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| in this lecture |

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(m®M(d) log(d)) operations in K

or a tiny bit more for matrix-GCD
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rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,

with q(X) invertible

— compute E mod X4 algo?? O(77)
inv+mul: O(M(d))

given M(X) € K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

— compute mod M(X) algo?? O(77)
xgcd+mul+rem O(M(d) log(d))

given M(X) = (X — o) -+ - (X — xq) € KIX],

for pairwise distinct «y,...,xq € K,

given polynomials p(X) and q(X) over K of degree < d,

with q(X) invertible modulo M(X), what does that mean?
— compute mod M(X) algo?? O(77)

eval+div+interp O(M(d) log(d))
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introduction

rational approximation and interpolation

rational fractions <— linearly recurrent sequences

reminders from lectures 3+6

C-finite sequences and rational series

Proposition. The sequence (u,)nen satisfies
YneEN, Unjps+CoiUnss—1+---+Coun=0

if and only its generating series is of the form

~
n_ p(x) __p()
“Z% U X e e Teve0 for some p € K[x] .

denominator < recurrence, numerator < initial values / residual




introduction

rational approximation and interpolation

rational fractions <— linearly recurrent sequences

reminders from lectures 3+6

From s to 2's terms e

[Fiduccia 1985, Shoup 1991]

Unts+Cs—1Unts—1+ - +Coun=0

G’roblem. Given (ug, ..., us_1), compute (Us, ..., Uss_1). )
Using the previous proposition, write Z Un X" = zg; with q =revy(x) and degp <s.
n>0
PO e 14 0() = px) = q(x) Ug(x) remx®
q) QTR P q 0

Uo(x)

Algorithm. Input: ug.s, Co:s Output: up.N
1. Compute p = q Uprem x* O(M(s))
2. Compute the first N terms of p / q by a power series division O(M(N))
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rational approximation and interpolation

rational fractions <— linearly recurrent sequences
reminders from lectures 346

expand —px—] mod XN

rev(

/\

numerator p and charpoly x first N terms of the LRS (un )nen

\_/

reconstruct from U (X) mod XN
~~ Padé approximation
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rational approximation and interpolation

Padé approximation:
given power series f(X) at precision d,

— compute p(X), q(X) such that f = % mod X4

opinions on this algorithmic problem?
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rational approximation and interpolation

Padé approximation:

given power series f(X) at precision d,

given degree constraints dy, d; > 0,

— compute polynomials (p(X), q(X)) of degrees < (d;, da)
and such that f = & mod X4

Cauchy interpolation:

given M(X) = (X— o) -+ - (X — q) € KIX],

for pairwise distinct «y,...,xq € K,

given degree constraints dj, da > 0,

— compute polynomials (p(X), q(X)) of degrees < (d;, d2)
and such that f = }é mod M (X)

» degree constraints specified by the context
» usual choices have d; + dy ~ d and existence of a solution



Sur la généralisation des fractions continues algébriques;
' Pae M. H. PADE,

Docteur &s Sciences mathématiques,
Professeur au lycée de Lille.

- [1894, Journal de mathématiques pures et appliquées]
INTRODUCTION.

M. Hermite s’est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X,, X, ..., X,, de degrés p,, ty, ..., 4,
qui satisfont & I'équation

S, X, + 8, X, +ovet 8, X, = S gttt

S,, S,, ..., S, étant des séries enti¢res données, et S une série égale-
ment entiére. Ou plutét, il sagit d’obtenir un algorithme qui permette
le calcul de proche en proche de ces systémes de r polynomes, et qui
soit analogue & I'algorithme par lequel le numérateur et le dénomina-
teur d’une réduite d’une fraction continue se déduisent des numéra-
tanre ot dénominatenrs des radiites nrécédentes. D'élécantes conside-



approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

» polynomials fy, ..., i, € K[X]

» precision d € Z~g

»degree bounds dy,...,dm € Z-g

output:

polynomials py, ..., pm € K[X] such that
»pifi + -+ Ppmfm = 0 mod X4
»cdeg([p1- - pml) < (d1,...,dm)

(Padé approximation: particular case m =2 and f; = —1)



approximation and interpolation: the vector case

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

» polynomials fy, ..., i, € K[X]

» pairwise distinct points o, ..., g € K
»degree bounds dy,...,dm € Z-g

output:

polynomials py, ..., pm € K[X] such that

»pr(ai)fi(o) + - -+ pmlai)fm(o) =0forall 1 <i<d
»cdeg([p1- - pml) < (d1,...,dm)

(rational interpolation: particular case m = 2 and f; = —1)



tion

approximation and interpolation: the vector case

in this lecture: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard
2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

» polynomials fy, ..., i, € K[X]

> field elements &y, ..., xqg € K ~» not necessarily distinct
»degree bounds dy, ..., dm € Z+g ~ general “shift” s € Z™
output:

polynomials p1, ..., pm € K[X] such that
»p1fi + -+ pmfm = 0 mod Hléigd(x — o)
»cdeg([pr- - pml) < (d1,...,dm) ~» minimal s-row degree

(Hermite-Padé: o1 = - - - = ocg = 0; interpolation: pairwise distinct points)



approximation and interpolation: the vector case

applications:

» univariate polynomials and linearly recurrent sequences
XGCD, rational reconstruction, “fast Berlekamp-Massey”, ...

» sparse K-linear systems
Coppersmith’s block-Wiedemann approach

» structured K-matrices
Hankel/ Toeplitz/Vandermonde, block structures, displacement rank, ...

» computations with K-matrices
Krylov iterates, minimal/characteristic polynomial, Frobenius form, ...

» computations with K[X]-matrices
determinant, nullspace/kernel, inversion, Hermite normal form, ...

» computations with multivariate polynomials
multivariate interpolation, syzygy modules, Grobner bases, ...



approximation and structured linear system

K =Ty

f=2X"+2X0 +5X* +2X%+ 4

d=8,d;=3,d,=6

— look for (p, q) of degree < (3,6) such that f = % mod X8

[ q p][_fl] =0 mod X8



approximation and structured linear system

K =Ty

f=2X"+2X0 +5X* +2X%+ 4

d=8,d;=3,d,=6

— look for (p, q) of degree < (3,6) such that f = % mod X8

[a pl|_ =0 mod X®
(4 0 2 0 5 0 2 2]
4 0 2 0 5 0 2
4 0 2 0 5 0
4 0 2 0 5
[do d1 92 93 94 gs|po p1 P2l 4 0 2 0| =0
4 0 2
6 0000 000D
6 0 00O OO
. 6000 0 0




approximation and structured linear system

K =Ty

f=2X"+2X0 +5X* +2X%+ 4

d=8,d;=3,d,=6

— look for (p, q) of degree < (3,6) such that f = % mod X8

[ q p]_l =0 mod X8
4 02 0 5 0 2 2]
40,2 0 50 2
4.0.2.0 5 0
4 02 0 5
[do d1 92 93 g4 gs|po P1 P2l 4.0.2 0| =0
4 0 2
6 0000000
6 000000
| 6 00 0 0 0




interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points {(a, i), 1 <1< 8}
={(24,80), (31,73), (15,73), (32,35), (83, 66), (27,46), (20,91), (59, 64)},
compute a bivariate polynomial p(X,Y) € K[X, Y]

such that p(ay, i) =0for 1 <1< 8

Q/(l%)::g;;nzg? mtg;;laii) } — solutions = ideal (M(X),Y — L(X))

solutions of smaller X-degree: p(X,Y) = po(X) 4+ p1(X)Y + p2(X)Y?

