polynomial matrices: introduction, motivations, and basic algorithms

exercises and solutions

Algorithmes Efficaces en Calcul Formel Master Parisien de Recherche en Informatique 18 November 2024

let $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ be nonsingular with all entries of degree $\leq d_1$ let $\mathbf{V} \in \mathbb{K}[X]^{m \times k}$ with all entries of degree $\leq d_2$ 1. show that $\mathbf{A}^{-1}\mathbf{V}$ can be represented as a fraction with numerator a matrix \mathbf{U} in $\mathbb{K}[X]^{m \times k}$ and denominator a polynomial Δ in $\mathbb{K}[X]$ 2. give an upper bound on deg det(\mathbf{A}) 3. give an upper bound on deg(Δ) and on the degrees of entries of \mathbf{U} 4. prove that $\mathbf{A}^{-1} \in \mathbb{K}[X]^{m \times m} \Leftrightarrow \det(\mathbf{A}) \in \mathbb{K} \setminus \{0\}$

let $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ be nonsingular with all entries of degree $\leq d_1$ let $\mathbf{V} \in \mathbb{K}[X]^{m \times k}$ with all entries of degree $\leq d_2$ 1 · show that $\mathbf{A}^{-1}\mathbf{V}$ can be represented as a fraction with numerator a matrix \mathbf{U} in $\mathbb{K}[X]^{m \times k}$ and denominator a polynomial Δ in $\mathbb{K}[X]$ 2 · give an upper bound on deg det(\mathbf{A}) 3 · give an upper bound on deg(Δ) and on the degrees of entries of \mathbf{U} 4 · prove that $\mathbf{A}^{-1} \in \mathbb{K}[X]^{m \times m} \Leftrightarrow \det(\mathbf{A}) \in \mathbb{K} \setminus \{0\}$

the solution is based on Cramer's rule / Laplace formula:

$$\mathbf{A}^{-1} = \frac{1}{\mathsf{det}(\mathbf{A})} \mathbf{C}^\mathsf{T}$$

where $C\in\mathbb{K}[X]^{m\times m}$ is the matrix of cofactors of A, that is, $(-1)^{i+j}c_{i,j}$ is the determinant of A after removing row i and column j

let $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ be nonsingular with all entries of degree $\leqslant d_1$

let $\mathbf{V} \in \mathbb{K}[X]^{m \times k}$ with all entries of degree $\leqslant d_2$

1- show that $A^{-1}V$ can be represented as a fraction with numerator a matrix U in $\mathbb{K}[X]^{m \times k}$ and denominator a polynomial Δ in $\mathbb{K}[X]$

2- give an upper bound on $\mathsf{deg}\,\mathsf{det}(\mathbf{A})$

3- give an upper bound on $\text{deg}(\Delta)$ and on the degrees of entries of ${\bf U}$

4- prove that $A^{-1} \in \mathbb{K}[X]^{m \times m} \Leftrightarrow det(A) \in \mathbb{K} \setminus \{0\}$

1. Cramer's rule:
$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^{\mathsf{T}}$$
, with $c_{i,j} = (-1)^{i+j} \det(\mathbf{A}_{i,j})$
so $\mathbf{A}^{-1}\mathbf{V} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^{\mathsf{T}}\mathbf{V}$, and one can take:
. $\Delta = \det(\mathbf{A})$
. $\mathbf{U} = \mathbf{C}^{\mathsf{T}}\mathbf{V}$ which has polynomial entries

let $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ be nonsingular with all entries of degree $\leqslant d_1$

let $\mathbf{V} \in \mathbb{K}[X]^{m \times k}$ with all entries of degree $\leqslant d_2$

1- show that $A^{-1}V$ can be represented as a fraction with numerator a matrix U in $\mathbb{K}[X]^{m \times k}$ and denominator a polynomial Δ in $\mathbb{K}[X]$

2- give an upper bound on $\mathsf{deg}\,\mathsf{det}(A)$

3-give an upper bound on $\mathsf{deg}(\Delta)$ and on the degrees of entries of U

4- prove that $A^{-1} \in \mathbb{K}[X]^{m \times m} \Leftrightarrow det(A) \in \mathbb{K} \setminus \{0\}$

$$2 \textbf{-} \deg \det(\mathbf{A}) = \deg \left(\textstyle{\sum_{\pi \in S_{\mathfrak{M}}} \pm \prod_{i} \alpha_{i,\pi(i)}} \right) \leqslant \max_{\pi \in S_{\mathfrak{M}}} \textstyle{\sum_{i} \deg(\alpha_{i,\pi(i)})}$$

and the latter quantity is less than or equal to:

