), for i = 1, . . . ,n O(m3M(d) log(d))

3. invert: A(αi)
−1, for i = 1, . . . ,n O(mω+1d)

4. interpolate: using Cauchy interpolation find C in K(X)m×m with all
numerators of degree ⩽ (m− 1)d and all denominators of degree ⩽ md
such that C(αi) = A(αi)

−1, for i = 1, . . . ,n O(m2M(md) log(md))

5. return C

. quasi-linear in degree d: fast for large d, small m

. exponent > 3 on dimension m but recall size of A−1 is typically Θ(m3d)

. best known today: O (̃m3d), and even O (̃mωd) for factorized form

. note: one could compute det(A) to avoid Cauchy interpolation
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