1
pPX, LX) =[po P1 P2 ]—2 = 0 mod M(X)
L
» instance of univariate rational vector interpolation
»with a structured input equation (powers of L mod M)



duction

interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points {(a, i), 1 <1< 8}
={(24,80), (31,73), (15,73), (32,35), (83, 66), (27,46), (20,91), (59, 64)},
compute a bivariate polynomial p(X,Y) € K[X, Y]

such that p(ay, i) =0for 1 <1< 8

add degree constraints: seek p(X,Y) of the form
Poo + PorX + po2X2 + pozX3 + poaX? + (p1o + P11 X + p12X?)Y + poo Y2

r 1 1 1
X1 X2 Xg
o3 o3 o3
o3 o3 o
. . ot o4 o
[ Poo Por Po2 Pos Pos | Pro Pu P12 ! P20 || _ ot % 2 .8 |=0
B1 B2 Bs
a1PBr P2 - xgPs
2 2 2
. fod s PR
» K-linear system ,7j[fsf”ﬂzfz””””fﬁsh
2 2 2
» two levels of structure LB > 8

P(X,Y) = (2X* + 56X3 + 42X2 + 48X + 15) + (72X2 + 12X + 30)Y + Y2
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polynomial matrices: reminder and motivation

why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

8 is a “free K[X]-module of rank m", meaning:

» stable under K[X]-linear combinations

» admits a basis consisting of m elements

» basis = K[X]-linear independence + generates all solutions

»8 C KIXI™ = 8 hasrank <m
»M(X)KIXI™Cc8 = Shasrank >m

remark: solutions are not considered modulo M
eg. (M,0,..., 0) is in 8 and may appear in a basis

10



polynomial matrices: reminder and motivation

why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

basis of solutions:
» square nonsingular matrix P in K[X]

mXxXm

» each row of P is a solution
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i.e. 8 is the K[X]-row space of P
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recall M(X) = [Ticica (X — 1)

basis of solutions:
» square nonsingular matrix P in K[X]™>*™

» each row of P is a solution

» any solution is a K[X]-combination uP, u € K[X]1*™

i.e. 8 is the K[X]-row space of P
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polynomial matrices: reminder and motivation
why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

basis of solutions:
» square nonsingular matrix P in K[X]™*™

»each row of P is a solution
» any solution is a K[X]-combination uP, u € K[X]'*™

i.e. 8 is the K[X]-row space of P

prove: det(P) is a divisor of M(X)™

prove: any other basis is UP for U € K[X]™*™ with det(U) € K\ {0}

10



polynomial matrices: reminder and motivation

why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

basis of solutions:
» square nonsingular matrix P in K[X]™>*™

» each row of P is a solution
» any solution is a K[X]-combination uP, u € K[X]1*™

i.e. 8 is the K[X]-row space of P

computing a basis of 8§ with “minimal degrees”
» has many more applications than a single small-degree solution
»is in most cases the fastest known strategy anyway(!)

~> degree minimality ensured via shifted reduced forms

10



introduction

polynomial matrices: reminder and motivation

3X + 4 X3 4+4X+1  4X2+3 .
A= 5 5X2 43X +1  5X 43| € K[X]P¥? 3 X3 matrix of degree 3
3X3 4+ X2 45X + 3 6X +5 2X 41 with entries in K[X] = F7[X]

operations in K[X]T7™:

» combination of matrix and polynomial computations
» addition in O(m?2d), naive multiplication in O(m3d?)
» some tools shared with K-matrices, others specific to K[X]-matrices
[Cantor-Kaltofen'91]
multiplication in O(m®dlog(d) + m2dlog(d) loglog(d))
€ O(m*M(d)) c O"(m>d)

11
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polynomial matrices: reminder and motivation

3X + 4 X3 4+4X+1  4X2+3 .
A= 5 5X2 43X +1  5X 43| € K[X]P¥? 3 X3 matrix of degree 3
3X3 4+ X2 45X + 3 6X +5 2X 41 with entries in K[X] = F7[X]

operations in K[X]T7™:

» combination of matrix and polynomial computations
» addition in O(m?2d), naive multiplication in O(m3d?)
» some tools shared with K-matrices, others specific to K[X]-matrices
[Cantor-Kaltofen'91]
multiplication in O(m®dlog(d) + m2dlog(d) loglog(d))
€ O(m*M(d)) c O"(m>d)

» Newton truncated inversion, matrix-QuoRem — fast O"(m®d)

» inversion and determinant via evaluation-interpolation — medium O~ (m®*t1qd)
» vector rational approximation & interpolation s 777

11
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polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d — 07(m®d)
of “average” degree % — O"(m“’%)

classical matrix operations univariate specific operations

» multiplication

» truncated inverse, QuoRem

» kernel, system solving » Hermite-Padé approximation

» rank, determinant

> inversion

O~ (m3d)

» vector rational interpolation

» syzygies / modular equations

transformation to normal forms

» triangularization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form

12
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polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d — 07(m®d)
“ " D ~ w D
of “average” degree — — O (m® )
classical matrix operations univariate specific operations
» multiplication » truncated inverse, QuoRem

» kernel, system solving » Hermite-Padé approximation

» rank, determinant » vector rational interpolation

»inversion 0~(m3d) » syzygies / modular equations

transformation to normal forms
» triangularization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form
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» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

shifted reduced forms

fast algorithms

applications

13



» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
shifted reduced forms » shifted forms and degree constraints
» stability under multiplication

fast algorithms

applications

14



shifted reduced forms

reducedness: examples and properties

notation:

let A € K[IX]™*™ with no zero row,
define d = (dy,...,dm) = rdeg(A)
X4
and X4 = e K[xymxm
Xdm

definition: (row-wise) leading matrix
the leading matrix of A is the unique matrix Im(A) € Km*™
such that A = X%Im(A) + R with rdeg(R) < d entry-wise

equivalently, X~%A = Im(A) + terms of strictly negative degree

15



shifted reduced forms

reducedness: examples and properties

notation:

let A € K[IX]™*™ with no zero row,
define d = (dy,...,dm) = rdeg(A)
X4
and X4 = e K[xymxm
Xdm

definition: (row-wise) leading matrix
the leading matrix of A is the unique matrix Im(A) € Km*™
such that A = X%Im(A) + R with rdeg(R) < d entry-wise

equivalently, X~%A = Im(A) + terms of strictly negative degree

definition: (row-wise) reduced matrix

A € K[X]™*™ is said to be reduced
if Im(A) has full row rank

15



shifted reduced forms

reducedness: examples and properties

consider the following matrices, with K = FF;:

A [BXF4 X+axX+1 4XP+3

T 5 5X24+3X+1 5X+3
3X+1 4X+3  B5X+5

A, = 0 4X? + 6X 5
| 4X% +5X + 2 5 6X2 +1

A3 = transpose of A;

A, = transpose of A,

answer the following, for i € {1, 2, 3, 4}:
1. what is rdeg(A;)?

2. what is Im(A;)?

3. is A; reduced?

16



polynomial matrices in reduced form

reducedness: examples and properties

let A € KIX]™ ™ with m < n,
the following are equivalent:

(i) A is reduced (i.e. Im(A) has full rank)

17
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polynomial matrices in reduced form

reducedness: examples and properties

let A € KIX]™ ™ with m < n,
the following are equivalent:

(i) A is reduced (i.e. Im(A) has full rank)

(i) for any vector u = [u; 1 up] € K[X]**™ with 1 at index 1,
rdeg(uA) > rdeg(A; .)