- . |rdeg(A)| (sum of row degrees)
- . |cdeg(A)| (sum of column degrees)
- . $\mathfrak{m} \mathsf{deg}(\mathbf{A}) \leqslant \mathfrak{m} d_1$

let $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ be nonsingular with all entries of degree $\leqslant d_1$

let $\mathbf{V} \in \mathbb{K}[X]^{m \times k}$ with all entries of degree $\leqslant d_2$

1- show that $A^{-1}V$ can be represented as a fraction with numerator a matrix U in $\mathbb{K}[X]^{m \times k}$ and denominator a polynomial Δ in $\mathbb{K}[X]$

2- give an upper bound on $\mathsf{deg}\,\mathsf{det}(\mathbf{A})$

3-give an upper bound on $\mathsf{deg}(\Delta)$ and on the degrees of entries of U

4- prove that $A^{-1} \in \mathbb{K}[X]^{m \times m} \Leftrightarrow det(A) \in \mathbb{K} \setminus \{0\}$

3- according to 1, one can take $\Delta = det(\mathbf{A})$ and $\mathbf{U} = \mathbf{C}^{\mathsf{T}}\mathbf{V}$.

 $\Rightarrow \text{ we have the above bounds for } \deg(\Delta) = \deg \det(\mathbf{A}) \\ \Rightarrow \text{ using } c_{i,j} = (-1)^{i+j} \det(\mathbf{A}_{i,j}), \text{ and similar bounds on } \det(\mathbf{A}_{i,j}), \\ \text{we obtain } \deg(\mathbf{C}) \leqslant (m-1)d_1, \text{ and } \deg(\mathbf{U}) \leqslant (m-1)d_1 + d_2 \\ (\text{there are refined bounds when considering row degrees or column degrees } \bigstar)$

note: if there is a nonconstant divisor common to det(A) and all entries of C, then we may take another Δ and U with smaller degrees

let $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ be nonsingular with all entries of degree $\leqslant d_1$

let $\mathbf{V} \in \mathbb{K}[X]^{m \times k}$ with all entries of degree $\leqslant d_2$

1- show that $A^{-1}V$ can be represented as a fraction with numerator a matrix U in $\mathbb{K}[X]^{m \times k}$ and denominator a polynomial Δ in $\mathbb{K}[X]$

2- give an upper bound on $\mathsf{deg}\,\mathsf{det}(A)$

3-give an upper bound on $\mathsf{deg}(\Delta)$ and on the degrees of entries of U

4- prove that $A^{-1} \in \mathbb{K}[X]^{m \times m} \Leftrightarrow det(A) \in \mathbb{K} \setminus \{0\}$

4• we prove both directions: . from $A^{-1} = \frac{1}{\det(A)}C^{\mathsf{T}}$, it follows that if $\det(A)$ is constant, then A^{-1} has polynomial entries . from $\det(A)\det(A^{-1}) = \det(AA^{-1}) = 1$, it follows that if A^{-1} has polynomial entries, then $\det(A^{-1})$ is a polynomial and therefore $\det(A)$ must be constant

1. adapting the evaluation-interpolation paradigm to matrices in $\mathbb{K}[X]^{m\times m}\text{,}$

- give an explicit multiplication algorithm
- give a determinant algorithm

• give an **inversion** algorithm \clubsuit computing the inverse over the fractions $\mathbb{K}(X)$

- 2. for each of these algorithms,
- ${\scriptstyle \blacktriangleright}$ give a required lower bound on the cardinality of ${\mathbb K}$
- state and prove an upper bound on the complexity

directions and hints:

- ► use known degree bounds on the output
- ▶ for inversion, assume you can do quasi-linear Cauchy interpolation

further perspective:

► could your complexity bounds take into account degree measures that refine the matrix degree such as the average row or column degree?

