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polynomial matrices – introduction

definitions and algebraic properties

▶working over a base field K
K = finite field Fq, extension Fq[X]/⟨f(X)⟩, rational numbers Q, . . .

▶ considering polynomials in one indeterminate X
K[X] is a principal ideal domain (what does that mean?)

▶ in K[X], many operations cost O(M(d)) or O(M(d) log(d)) field ops.
where d 7→ M(d) is a cost function for polynomial multiplication in degree d

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶multipoint eval. f 7→ f(x1), . . . , f(xd)

▶ interpolation f(x1), . . . , f(xd) 7→ f

▶Padé approximation f = p
q
mod Xd

▶minpoly of linearly recurrent sequence
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polynomial matrices – introduction

definitions and algebraic properties

K[X]m×n = set of m× n matrices over K[X]
called polynomial matrices in what follows




3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 + X2 + 5X+ 3 6X+ 5 2X+ 1


 ∈ K[X]3×3

▶ structure: matrices over K[X] ←→ “free” modules over K[X]
similarly to: matrices over K ←→ vector spaces over K

▶basic operations: addition and multiplication
defined as usual (multiplication requires compatible dimensions)

▶K[X] is not a field
what does this change? what operations are allowed / not allowed?

⇝ algorithms may work in K(X)m×n, but be careful with “degree explosion”!
(exercise: Gaussian elimination is exponential-time)
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polynomial matrices – introduction

examples you already know

large matrices with small degrees:
characteristic polynomial det(XIm −M) ∈ K[X] of a matrix M ∈ Km×m

⇝ determinant of polynomial matrix XIm −M ∈ K[X]m×m

▶ fastest known algorithm uses this viewpoint [N.-Pernet, 2021]

▶gradually transforms XIm −M to smaller matrices with larger degrees

small matrices with large degree:
extended GCD uf+ vg = gcd(f,g) for polynomials f,g ∈ K[X]⩽d

⇝ corresponds to a polynomial matrix transformation

[
u v

g̃ f̃

] [
f
g

]
=

[
gcd(f,g)

0

]

with the leftmost (polynomial) matrix of determinant in K \ {0}

▶ fastest known “half-gcd” algorithms use this viewpoint
[Knuth, 1970] [Schönhage, 1971] [Brent-Gustavson-Yun, 1980]
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polynomial matrices – introduction

three flagship applications

1. operations on sparse matrices
▶ solving sparse linear systems over K
▶ computing the minimal polynomial / Frobenius form
▶ introducing parallelism in these computations

[Wiedemann 1986]
[Coppersmith 1993]

[Villard 1997]

example of sparse matrix in Km×m

typical case: O(m) nonzero entries

uses polynomial matrix generator
of linearly recurrent matrix sequence
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polynomial matrices – introduction

three flagship applications

2. operations on structured matrices
▶matrix-vector multiplication
▶ linear system solving
▶nullspace computation

[Kailath-Kung-Morf 1979]
[Bostan et al. 2017]

example of Hankel matrix
⇝ block-Hankel matrices
⇝ Hankel-like matrices

uses polynomial matrix multiplication and
matrix-Padé approximation / matrix-GCD
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polynomial matrices – introduction

three flagship applications

3. bivariate interpolation and multipoint evaluation
problem: given points (α1,β1), . . . , (αn,βn) in K2,
▶given p(x,y), compute p(αi,βi) for 1 ⩽ i ⩽ n
▶find p(x,y) of small degree such that p(αi,βi) = 0

[Nüsken-Ziegler 2004]

[Beckermann 1992] [van Barel-Bultheel 1992]
[Marinari-Möller-Mora 1993]

bivariate interpolation = main step
in Reed-Solomon list-decoding

(univariate interpolation with errors)
[Guruswami-Sudan 1999] [Kötter-Vardy 2003]

uses polynomial matrix multiplication and
matrix rational reconstruction / algebraic approximants
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outline

▶ introduction

▶ matrices? polynomials?

▶ polynomial matrices

▶ reduced forms

▶definitions and algebraic properties
▶ examples you already know
▶ three flagship applications

▶using matrix arithmetic
▶using polynomial arithmetic
▶ limitations of these viewpoints
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the matrix and the polynomial viewpoints

using matrix arithmetic

matrices in K[X]m×n are also in K(X)m×n

(and K(X) is a field)

⇒ usual definition of addition, multiplication, determinant
these do not involve fractions anyway (. . . in algorithms?)