(i) predictable degree: for any vector u = [u; - - - up,] € K[X]t*™,
rdeg(uA) = maxigigm (deg(uy) + rdeg(A; . ))

(iv) degree minimality: rdeg(A) < rdeg(UA) holds for any nonsingu-

lar matrix U € K[X]™*™, where < sorts the tuples in nondecreasing
order and then uses lexicographic comparison

17



polynomial matrices in reduced form

reducedness: examples and properties

let A € KIX]™ ™ with m < n,
the following are equivalent:

(i) A is reduced (i.e. Im(A) has full rank)

(i) for any vector u = [u; 1 up] € K[X]**™ with 1 at index 1,
rdeg(uA) > rdeg(A; .)

(i) predictable degree: for any vector u = [u; - - - up,] € K[X]t*™,
rdeg(uA) = maxigigm (deg(uy) + rdeg(A; . ))

(iv) degree minimality: rdeg(A) < rdeg(UA) holds for any nonsingu-
lar matrix U € K[X]™*™, where < sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: degdet(A) = |rdeg(A)]
(only when m =n)

17



shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = [F7,

3X +1 4X+3 5X+5
A= 0 4X2% + 6X 5
4X%2 45X +2 5 6X%2 +1

1. what is degdet(A)?
2. what is rdeg([4X?> +1 2X 4X45]A)?

3. is it possible to find a matrix
P— [Poo Po1 Poz}

Pio P11 P12
whose rank is 2, whose degree is 1, and which is a

left-multiple of A7

18



shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = [F7,

3X +1 4X+3 5X+5
A= 0 4X2% + 6X 5
4X%2 45X +2 5 6X%2 +1

1. what is degdet(A)?
2. what is rdeg([4X?> +1 2X 4X45]A)?

3. is it possible to find a matrix
P— [Poo Po1 Poz}

Pio P11 P12
whose rank is 2, whose degree is 1, and which is a

left-multiple of A7

find a row vector u of degree 1 such that uA has
degree 2, where
A [3X+4 X3+4X+1 4X2+3

| 5  5X243X+1 5X+3

18



shifted reduced forms

shifted forms and degree constraints
keeping our problem in mind:

»input: fi's and «;'s and degree constraints dy, ..., dm € Z-o
» output: a solution p satisfying the constraints cdeg(p) < (d1,...,dm)

obstacle:

computing a reduced basis of solutions ignores the constraints

mXxm

exercise: suppose we have a reduced basis P € K[X] of solutions

» think of particular constraints (dy, ..., d;) that can be handled via P

» give constraints (dy, ..., d;,) for which P is “typically” not satisfactory

19



shifted reduced forms

shifted forms and degree constraints
keeping our problem in mind:

»input: fi's and «;'s and degree constraints dy, ..., dm € Z-o
» output: a solution p satisfying the constraints cdeg(p) < (d1,...,dm)

obstacle:

computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis P € K[X]™*™ of solutions

» think of particular constraints (dy, ..., d;) that can be handled via P

» give constraints (dy, ..., d;,) for which P is “typically” not satisfactory

solution: compute P in shifted reduced form

19



shifted reduced forms

shifted forms and degree constraints

3X+4 X3 +4X+1 4X2+3
A= 5 5X2 +3X+1 5X+3
3X3 4+ X2 +5X+3 6X+5 2X +1

using elementary row operations, transform A into. ..

X0 +6X*+X34+X+4 00
Hermite form H = |5X°> +5X* +6X3+2X2+6X+3 X 0
3X4 4+ 5X3 +4X2+6X+1 5 1

X3 +5X%+4X+1 2X +4 3X+ 5]
Popov form P = 1 X2 4+2X+3 X+2
3X+2 4X X2

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851]
» triangular
» column normalized

16 4

15 0 3.7

15 0 1 5 3
15 0 3 6 1 2

20



shifted reduced forms

shifted forms and degree constraints

nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots
» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 1} 3 6 1 2 3 3 3 4 6 0 1 6

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots

» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5

5 0 3 7 3 4 3 3 0 1 0

15 0 1 5 3 3 3 4 3 2

15 0 3 6 1 2 3 3 3 14 6 0 1 6
< pot reduced Grobner basis <top

K[X]-module 8§ C K[X]**™ of rank m

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots
» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 1} 3 6 1 2 3 3 3 4 6 0 1 6

invariant: D = deg(det(A)) =4+7+3+2=7+14+2+4+6

» average column degree is %

» size of object is mD +m? = m?(2 +1)

20



shifted reduced forms

shifted forms and degree constraints

nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots
» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 1} 3 6 1 2 3 3 3 4 6 0 1 6

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:

arbitrary degree constraints + no column normalization

~~ minimal, non-reduced, <-Grdbner basis
20



shifted reduced forms

shift: integer tuple s = (s1,...,sm) acting as column weights
— connects Popov and Hermite forms

4 3 3 3 7 0 1 5
s =(0,0,0,0) 3 4 3 3 0 1 0
Popov 3 3 4 3 2
3 3 3 4] 6 0 1 6]
(7 4 2 0] 8 5 1 ]
s =(0,2,4,6) 6 5 2 0 7 6 1
s-Popov 6 4 3 0 2
6 4 2 1] 0 1 0f
16 4
s =(0,D,2D,3D) 15 0 3 7
Hermite 15 0 15 3
15 0 3 6 1 2

» normal form, average column degree D/m
» shifted reduced form: same without normalization
> shifts arise naturally in algorithms (approximants, kernel, ...)
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shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai;) € KIX]I™*™, and s = (s1,...,5n) € Z™,
rdegs (A) = (rdegs(Ay ), ..., rdegg (A «))

= ( max (deg(Ay;) +s;), ..., max (deg(Anm;)+ sj)> ez™

1<j<n 1<j<n

3X+4 X3+4X+1 4X2+3
5 5X24+3X+1 5X+3|
describe rdeg g )(A), rdeg(g12)(A), and rdeg(_; _3_)(A)

example: for the matrix A =
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shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai;) € KIX]I™*™, and s = (s1,...,5n) € Z™,
rdegs (A) = (rdegs(Ay ), ..., rdegg (A «))

= ( max (deg(Ay;) +s;), ..., max (deg(Anm;)+ sj)> ez™

1<j<n 1<j<n

3X+4 X3+4X+1 4X2+3
5 5X24+3X+1 5X+3|
describe rdeg g )(A), rdeg(g12)(A), and rdeg(_; _3_)(A)

example: for the matrix A =

»rdeg, (A) = rdeg(AXS)
»rdeg. (A) only depends on s and the degrees in A
c)(A) = rdegs (A) +c
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shifted reduced forms

shifted forms and degree constraints

notation:

let A € K[X]™*™ with no zero row, and s € Z™,
define d = (dy, ..., dm) = rdegg(A)
X4
and X4 = e K[X, Xx~1jmxm
Xdm

definition: s-leading matrix / s-reduced matrix

assuming s > 0,
» the s-leading matrix of A is Img(A) = Im(AXS) € Km*™
» A € K[X]™ ™ is s-reduced if Img(A) has full row rank
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shifted reduced forms

shifted forms and degree constraints

notation:
let A € K[X]™*™ with no zero row, and s € Z™,
define d = (dy, ..., dm) = rdegg(A)
X4
and X4 = e K[X, Xx~1jmxm
Xdm

definition: s-leading matrix / s-reduced matrix

assuming s > 0,
» the s-leading matrix of A is Img(A) = Im(AXS) € Km*™
» A € K[X]™ ™ is s-reduced if Img(A) has full row rank