multiplication algorithm

 $\begin{array}{ll} \mbox{given } \mathbf{A} \mbox{ and } \mathbf{B} \mbox{ in } \mathbb{K}[X]^{m\times m} \mbox{ of degree } \leqslant d, \\ \mbox{we know that } \mathbf{C} = \mathbf{A}\mathbf{B} \mbox{ has degree at most } 2d, \mbox{ so:} \\ 1. \mbox{ pick points: pairwise distinct } \alpha_1, \ldots, \alpha_{2d+1} \in \mathbb{K} & \mbox{ Card}(\mathbb{K}) \geqslant 2d+1 \\ 2. \mbox{ evaluate: } \mathbf{A}(\alpha_i) \mbox{ and } \mathbf{B}(\alpha_i), \mbox{ for } i = 1, \ldots, 2d+1 & \mbox{ O}(m^2\mathsf{M}(d)\log(d)) \\ 3. \mbox{ multiply: } \mathbf{A}(\alpha_i)\mathbf{B}(\alpha_i), \mbox{ for } i = 1, \ldots, 2d+1 & \mbox{ O}(m^{\varpi}d) \\ 4. \mbox{ interpolate: find } \mathbf{C} \mbox{ in } \mathbb{K}[X]^{m\times m} \mbox{ of degree } \leqslant 2d \mbox{ such that} \\ \mathbf{C}(\alpha_i) = \mathbf{A}(\alpha_i)\mathbf{B}(\alpha_i), \mbox{ for } i = 1, \ldots, 2d+1 & \mbox{ O}(m^2\mathsf{M}(d)\log(d)) \\ 5. \mbox{ return } \mathbf{C} \end{array}$

excellent algorithm:

- . linear in d in the term $\mathfrak{m}^{\omega}d$ (recall Cantor-Kaltofen: $\mathfrak{m}^{\omega}d\log(d))$
- . exponent $\boldsymbol{\omega}$ of matrix multiplication
- . the $m^2\mathsf{M}(d) \,\mathsf{log}(d)$ term can be improved via points in geometric sequence
- . downside: restriction on $\mathbb K$ (large degrees + small finite fields do arise)

determinant algorithm

given \mathbf{A} in $\mathbb{K}[X]^{m \times m}$ of degree $\leq d$, we know that $\Delta = \det(\mathbf{A})$ has degree at most md, so: 1. pick points: pairwise distinct $\alpha_1, \ldots, \alpha_{md+1} \in \mathbb{K}$ 2. evaluate: $\mathbf{A}(\alpha_i)$ for $i = 1, \ldots, md + 1$ 3. determinant: $\beta_i = \det(\mathbf{A}(\alpha_i))$, for $i = 1, \ldots, md + 1$ 4. interpolate: find Δ in $\mathbb{K}[X]$ of degree \leq md such that $\Delta(\alpha_i) = \beta_i$, for $i = 1, \ldots, md + 1$ 5. return Δ $Card(\mathbb{K}) \geq md + 1$ $O(m^3M(d)\log(d))$ $O(m^{\omega+1}d)$ $O(M(md)\log(md))$

- . quasi-linear in degree d: fast for large d, small \boldsymbol{m}
- . exponent >3 on matrix dimension $\mathfrak{m}:$ slow for large \mathfrak{m}
- . best known today: $O^{\sim}(m^{\omega}d)$

inversion algorithm

given **A** in
$$\mathbb{K}[X]^{m \times m}$$
 of degree $\leq d$,
we know that $\mathbf{C} = \mathbf{A}^{-1} = \frac{1}{\Delta} \mathbf{U}$ with
deg $(\Delta) \leq md$ and deg $(\mathbf{U}) \leq (m-1)d$, so:
0. set $n = (2m-1)d + 1$
1. pick points: pairwise distinct $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ Card $(\mathbb{K}) \geq (2m-1)d + 1$
2. evaluate: $\mathbf{A}(\alpha_i)$, for $i = 1, \ldots, n$ $O(m^3M(d)\log(d))$
3. invert: $\mathbf{A}(\alpha_i)^{-1}$, for $i = 1, \ldots, n$ $O(m^{\omega+1}d)$
4. interpolate: using Cauchy interpolation find **C** in $\mathbb{K}(X)^{m \times m}$ with all
numerators of degree $\leq (m-1)d$ and all denominators of degree $\leq md$
such that $\mathbf{C}(\alpha_i) = \mathbf{A}(\alpha_i)^{-1}$, for $i = 1, \ldots, n$ $O(m^2M(md)\log(md))$
5. return **C**

- . quasi-linear in degree d: fast for large d, small \boldsymbol{m}
- . exponent >3 on dimension m but recall size of \mathbf{A}^{-1} is typically $\Theta(m^3d)$
- . best known today: $O\tilde{}(m^3d)\text{, and even }O\tilde{}(m^{\omega}d)$ for factorized form
- . note: one could compute $\mathsf{det}(\mathbf{A})$ to avoid Cauchy interpolation