⇒ usual definition of inverse
but with inverse over K(X)

⇒ usual definition of rank
. . . which one, by the way?
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the matrix and the polynomial viewpoints

using matrix arithmetic

matrices in K[X]m×n are also in K(X)m×n

(and K(X) is a field)

this point of view is hardly usable for algorithms:
it easily yields “garbage” cost bounds
e.g. addition in K[X]m×n costs mn additions. . . in K(X)

▶what is the cost of naive addition in K[X]m×m ?

▶what is the cost of naive multiplication in K[X]m×m ?

▶ let 2 < ω < 3 be such that we can multiply two m ×m matrices
over a commutative ring in O(mω) ring operations: what do you
deduce about the cost of multiplying two matrices in K[X]m×m?
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▶ let 2 < ω < 3 be such that we can multiply two m ×m matrices
over a commutative ring in O(mω) ring operations: what do you
deduce about the cost of multiplying two matrices in K[X]m×m?

for algorithms&complexity, considering the degrees of entries is essential
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the matrix and the polynomial viewpoints

using matrix arithmetic

matrices in K[X]m×n are also in K(X)m×n

(and K(X) is a field)

exercise: matrix equation AU = V
let A ∈ K[X]m×m be nonsingular with all entries of degree ⩽ d1

let V ∈ K[X]m×k with all entries of degree ⩽ d2

▶ show that A−1V can be represented as a fraction with numerator a
matrix U in K[X]m×k and denominator a polynomial ∆ in K[X]

▶give an upper bound on deg det(A)

▶give an upper bound on deg(∆) and on the degrees of entries of U

▶prove that A−1 ∈ K[X]m×m ⇔ det(A) ∈ K \ {0}

matrices with determinant in K \ {0} are called unimodular
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the matrix and the polynomial viewpoints

using polynomial arithmetic

K[X]m×n is isomorphic to Km×n[X]

(as K[X]-modules)




3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 + X2 + 5X+ 3 6X+ 5 2X+ 1




=



4 1 3
5 1 3
3 5 1


+



3 4 0
0 3 5
5 6 2


X+



0 0 4
0 5 0
1 0 0


X2 +



0 1 0
0 0 0
3 0 0


X3
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the matrix and the polynomial viewpoints

using polynomial arithmetic

K[X]m×n is isomorphic to Km×n[X]

(as K[X]-modules)

▶natural notion of degree of a polynomial matrix

▶addition of A,B ∈ K[X]m×n is in O(mnd) operations in K
where d = min(deg(A), deg(B))

▶ some other polynomial operations available:
truncation A rem XN, shift XdA, evaluation A(α)
what is the complexity of evaluation?
what about Lagrange interpolation?
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the matrix and the polynomial viewpoints

using polynomial arithmetic

K[X]m×n is isomorphic to Km×n[X]

(as K[X]-modules)

when m = n, Km×m is a (non-commutative) ring

▶multiplication in K[X]m×m seen as a product of polynomials
complexity?

▶ truncated inversion via power series & Newton iteration
condition for A to be invertible as a power series? complexity?

▶ fast Euclidean division with remainder
does this make any sense?
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the matrix and the polynomial viewpoints

using polynomial arithmetic

multiplication
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the matrix and the polynomial viewpoints

using polynomial arithmetic

multiplication

multiplication in Km×m[X] with degree ⩽ d:
▶O(d log(d)) multiplications in Km×m

▶O(d log(d) log log(d)) additions in Km×m

MM(m,d) ∈ O(mωd log(d)+m2d log(d) log log(d))

13



the matrix and the polynomial viewpoints

using polynomial arithmetic

truncated inversion – reminder from October 28 & from AECF
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the matrix and the polynomial viewpoints

using polynomial arithmetic

truncated inversion – conclusion

consider a (square) polynomial matrix A ∈ K[X]m×m

▶A is invertible as a power series
⇔ its constant term A(0) ∈ Km×m is invertible

▶ if A is invertible as a power series,
computing its truncated inverse A−1 mod XN costs