» these notions are invariant under s — s + (c,...,c)
» they coincide with the non-shifted case when s = (0,...,0)
» X 9AXS = Img(A) + terms of strictly negative degree
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shifted reduced forms

shifted forms and degree constraints

exercise: for each of the matrices below, and each shift s,
1. give the s-leading matrix
2. deduce whether the matrix is s-reduced

3X+4 X3 44X +1 4ax?+3

A= 5 5X24+3X+1 5X+3
3X3+X24+5X+3 6X +5 2X +1

XO 46X+ X34 X +4 0 0

H= [5X°+5X*+6X3+2X2+6X+3 X 0
3X*+5X3+4X2+6X+1 5 1
X3 4+5X2 44X +1 2X + 4 3X+5

P= 1 X2 42X +3 X+2
3X 42 4x X2

s =(0,0,0),s=(0,5,6), s =(—3,—2,—2)

23



shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)
for example recall the predictable degree property:
A is reduced if and only if for any u = [uy - - -] € K[X]1X™,
rdeg(uA) = maxigigm(deg(ui) + rdeg (A .))
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shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)

for example recall the predictable degree property:
Ixm

A is reduced if and only if for any u = [u; - - - U] € K[X] .
rdeg(uA) = maxigigm (deg(ui) + rdeg(Ai )

» this means rdeg(uA) = rdeg, (u) where t = rdeg(A)
»i.e. rdeg(uA) = rdeg(uXre&(A)) “no surprising cancellation”

» proof: let & = rdegy (u), our goal is to show rdeg(uA) =5
terms of X ®uA have degree < 0,

and X %uA = (X %uX!)(XtA);

the term of degree 0 is Im¢(u)Ilm(A),

it is nonzero since Im(A) has full rank and Im¢(u) # 0
(the case u = 0 is trivial)
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shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)
for example recall the predictable degree property:
Ixm

A is reduced if and only if for any u = [u; - - - U] € K[X] .
rdeg(uA) = maxigigm (deg(ui) + rdeg(Ai )

A is s-reduced if and only if for any u = [uy - - - u] € K[XJ1*™,

rdegs (uA) = maxi<igm (deg(ui) + rdegg (Ai )
this means rdeg, (uA) = rdeg, (u), where t = rdeg,(A)

24



shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)
for example recall the predictable degree property:
A is reduced if and only if for any u = [u; - - - u,,] € K[XJ1x™
rdeg(uA) = maxigigm(deg(ui) + rdeg (A .))

A is s-reduced if and only if for any u = [uy - - - u] € K[XJ1*™,
rdegs (WA) = maxicigm (deg(wi) + rdegg(Ai«))
this means rdeg, (uA) = rdeg, (u), where t = rdeg,(A)

» s-reduced forms provide vectors of minimal s-degree in the module

» satisfying degree constraints (dy, ..., dn) = taking s = (—dy, ..., —dm)
»indeed cdeg([p: -+ pml) < (di,...,dm)

if and only if rdeg_q,  _q,.)([P1 -+ Pml) <O
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shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

» compute a first basis Py for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is PPy

we want P,P; to be reduced:
1. is it implied by “P; reduced and P, reduced”?
2. any idea of how to fix this?
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shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

» compute a first basis Py for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is PPy

we want P,P; to be reduced:
1. is it implied by “P; reduced and P, reduced”?
2. any idea of how to fix this?

we want P,P; to be reduced
theorem: implied by “P; is reduced and P5 is t-reduced”
where t = rdeg(P1)

25



shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

» compute a first basis Py for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is PPy

we want P,P; to be reduced:
1. is it implied by “P; reduced and P, reduced”?
2. any idea of how to fix this?

we want P,P; to be s-reduced
theorem: implied by “P; is s-reduced and P» is t-reduced”
where t = rdeg, (P;)

25



shifted reduced forms

stability under multiplication

let M C M; be two K[X]-submodules of K[X]™ of rank m,

let P; € KX]™*™ be a basis of M;,

let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[X]™*™ | AP; € M} is m
and for any basis P € K[X]™*™ of Mo,

the product P,>P; is a basis of M

»if P; is s-reduced and P is t-reduced,

then P,P; is s-reduced
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shifted reduced forms

stability under multiplication

let M C M; be two K[X]-submodules of K[X]™ of rank m,
let P; € KX]™*™ be a basis of M;,
let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[X]™*™ | AP; € M} is m
and for any basis P € K[X]™*™ of Mo,
the product P,>P; is a basis of M

»if P; is s-reduced and P is t-reduced,
then P,P; is s-reduced

Let A € K[X]™*™ denote the adjugate of P;. Then, we have AP; = det(P1)I;,.
Thus, pAP; = det(P1)p € M for all p € M, and therefore MA C M5. Now,
the nonsingularity of A ensures that MA has rank m; this implies that M, has
rank m as well (see e.g. [Dummit-Foote 2004, Sec.12.1, Thm.4]). The matrix PoP;
is nonsingular since det(P,P1) # 0. Now let p € M, we want to prove that p

is a K[X]-linear combination of the rows of P,P;. First, p € Mj, so there exists
A € K[X]**™ such that p = AP;. But then A € Mo, and thus there exists u €
K[X]'*™ such that A = uP5. This yields the combination p = uP,P;.
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shifted reduced forms

stability under multiplication

let M C M; be two K[X]-submodules of K[X]™ of rank m,

let P; € KX]™*™ be a basis of M;,

let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[X]™*™ | AP; € M} is m
and for any basis P € K[X]™*™ of Mo,

the product P,>P; is a basis of M

»if P; is s-reduced and P is t-reduced,

then P,P; is s-reduced

Let d = rdegy(P2); we have d = rdegs (P2P1) by the predictable degree prop-
erty. Using X~ 9P,P1 X5 = X 9P, X'X 'P;X®, we obtain that Img(PoP;) =
Im¢ (P2)Img (P1). By assumption, Im¢(P2) and Img(P;1) are invertible, and there-
fore Img (P2P1) is invertible as well; thus PP is s-reduced.
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» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
shifted reduced forms » shifted forms and degree constraints
» stability under multiplication

fast algorithms

applications
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» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
shifted reduced forms » shifted forms and degree constraints
» stability under multiplication

» iterative algorithm and output size
fast algorithms » base case: modulus of degree 1
» recursion: residual and basis multiplication

applications
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
f1
input: vector F = l: : :|, points o, ..., xq € K, shift s =(sy,...,s8m) € Z™
fm
b1~ R .
1. P= : = identity matrix in K[X]™>*™
2. for i from 1 to d:
(p1 - F)(o:)
a. evaluate updated vector = (P -F)(o)
(Pm - F)(eti)

b. choose pivot 7t with smallest s, such that (p, - F)(c;) #0
update pivot shift s, =s, + 1

c. eliminate: /* after this, Vj #m, (pj - F)(ai) =0 */
(pj 'FJ(“i)p _
(pr-F)(ou)

after i iterations: P is an s-reduced basis of solutions for (&g, ..., &)

for j # m do pj < pj — Pr < (X —oi)pr

29



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m=4 s =(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F = [1 L L? 3T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 0 2 4 6]
1 0 0 0
basis 0 L 0 0
0 0 1 0
0 0 0 1

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
9% 91 91 61 88 79 36 22
34 47 47 1 8 45 75 50

values
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 0 2 4 6]
1 0 0 0
basis 0 L 0 0
0 0 1 0
0 0 0 1

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
9% 91 91 61 88 79 36 22
34 47 47 1 8 45 75 50

values

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 0 2 4 6
1 0 0 0
basis 7 L o 0
2 0 1 0
63 0 0 1
1 1 1 1 1 1 1 1
| 0 90 90 52 83 63 11 81
values 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6
X+73 0 0 0
basis 17 L o 0
2 0 1 0
63 0 0 1
0 7 8 8 5 3 093 35
| 0 90 90 52 83 63 11 81
values 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6
X+73 0 0 0
basis 17 L o 0
2 0 1 0
63 0 0 1
0O 7 8 8 5 3 93 35
| 0 90 90 52 83 63 11 81
values 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6]

X +73 0 0 o
. X + 90 1 0 o
basis 56X + 16 0 1 0
12X + 66 0 0 1

0 7 88 8 59 3 93 35

| 0 0 81 60 45 66 7 19

values 0O 0 74 26 96 55 8 44

0 0 2 63 80 47 90 48

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 2 2 4 6]

X2 + 42X 4 65 0 0 0
basi X + 90 1 0 o0
asis 56X + 16 0 1 0
12X + 66 0 0 1

0 0 47 8 61 85 44 10

values 0 0 81 60 45 66 7 19

0 0 74 26 96 55 8 44

0 0 2 63 80 47 90 48

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =3 point: 24,31, 15, 32, 83, 27, 20, 59
shift 2 2 4 6]
X2 + 42X 4 65 0 0 o0
basis X 490 1 0 0
56X + 16 0 1 0
12X + 66 0 0 1
0 0 47 8 61 85 44 10
values 0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =3 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 2 4 6]
X3 427X + 17X + 92 0 0 0
. 54X2 4+ 38X + 11 1 0 0
basis 17X2 + 91X + 54 0 1 0
66X2 + 68X + 88 0 0 1
30 74 50 26 52
7 41 0 b5 74
values

66 45 77 20
9 32 31 84 29

O O O o

o O O o

O O O o
&

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =4 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 2 4 6]
X3 £ 27X2 417X + 92 0 0 0
. 54X2 4+ 38X + 11 1 0 0
basis 17X2 4+ 91X + 54 0 1 0
66X2 4 68X + 88 0 0 1
39 74 50 26 52
7 41 0 b5 74
values

66 45 77 20
9 32 31 84 29

O O O o

o O O o

O O O o
&

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =4 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 3 4 6]
X3 431X% 427X +3 36 0 o0
basi 54X3 4+ 56X2 + 56X + 36 X + 65 0 o0
asis 56X2 + 43X + 35 60 1 0
52X2 4 33X + 60 68 0 1

9% 50 66 O

54 0 19 58
4 45 79 95
7 31 41 17

values

o O O o
o O O o
o O O o
o O O o
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =5 point: 24,31, 15, 32, 83, 27, 20, 59
shift 4 3 4 6]

X4 4 45X3 4+ 73X2 + 90X + 42 36X + 19 0 0
basi 81X3 4 20X? 4+ 9X + 20 X + 67 0 o0
asis 2X3 4+ 21X2 + 41 35 1 0
52X3 + 15X2 4 79X + 22 0 0 1

0 0 0 0 0 13 13 0

values 0 0 0 0 0 89 55 58

0 0 0 0 0 48 17 95

0 0 0 0 0o 12 78 17
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =6 point: 24,31, 15, 32, 83, 27, 20, 59
shift 4 4 4 6

X% 4+ 19X3 + 57X2 + 44X + 26 74X + 43 0 0
basi 81X* 4 64X3 + 51X? + 68X + 42 X2 4+ 40X + 34 0 0
asis 3X3 4 44X2 4 54X + 64 6X -+ 49 1 0
28X3 + 45X2 4 44X + 52 50X + 52 0 1

0 0 0 0 0 0 66 70

values 0 0 0 0 0 0 3 13

0 0 0 0 0 0 56 55

0 0 0 0 0 0 15 7

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =7 point: 24,31, 15, 32, 83, 27, 20, 59
shift 5 4 4 6]

X% +96X* 4 65X3 + 68X2 + 19X + 62 74X2 4+ 18X + 13 0 0
basi 6X* 4+ 94X3 4+ 44X2 + 66X + 32 X2 4+19X +10 0 0
asis 55X4 4 78X3 + 75X2 + 49X + 39 2X + 86 1 0
13X* + 81X3 + 10X2 4 34X + 2 42X + 29 0 1

0 0 0 0 0 0 0 14

values 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 25

0 0 0 0 0 0 0 44

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=38 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =8 point: 24,31, 15, 32, 83, 27, 20, 59
shift 5 5 4 6]
X5 4 12X* 4+ 10X3 + 34X2 4 65X + 2 60X2 + 43X + 67 0 0
basi 6X° 4+ 31X*+27X34+89X2+18X+52 X3 +57X2 +53X +89 0 o0
asis 2X4 + 56X3 + 42X2 + 48X + 15 72X2 + 12X + 30 1 0
40X* + 19X3 4 14X2 + 40X + 49 53X2 4 79X + 74 0 1

values

O O O o
o O O o
O O O o
o O O o
o O O o
o O O o
o O O o
o O O o

30



fast algorithms

base case: modulus of degree 1

modular vector equation

input:
»vector F = [f; -+ )7 € K[X]™*! of degree < d
» field elements (3, ..., 0q) € K4

»shift s = (sg,...,sm) € Z™

output:

matrix P € K[X]™*™ such that

»PF=0mod [[;;cq(X— o)

» P generates all vectors p such that pF = 0 mod ngigd(x — o)
» P is s-reduced

notation: J(a, F) = {p € K[X]"*™ | pF = 0 mod [T, ;q(X — i)}
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fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:

svector F = [f; -+ )T € K[X]™*! of degree < 1
> field element @ € K

»shift s = (sg,...,sm) € Z™

output:

matrix P € K[X]™*™ such that

»PF =0 mod (X — «)

» P generates all vectors p such that pF =0 mod (X — «)
» P is s-reduced

31



fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:

svector F = [f; -+ )T € K[X]™*! of degree < 1 F e Kmx1
» field element o« € K

»shift s = (sg,...,sm) € Z™

output:
matrix P € K[X]™*™ such that
»PF =0 mod (X — «) (PF)(x) =P(x)F =0

» P generates all vectors p such that pF =0 mod (X — «)
» P is s-reduced

31



fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

I.1 M 0
iterative algorithm: P=|( 0 X—« 0
0 }\2 Imfrc

where
» 7 minimizes s, among indices such that (p.F)(oi) #0
» the vectors A; € K™ 1%L and A, € K(M~7x1 5re constant

31



fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

I.1 M 0
iterative algorithm: P=|( 0 X—« 0
0 )\2 Imfrc

where
» 7 minimizes s, among indices such that (p.F)(oi) #0
» the vectors A; € K™ 1%L and A, € K(M~7x1 5re constant

iterative algorithm:
» P = identity matrix in K[X]m>x™
»for i from 1 to d:

a. from the evaluation F(«;), find P; as above
b. update shift s,; < s+ 1
c. update P «+ P;P as well as F +

P;F
—

X, Mod [Tivigi<a(X— o)

called residual vector
31



fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

I.1 M 0
iterative algorithm: P=|( 0 X—« 0
0 )\2 Imfrc

where
» 7 minimizes s, among indices such that (p.F)(oi) #0
» the vectors A; € K™ 1%L and A, € K(M~7x1 5re constant

complexity O(m?d?):

» iteration with d steps

» each step: evaluation of F + multiplications P;F and P;P
» at any stage F has degree < d and size m x 1

» at any stage P has degree < d and size m x m

normalizing at each step + refined analysis yields O(md?)