O(MM(m,N)) ∈ O(mωN log(N) +m2N log(N) log log(N))

operations in K
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the matrix and the polynomial viewpoints

using polynomial arithmetic

division with remainder – reminder from October 28

MPRI, C-2-22 12

Euclidean division for polynomials
[Strassen, 1973]

Pb: Given F,G ∈ K[x]≤N , compute (Q,R) in Euclidean division F = QG+R

Naive algorithm: O(N2)

Idea: look at F = QG+R from infinity: Q ∼+∞ F/G

Let N = deg(F ) and n = deg(G). Then deg(Q) = N − n, deg(R) < n and

F (1/x)xN︸ ︷︷ ︸
rev(F )

= G(1/x)xn︸ ︷︷ ︸
rev(G)

·Q(1/x)xN−n︸ ︷︷ ︸
rev(Q)

+R(1/x)xdeg(R)

︸ ︷︷ ︸
rev(R)

·xN−deg(R)

Algorithm:

• Compute rev(Q) = rev(F )/rev(G) mod xN−n+1 O(M(N))

• Recover Q O(1)

• Deduce R = F −QG O(M(N))
13



the matrix and the polynomial viewpoints

using polynomial arithmetic

division with remainder

problem:
given A,B ∈ Km×m[X],
compute Q,R ∈ Km×m[X] such that

A = BQ+R and deg(R) < deg(B)

. . . are we not missing an assumption?
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the matrix and the polynomial viewpoints

using polynomial arithmetic

division with remainder

problem:
given A,B ∈ Km×m[X],
compute Q,R ∈ Km×m[X] such that

A = BQ+R and deg(R) < deg(B)

. . . are we not missing an assumption?

rule 1: dividing by zero is generally a bad idea
rule 2: if you think you need to divide by zero, refer to rule 1
rule 3: neglecting to check that something is not zero does not make it nonzero

etc. etc.
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the matrix and the polynomial viewpoints

using polynomial arithmetic

division with remainder

problem:
given A,B ∈ Km×m[X],
compute Q,R ∈ Km×m[X] such that

A = BQ+R and deg(R) < deg(B)

. . . are we not missing an assumption?

for a polynomial p ∈ A[X], over some ring A, division by p is feasible
▶ if p is monic (leading coefficient 1A)
▶ and more generally if the leading coefficient of p is invertible in A

assumption: the leading coefficient of B is invertible in Km×m

recall B = B0 + B1X+ · · ·+ BdX
d with Bi ∈ Km×m
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the matrix and the polynomial viewpoints

using polynomial arithmetic

division with remainder

problem:
given A,B ∈ Km×m[X] with lc(B) invertible,
compute Q,R ∈ Km×m[X] such that

A = BQ+R and deg(R) < deg(B)

example:
let B = XIm −M for some M ∈ Km×m

give a description of R = A rem B
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the matrix and the polynomial viewpoints

using polynomial arithmetic

division with remainder

problem:
given A,B ∈ Km×m[X] with lc(B) invertible,
compute Q,R ∈ Km×m[X] such that

A = BQ+R and deg(R) < deg(B)

example:
let B = XIm −M for some M ∈ Km×m

give a description of R = A rem B

from XkIm −Mk = (XIm −M)(
∑

1⩽i⩽k−1 M
iXk−i)

we get XkIm = Mk mod B, with deg(Mk) < 1

then by linearity
R = A rem B = (A0 +A1X+A2X

2 + · · ·+AdX
d) rem B

= A0 +MA1 +M2A2 + · · ·+MdAd

13



the matrix and the polynomial viewpoints

using polynomial arithmetic

division with remainder

problem:
given A,B ∈ Km×m[X] with lc(B) invertible,
compute Q,R ∈ Km×m[X] such that

A = BQ+R and deg(R) < deg(B)

▶under this assumption, the usual fast Euclidean algorithm works

▶ recall:
1. reverse the equation,
2. compute quotient by truncated inverse,
3. deduce remainder

▶ complexity is O(MM(m,d)) for d = max(deg(A), deg(B))
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the matrix and the polynomial viewpoints

limitations of these viewpoints

applying usual linear algebra algorithms to polynomial matrices:
▶helps to understand some algebraic aspects
▶ leads too easily to computing in the fractions
▶gives nonsensical complexity bounds

seeing polynomial matrices as polynomials with matrix coefficients
▶ allows direct use of some algorithms from polynomial arithmetic
▶provides better control of the degree during computations
▶ remains restrictive and inefficient in many cases

▶ example for restrictive:
in division with remainder, the assumption “lc(B) invertible” can be
relaxed into “B reduced” (and even to “B nonsingular”)

▶ example for inefficient:
for a matrix of degree d with many entries of degree ≪ d, we want
to take the individual degrees into account
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▶ introduction

▶ matrices? polynomials?