31



fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

I.1 M 0
iterative algorithm: P=|( 0 X—« 0
0 )\2 Imfrc

where
» 7 minimizes s, among indices such that (p.F)(oi) #0
» the vectors A; € K™ 1%L and A, € K(M~7x1 5re constant

correctness:

» the main task is to prove the base case with P;
» then, direct consequence of the “basis multiplication theorem”

31



fast algorithms

iterative algorithm — complexity aspects

»input size: md + d elements from K
. md coefficients of F, assumed reduced modulo M (X)

. d points «1,..., xq

»output size: < m?(d + 1) elements from K

. m X m matrix P of degree at most i at step i

is this output size bound tight?
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fast algorithms

iterative algorithm — complexity aspects

»input size: md + d elements from K
. md coefficients of F, assumed reduced modulo M (X)
. d points «1,..., xq

»output size: < m?(d + 1) elements from K

. m X m matrix P of degree at most i at step i

is this output size bound tight?

»one can prove deg(det(P)) < d
. P is a basis of J(«,F), which is the kernel of K[X]™ — K[X]/(M(X)),p — pF
X]I™/J(x,F) has K-dimension at most dimg (K[X]/(M(X))) =d

» normalized bases have average column degree < d, and size < m(d + 1)
» yet the bound ®(m?(d + 1)) is tight for this algorithm

. normalizing at each step is feasible for the iterative version

. but is much harder to incorporate in fast divide and conquer versions
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fast algorithms

iterative algorithm — complexity aspects

example instance of Hermite-Padé approximation
where the output size is in Q(m?d)

parameters: K=Fg;, m=4, x =0, d =128, s =(0,...,0)

choose random polynomial R(X) of degree < 128

f1 R
p_ |f2| | REXR
T |fs| T | XR+X2R

fa X?R + X3R

» approximants are p such that pF = 0 mod X'

» F has small vectors in its left kernel
= reduced approximant basis has unbalanced row degrees (1,1, 1, 125)

»will help to build an example with output size Q(m?d)
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fast algorithms

iterative algorithm — complexity aspects

running the iterative algorithm:

i1

s (0,0,0,0)
fi R

f, R4+XR
f3  XR+X2R
fa  X°R+ X3R

34



fast algorithms

iterative algorithm — complexity aspects

running the iterative algorithm:

i1 2
s (0,0,0,0) (1,0,0,0)
fi R XR
f, R4+XR XR
f3  XR+X%R XR + X?R
fs X?R+ X3R X?R + X3R
1
00
15 0

34



fast algorithms

iterative algorithm — complexity aspects

running the iterative algorithm:

i1 2 3

s (0,0,0,0) (1,0,0,0) (1,1,0,0)

fi R XR 0

f, R4+XR XR X2R

f3  XR+ X?R XR + X?R X2R

fa X°R+X3R X?R + X3R X?R + X3R
1 1 0
00 1 1

15 0 000

34



fast algorithms

iterative algorithm — complexity aspects

running the iterative algorithm:

i 1 2 3 4
s (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
fi R XR 0 0
f, R+XR XR X?R 0
f3  XR+X2R XR + X2R X?R X3R
fa  X?R+ X3R X2R + X°R X°R + X3R X3R
1 1 0 10

p |00 11 110

0 0 0 0 11 1

0 0 0000

34



fast algorithms

iterative algorithm — complexity aspects

running the iterative algorithm:

i1 2 3 4
s (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
fi R XR 0 0 0
f, R+XR XR X?R 0 0
f3  XR+X2R XR + X2R X?R X3R 0
fa  X?R+ X3R X2R + X°R X°R + X3R X3R X*R
1 1 0 1 0 10

p |00 11 110 110

0 0 0 0 11 1 1110

0 0 0000 1111

34



fast algorithms

iterative algorithm — complexity aspects

running the iterative algorithm:

i1 2 3 4
s (0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)
f1 R XR 0 0 0
f, R+XR XR X?R 0 0
f3  XR+X2R XR + X2R X?R X3R 0
fa  X?R+ X3R X2R + X°R X°R + X3R X3R X*R
1 1 0 1 0 10

p |00 11 110 110

0 0 0 0 11 1 1110

0 0 0000 1111

1 0

1 1 0

1 1 1 0
125 125 125 125

degrees and “pivots” in final basis P:
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fast algorithms

iterative algorithm — complexity aspects

parameterss m = 8, d = 128, s = (0,0,0,0,d,d,d,d)

input F: same fy,fp, f3,f4 / random fs, fg, f7, g

i=4

[eNeoNeNaN S
[eNeNeNel ) el

OO OO+~ O
[oNeNeNel e}
o
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fast algorithms

iterative algorithm — complexity aspects

parameterss m = 8, d = 128, s = (0,0,0,0,d,d,d,d)

input F: same fy,fp, f3,f4 / random fs, fg, f7, g

i=14 i=128

[eNeoNeNaN S

[eNeNeNel ) el

OO OO+~ O

[oNeNeNel e}

1

1

1
125
124
124
124
124

0

1

1
125
124
124
124
124

0

1
125
124
124
124
124

0

125

124 0

124 0
124 0
124
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fast algorithms

iterative algorithm — complexity aspects

parameterss m = 8, d = 128, s = (0,0,0,0,d,d,d,d)

input F: same fy,fp, f3,f4 / random fs, fg, f7, g

i=14 i=128

[eNeoNeNaN S

[eNeNeNel ) el

OO OO+~ O

[oNeNeNel e}

0

1

1

1
125
124
124
124
124

0

1

1
125
124
124
124
124

0

1
125
124
124
124
124

» 1/4 of the entries have degree ~ d: size ©(m?d)
» remark: complexity of iterative algorithm is O(m2d?)

— improved to O(md?) via normalization

0

125

124 0

124 0
124 0
124

» opinions on a “reasonable” target cost for fast algorithms?




fast algorithms

recursion: residual and basis multiplication

divide and conquer algorithm:

input: F, (1,...,xq),8 | output: P
»if d =1, use the base case algorithm to find P and return
» otherwise:
a. My (X—oq) - (X=0q/2)); M2+ (X—=oa/2)41) - (X —xa)
b. P; < call the algorithm on F rem My, (ot1, ..., o|a/2)), 8
c. updated shift: t « rdeg,(P;)
d. residual: G + MLIPlF
e. P, < call the algorithm on G rem My, (| a/2/41,---, Xa), t
f. return the product P,P;
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fast algorithms

recursion: residual and basis multiplication

divide and conquer algorithm:

input: F, (1,...,xq),8 | output: P
»if d =1, use the base case algorithm to find P and return
» otherwise:
a. My (X—oq) - (X=0q/2)); M2+ (X—=oa/2)41) - (X —xa)
b. P; < call the algorithm on F rem My, (ot1, ..., o|a/2)), 8
c. updated shift: t « rdeg,(P;)
d. residual: G + MLIPlF
e. P, < call the algorithm on G rem My, (| a/2/41,---, Xa), t

f. return the product P,P;

correctness:

» correctness of base case

» then, direct consequence of the “basis multiplication theorem”

» about the residual: {p | pP1F = 0 mod M} = {p | pG = 0 mod M5}

36



fast algorithms

recursion: residual and basis multiplication

divide and conquer algorithm:

input: F, (1,...,xq),8 | output: P
»if d =1, use the base case algorithm to find P and return
» otherwise:
a. My (X—oq) - (X=0q/2)); M2+ (X—=oa/2)41) - (X —xa)
b. P; < call the algorithm on F rem My, (ot1, ..., o|a/2)), 8
c. updated shift: t « rdeg,(P;)
d. residual: G + MLIPlF
e. P, < call the algorithm on G rem My, (| a/2/41,---, Xa), t
f. return the product P,P;

complexity O(m®M(d) log(d)):

»if w = 2, quasi-linear in worst-case output size

» most expensive step in the recursion is the product P,P;

» equation €(m, d) = €(m, |d/2]) + C(m, [d/2]) + O(m*M(d))
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fast algorithms

recursion: residual and basis multiplication

input: deg(F) < d output: deg(P) < d

complexity of each step:

»residual G« =P F O(m2M(d))
»F rem M7 and G rem M» O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2€(m, |d/2])
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fast algorithms

recursion: residual and basis multiplication

input: deg(F) < d output: deg(P) < d
complexity of each step:

» residual G «+ MilPlF O(m?M(d))
»F rem M7 and G rem M» O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2€(m, |d/2])

C(m,d) =€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))
d base cases, each one costs ... 77
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fast algorithms

recursion: residual and basis multiplication

input: deg(F) < d output: deg(P) < d

complexity of each step:

» residual G «+ MilPlF O(m?M(d))
»F rem M7 and G rem M» O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2€(m, |d/2])

C(m,d) =€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))
d base cases, each one costs O(m)

= O(m*M(d)log(d))

unrolling: m® (M(d) +2M(%) +4M(%) + -+ %M(2)) +dm
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fast algorithms

recursion: residual and basis multiplication

input: deg(F) < d output: deg(P) < d

complexity of each step:

»residual G« =P F O(m2M(d))
»F rem M7 and G rem M» O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2€(m, |d/2])

output: deg(P) ~ (%]

s = 0 and generic F:
O(meM([1))

unchanged
O(meM([51))
unchanged

» partial linearization

C(m,d) =€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))

d base cases, each one costs O(m)

= O(m*M(d)log(d))

37



fast algorithms

recursion: residual and basis multiplication

input: deg(F) < d output: deg(P) < d

complexity of each step:

»residual G« =P F O(m2M(d))
»F rem M7 and G rem M» O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2€(m, |d/2])

C(m,d) =€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))

d base cases, each one costs O(m)

= O(m*M(d)log(d))

output: deg(P) ~ (%]

s = 0 and generic F:
O(meM([1))

unchanged
O(meM([51))
unchanged

» partial linearization
» base case for d ~ m,
costs O(m®)

O(meM([51) log([1))

37



fast algorithms

recursion: residual and basis multiplication

input: deg(F) < d output: deg(P) < d output: deg(P) ~ ’—%]
complexity of each step: s = 0 and generic F:
»residual G« =P F O(m2M(d)) KeIRuSdVIEECR))

»F rem M7 and G rem M» O(mM(d)) unchanged

» product PoP; O(m®M(d)) O(m‘”M([%]))

»two recursive calls 2€(m, |d/2]) unchanged

» partial linearization
» base case for d ~ m,

{ C(m,d) = €(m, |d/2]) + €(m, [d/2]) + O(m*M(d)) costs O(m®)

d base cases, each one costs O(m)

= O(m®M(d) log(d)) O(m M([5 1) log([51)

m ‘ n | d | PM-Basis | PM-Basts with linearization
4 1 | 65536 1.6693 1.26891
16 1 | 16384 1.8535 0.89652
64 1 2048 2.2865 0.14362
256 | 1 1024 36.620 0.20660
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fast algorithms

recursion: residual and basis multiplication

state of the art:

» recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F € K[X]™*™ with n > 1

» [Giorgi-Jeannerod-Villard 2003] achieved O(m“®M(d) log(d))
for F mod X4, with n > 1 and n € O(m)

~for s = 0 and generic F: O"(m®[24]) [Lecerf, ca 2001, unpublished]
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fast algorithms

recursion: residual and basis multiplication

state of the art:

» recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F € K[X]™*™ with n > 1

» [Giorgi-Jeannerod-Villard 2003] achieved O(m“®M(d) log(d))
for F mod X4, with n > 1 and n € O(m)

~for s = 0 and generic F: O"(m®[24]) [Lecerf, ca 2001, unpublished]

» more recently: O"(m®~'nd) for F mod X¢
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
~> any §, no genericity assumption, returns the canonical basis “s-Popov"
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fast algorithms

recursion: residual and basis multiplication

state of the art:

» recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F € K[X]™*™ with n > 1

» [Giorgi-Jeannerod-Villard 2003] achieved O(m“®M(d) log(d))
for F mod X4, with n > 1 and n € O(m)

~for s = 0 and generic F: O"(m®[24]) [Lecerf, ca 2001, unpublished]

» more recently: O"(m®~'nd) for F mod X¢
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
~> any §, no genericity assumption, returns the canonical basis “s-Popov"

» F mod M and general modular matrix equations in similar complexity
[Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]

~> any s, no genericity assumption, returns the canonical “s-Popov’ basis

38



» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
shifted reduced forms » shifted forms and degree constraints
» stability under multiplication

» iterative algorithm and output size
fast algorithms » base case: modulus of degree 1
» recursion: residual and basis multiplication

applications
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introduction

shifted reduced forms

fast algorithms

applications

» rational approximation and interpolation
» the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
» shifted forms and degree constraints
» stability under multiplication

» iterative algorithm and output size
» base case: modulus of degree 1
» recursion: residual and basis multiplication

» minimal kernel bases and linear systems
» fast gcd and extended ged
» perspectives
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applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m-r)>xm
»it has rank m — 1, where 1 is the rank of F asts [X]
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applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m—)xm
»it has rank m — r, where 1 is the rank of F astS [X]

kernel basis for a constant matrix?
input matrix F
6

(SIS 1N SR e )]

1
6
2
6
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applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m—)xm
»it has rank m — r, where 1 is the rank of F astS [X]

kernel basis for a constant matrix? — usual nullspace

input matrix F

kernel basis K 6

5 6 1 0 0
0 5 0 1 0
0 0 3 2 1

oo O O

1
6
2
6

41



applications
minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is
X(F) ={p € K[X]"*™ | pF = 0}

- K(F) is a K[X]-modul
(F) is a K[X}-module — basis K € K[X](m—7)x

»it has rank m — 1, where 1 is the rank of F

kernel basis of the following matrix over [F»?
input matrix F

1
0 1 0
0 0 1
X2 X2+ X+1 X2 + X
X2 +1 X2 X2+ X+1
X2

41



applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m—)xm
»it has rank m — r, where 1 is the rank of F astS [X]

kernel basis of the following matrix over [F»?

input matrix F

kernel basis K 1 0 0
X2 X24X+1 X24X 1 0 0 g : ¢
2 2 2
X X2+ X X 0 0 1 X2 +1 X2 X2+ X+1

X2 X2+ X X2

41



applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m-r)>xm
»it has rank m — 1, where 1 is the rank of F asts [X]

kernel basis of the following block matrix with G nonsingular?
input matrix F

G
(n+m)xn
9] < xon

41



applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m—)xm
»it has rank m — r, where 1 is the rank of F astS [X]

kernel basis of the following block matrix with G nonsingular?

kernel basis K input matrix F
. is left multiple of [-HG ™ I, G e Kpqmrmixn
... det(G) [—HG*1 Im] is left multiple of it H