▶ polynomial matrices

▶ reduced forms

▶definitions and algebraic properties
▶ examples you already know
▶ three flagship applications

▶using matrix arithmetic
▶using polynomial arithmetic
▶ limitations of these viewpoints

▶ size and row/column degrees
▶ evaluation-interpolation-based algorithms
▶partial linearization techniques
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mixing matrix and polynomial tools

size and row/column degrees

size of a polynomial matrix = number of coefficients
from K needed for its dense representation

for A = (ai,j) ∈ K[X]m×n,
size(A) =

∑
i,j size(ai,j) =

∑
i,j 1+max(0, deg(ai,j))
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recall deg(AB) ⩽ deg(A) + deg(B),

however:

in general the size is not compatible with matrix products
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size of a polynomial matrix = number of coefficients
from K needed for its dense representation

for A = (ai,j) ∈ K[X]m×n,
size(A) =

∑
i,j size(ai,j) =

∑
i,j 1+max(0, deg(ai,j))

recall deg(AB) ⩽ deg(A) + deg(B),

however:

in general the size is not compatible with matrix products

considering the degree matrices:


100 50 40 10
100 50 40 10
100 50 40 10
100 50 40 10







50 50 50 50
50 50 50 50
50 50 50 50
50 50 50 50


 =




150 150 150 150
150 150 150 150
150 150 150 150
150 150 150 150




sizes of these three matrices?
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size and row/column degrees

size of a polynomial matrix = number of coefficients
from K needed for its dense representation

for A = (ai,j) ∈ K[X]m×n,
size(A) =

∑
i,j size(ai,j) =

∑
i,j 1+max(0, deg(ai,j))

recall deg(AB) ⩽ deg(A) + deg(B),

however:

in general the size is not compatible with matrix products

but it may be, in some particular cases




100 100 100 100
50 50 50 50
40 40 40 40
10 10 10 10







50 50 50 50
50 50 50 50
50 50 50 50
50 50 50 50


 =




150 150 150 150
100 100 100 100
90 90 90 90
60 60 60 60




sizes of these three matrices?
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mixing matrix and polynomial tools

size and row/column degrees

size of a polynomial matrix = number of coefficients
from K needed for its dense representation

for A = (ai,j) ∈ K[X]m×n,
size(A) =

∑
i,j size(ai,j) =

∑
i,j 1+max(0, deg(ai,j))

recall deg(AB) ⩽ deg(A) + deg(B),

however:

in general the size is not compatible with matrix products

but it may be, in some particular cases

▶ these particular cases include whole families of matrices
c.f. the degree profiles we just saw

▶ and they include reduced matrices often arising in algorithms
definition will come soon
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mixing matrix and polynomial tools

size and row/column degrees

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

for A = (ai,j) ∈ K[X]m×n,

rdeg(A) = (rdeg(A1,∗), . . . , rdeg(Am,∗))

=

(
max

1⩽j⩽n
deg(A1,j), . . . , max

1⩽j⩽n
deg(Am,j)

)
∈ Zm
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mixing matrix and polynomial tools

size and row/column degrees

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

column degree of a polynomial matrix
= the list of the maximum degree in each of its columns
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mixing matrix and polynomial tools

size and row/column degrees

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

column degree of a polynomial matrix
= the list of the maximum degree in each of its columns

average size ⩽
average row size

average column size
⩽ 1+ deg(A)
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mixing matrix and polynomial tools

size and row/column degrees

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

column degree of a polynomial matrix
= the list of the maximum degree in each of its columns

average size ⩽
average row size

average column size
⩽ 1+ deg(A)

consider A and B with respective degree matrices:


100 50 40 10
100 50 40 10
100 50 40 10
100 50 40 10


 and




100 100 100 100
50 50 50 50
40 40 40 40
10 10 10 10




row degree and column degree of these two matrices?

18



mixing matrix and polynomial tools

evaluation-interpolation-based algorithms

exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to
matrices in K[X]m×m,

▶give an explicit multiplication algorithm

▶give a determinant algorithm

▶give an inversion algorithm K
computing the inverse over the fractions K(X)

2. for each of these algorithms,

▶give a required lower bound on the cardinality of K
▶ state and prove an upper bound on the complexity

two hints and one direction for further study:
▶use known degree bounds on the output
▶ for inversion, assume you can do quasi-linear Cauchy interpolation
▶ could your complexity bounds take into account degree measures that
refine the matrix degree such as the average row or column degree?
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mixing matrix and polynomial tools

evaluation-interpolation-based algorithms

[von zur Gathen, Gerhard, Modern Computer Algebra]

see also [AECF, Definition 7.1] (in French)

we will describe a quasi-linear algorithm later in this course

which does not rely on polynomial matrix inversion. . .
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mixing matrix and polynomial tools

partial linearization techniques

reduce unbalanced degrees to the average degree

where degree means row degree, column degree, or related refined measures

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

typical properties:

from a matrix A ∈ K[X]m×m with D = |rdeg(A)|≪ m deg(A)
construct a matrix Ā ∈ K[X]m

′×m′
with

▶ a slight increase of matrix dimension: m ⩽ m ′ ⩽ 2m

▶ a strong decrease of matrix degree: deg(Ā) ⩽ 2D
m

▶preservation of the features targeted by our computations

examples:
▶product AB easily deduced from product ĀB̄
▶preservation of the determinant det(A) = det(Ā)
▶ inverse of Ā contains inverse of A as submatrix
▶ . . .
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mixing matrix and polynomial tools

partial linearization techniques

reduce unbalanced degrees to the average degree

basic illustration:
▶ let A ∈ K[X]m×m of degree < d,
▶ let u ∈ K[X]m×1 of degree < md,
then the matrix-vector product Au can be computed in

MM(m,d) +O(m2d) operations in K
what would be the cost of the “naive” multiplication?

algorithm:
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mixing matrix and polynomial tools

partial linearization techniques

reduce unbalanced degrees to the average degree

basic illustration:
▶ let A ∈ K[X]m×m of degree < d,
▶ let u ∈ K[X]m×1 of degree < md,
then the matrix-vector product Au can be computed in

MM(m,d) +O(m2d) operations in K
what would be the cost of the “naive” multiplication?

algorithm:


 A




u


 =


 A




 ū







1
Xd

X2d

...




where the columns of ū ∈ K[X]m×m form the Xd-adic expansion of u
⇒ here deg(ū) < d
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outline

▶ introduction

▶ matrices? polynomials?

▶ polynomial matrices

▶ reduced forms

▶definitions and algebraic properties
▶ examples you already know
▶ three flagship applications

▶using matrix arithmetic
▶using polynomial arithmetic
▶ limitations of these viewpoints

▶ size and row/column degrees
▶ evaluation-interpolation-based algorithms
▶partial linearization techniques
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▶ introduction

▶ matrices? polynomials?

▶ polynomial matrices

▶ reduced forms

▶definitions and algebraic properties
▶ examples you already know
▶ three flagship applications

▶using matrix arithmetic
▶using polynomial arithmetic
▶ limitations of these viewpoints

▶ size and row/column degrees
▶ evaluation-interpolation-based algorithms
▶partial linearization techniques

▶motivations
▶ leading matrix and reducedness
▶ characterizations and main properties
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polynomial matrices in reduced form

motivations

the above degree measures and techniques
▶ yield faster algorithms in some cases
▶but leave many remaining questions

1. row and column degrees not compatible with multiplication
2. does not lift the restrictive assumption on lc(B) for QuoRem
3. can we get even faster determinant and inversion?

column reduced?
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polynomial matrices in reduced form

motivations

the above degree measures and techniques
▶ yield faster algorithms in some cases
▶but leave many remaining questions

1. row and column degrees not compatible with multiplication
2. does not lift the restrictive assumption on lc(B) for QuoRem
3. can we get even faster determinant and inversion?

1. more general partial linearizations

[Zhou-Labahn-Storjohann 2012]

shift s? s-column degree?

column reduced?
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polynomial matrices in reduced form

motivations

the above degree measures and techniques
▶ yield faster algorithms in some cases
▶but leave many remaining questions

1. row and column degrees not compatible with multiplication
2. does not lift the restrictive assumption on lc(B) for QuoRem
3. can we get even faster determinant and inversion?

column reduced?

2. more general division with remainder
is it reasonable that the QuoRem algorithm
does not support the case of a division
A = BQ+R where B is the diagonal
matrix B = diag(Xd1 , . . . ,Xdm)?
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polynomial matrices in reduced form

motivations

the above degree measures and techniques
▶ yield faster algorithms in some cases
▶but leave many remaining questions

1. row and column degrees not compatible with multiplication
2. does not lift the restrictive assumption on lc(B) for QuoRem
3. can we get even faster determinant and inversion?

column reduced?

3. even faster algorithms

for A ∈ K[X]m×m of degree d, evaluation-interpolation yields
determinant and inverse algorithms in O (̃mω+1d) ops.

how does this compare to the size of A?
if you were to search for faster algorithms, what would you pick as
your target complexity bound?

24



polynomial matrices in reduced form

motivations

the above degree measures and techniques
▶ yield faster algorithms in some cases
▶but leave many remaining questions

1. row and column degrees not compatible with multiplication
2. does not lift the restrictive assumption on lc(B) for QuoRem
3. can we get even faster determinant and inversion?

column reduced?

3. even faster algorithms

for A ∈ K[X]m×m of degree d, evaluation-interpolation yields
determinant and inverse algorithms in O (̃mω+1d) ops.

how does this compare to the size of A?
if you were to search for faster algorithms, what would you pick as
your target complexity bound?

⇝ cost O (̃mω D
m
) achieved using operations on reduced matrices

[Zhou-Labahn-Storjohann 2015] [Labahn-Neiger-Zhou 2017]
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polynomial matrices in reduced form

motivations

the above degree measures and techniques
▶ yield faster algorithms in some cases
▶but leave many remaining questions

1. row and column degrees not compatible with multiplication
2. does not lift the restrictive assumption on lc(B) for QuoRem
3. can we get even faster determinant and inversion?

column reduced?

4. bonus: predictable degrees

in the two cases below,

▶ can you predict deg det(A)?

▶ can you predict the degrees in BA from the degrees in B?

. case 1: A = XIm −M, with M ∈ Km×m

. case 2: A = XdL+R, with deg(R) < d and L ∈ Km×m
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polynomial matrices in reduced form

leading matrix and reducedness

notation:

let A ∈ K[X]m×n with no zero row,
define d = (d1, . . . ,dm) = rdeg(A)

and Xd =



Xd1

. . .

Xdm


 ∈ K[X]m×m

definition: (row-wise) leading matrix

the leading matrix of A is the unique matrix L ∈ Km×n

such that A = XdL+R with rdeg(R) < d entry-wise

equivalently, X−dA = L+ terms of strictly negative degree

. what is the leading matrix of

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
?

. what is the leading matrix of A = XIm −M? of A = XdL+R?

25



polynomial matrices in reduced form

leading matrix and reducedness

notation:

let A ∈ K[X]m×n with no zero row,
define d = (d1, . . . ,dm) = rdeg(A)

and Xd =



Xd1

. . .

Xdm


 ∈ K[X]m×m

definition: (row-wise) leading matrix

the leading matrix of A is the unique matrix L ∈ Km×n

such that A = XdL+R with rdeg(R) < d entry-wise

equivalently, X−dA = L+ terms of strictly negative degree

. what is the leading matrix of

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
?

. what is the leading matrix of A = XIm −M? of A = XdL+R?

25



polynomial matrices in reduced form

leading matrix and reducedness

notation:

let A ∈ K[X]m×n with no zero row,
we write lm(A) for the leading matrix of A

definition: (row-wise) reduced matrix

A ∈ K[X]m×n is said to be reduced
if lm(A) has full row rank

what does this imply on m and n?

. is the matrix

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
reduced?

. is A = XIm −M row-wise reduced? column-wise reduced?

. is “A = XdL+R is reduced” equivalent to “L is invertible”?
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polynomial matrices in reduced form

characterizations and main properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)
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