41



applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m—)xm
»it has rank m — r, where 1 is the rank of F astS [X]

kernel basis of the following 4 x 1 vector with R € KI[X] \ {0}7

input matrix F
R
R+ XR
XR + X2R
X2R + X3R
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applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m—)xm
»it has rank m — r, where 1 is the rank of F astS [X]

kernel basis of the following 4 x 1 vector with R € KI[X] \ {0}7

. input matrix F
kernel basis K P

1+X -1 R
o x —1 R+XR
X2R + X3R

41



applications

minimal kernel bases and linear systems

for F € K[X]™*™ its left kernel is

K(F) = {p € KIX]"*™ | pF = 0}

» X(F) is a K[X]-module

= basis K € K[X](m—)xm
»it has rank m — r, where 1 is the rank of F astS [X]

inclusion X(F) c J(M,F) = {p € KXI**™ | pF = 0 mod M}

= recover kernel via interpolation with suitable choices of M

41



applications

minimal kernel bases and linear systems

input:
» matrix F € K[X]m™*x™
» 8 € Z~g such that there exists a basis of X(F) of degree < 6

algorithm via interpolation at sufficiently many points
»d <« 6 +deg(F)+1
» o < choose some (&1, ..., xq) in K& (not necessarily distinct)
»P e K[X]™*™ + reduced basis of J(«, F)
» K € K[X]**™ « rows of P which have degree < &
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applications

minimal kernel bases and linear systems

input:
» matrix F € K[X]m™*x™
» 8 € Z~g such that there exists a basis of X(F) of degree < 6

algorithm via interpolation at sufficiently many points
»d <« 6 +deg(F)+1
» o < choose some (&1, ..., xq) in K& (not necessarily distinct)
»P e K[X]™*™ + reduced basis of J(«, F)
» K € K[X]**™ « rows of P which have degree < &

= K is a reduced basis of X(F)

= complexity O(m®M([247) log([241))

m
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applications

minimal kernel bases and linear systems

input:
» matrix F € K[X]m™*x™
» 8 € Z~g such that there exists a basis of X(F) of degree < 6

algorithm via interpolation at sufficiently many points
»d <« 6 +deg(F)+1
» o < choose some (&1, ..., xq) in K& (not necessarily distinct)
»P e K[X]™*™ + reduced basis of J(«, F)
» K € K[X]**™ « rows of P which have degree < &

= K is a reduced basis of X(F)

= complexity O(m®M([247) Iog([%ﬁ))

m

how to find the degree bound 67

42



applications

minimal kernel bases and linear systems
knowing & € Z~¢ such that there exists a basis of K (F) of degree < &
»take d < & + deg(F) + 1 and some o < (a1, ..., xq) in K¢
»P e K[X]™*™ reduced basis of J(«, F)
» K € K[X]**™ rows of P which have degree < &

= K is a reduced basis of K(F)



applications

minimal kernel bases and linear systems
knowing & € Z~¢ such that there exists a basis of K (F) of degree < &
»take d < & + deg(F) + 1 and some o < (a1, ..., xq) in K¢
»P e K[X]™*™ reduced basis of J(«, F)
» K € K[X]**™ rows of P which have degree < &

= K is a reduced basis of K(F)

proof:
= K is reduced by construction

. K satisfies KF =0 mod (X —otg) -+ (X — axq)
. and deg(K) < 8, hence deg(KF) < 6 +deg(F) < d
= KF =0, i.e. the rows of K are in X(F)

let B € K[X](™=")X™ he a basis of K(F) of degree < &
. then B = UP for some U

. by the predictable degree property, in fact B = VK

= any vector in X(F) is generated by K



applications

minimal kernel bases and linear systems

knowing & € Z~¢ such that there exists a basis of K (F) of degree < &

how to find the degree bound 67

[a specific bound may be known from the context ] e.g. ged, “row bases”

»a general bound is & = ndeg(F)
w[n ?deg(F )U

m

how far from “optimal’?
» yields complexity O7( .
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minimal kernel bases and linear systems

knowing & € Z~¢ such that there exists a basis of K (F) of degree < &

how to find the degree bound 67

[a specific bound may be known from the context ] e.g. ged, “row bases”
»a general bound is & = ndeg(F) o ar From “ontimal?
t 7
» yields complexity O7( “’[Lg()}) ow farfrom “optima
proof:

complexity O"(m®[247)
with d_5+deg( )+ 1=(Mm+1)deg(F)+1




applications

minimal kernel bases and linear systems

knowing & € Z~¢ such that there exists a basis of K (F) of degree < &

how to find the degree bound 67

{a specific bound may be known from the context ] e.g. ged, “row bases”
»a general bound is & = ndeg(F) o ar From “ontimal?
t 7
» yields complexity O7( “’[Lg()ﬂ ow farfrom “optima
proof:

up to row and column permutation, F = [§ *]
with G € K[X]"™*" nonsingular
then, K(F) = X([§])

the matrix [-H(det(G)G™!) det(G)I,,_] has polynomial entries,
it has rank m — 1 and its rows are in X(F),
it has degree < max(degdet(G), deg(H) + (r — 1) deg(G)) < rdeg(F)

by degree minimality of reduced matrices,
any reduced basis of X(F) must have degree < rdeg(F)



applications

minimal kernel bases and linear systems

knowing & € Z~¢ such that there exists a basis of K (F) of degree < &

how to find the degree bound 67

[a specific bound may be known from the context ] e.g. ged, “row bases”

»a general bound is § = ndeg(F) how far from “ontimal’?
t .
» yields complexity O7( “’[Lg()ﬂ ow arirom optime

» rules of thumb, generically:
“quantity of information is preserved”
+
"“degrees in reduced basis are uniform”

~ (m—r)mdeg(K) ~ mndeg(F)
& deg(K) ~ - deg(F), which is < " deg(F)

example: if Fis m x 2, generically deg(K) = deg(F)
= d=2deg(F)+1 and complexity O7(m® deg(F)) how far from optimal?



applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

ndeg(F)
)

» complexity O7(m® [ without assumption

» computes s-reduced basis of K(F) for s = rdeg(F)

»n large: divide and conquer on m, via residual + basis multiplication
~ partial linearization for multiplying matrices with weakly unbalanced degrees

»n small: use fast approximation/interpolation algorithms
~» well-chosen d yields at least half the kernel efficiently

45



applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

ndeg(F)
)

» complexity O7(m® [ without assumption

» computes s-reduced basis of K(F) for s = rdeg(F)

»n large: divide and conquer on m, via residual + basis multiplication
~ partial linearization for multiplying matrices with weakly unbalanced degrees

»n small: use fast approximation/interpolation algorithms
~» well-chosen d yields at least half the kernel efficiently

if n> %
K; < recursive call on first 5 columns of F, and shift s
G < multiply K; - F, » (last 5 columns of F)
K, < recursive call on G, and shift t = rdeg(K;)
return K,Kq

45



applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

ndeg(F)
)

» complexity O7(m® [ without assumption

» computes s-reduced basis of K(F) for s = rdeg(F)

»n large: divide and conquer on m, via residual + basis multiplication
~ partial linearization for multiplying matrices with weakly unbalanced degrees

»n small: use fast approximation/interpolation algorithms
~» well-chosen d yields at least half the kernel efficiently

ifn < 3
5 + degree of kernel basis expected generically
d < 5+ deg(F) + 1 and take some o « (&3, ..., xq) in K¢
P € K[X]™*™ « s-reduced basis of J(«, F)
K1, Q + rows of P which are in K(F) / which are not in X(F)

. 1 K;
K, < recursive call on (X_m)___(x_‘xd)QF, return [x!]

45



applications

minimal kernel bases and linear systems

linear system solving:
given A € K[X]™*™ nonsingular and v € K[X]1*™
find u € K[X]**™ and g € K[X] such that

uA =gv and g has minimal degree.

. the equation has a solution: u = gvA~! with g = det(A)

. but there is often no polynomial solution with g =1

. target complexity? (recall that det(A)A~! can have degree ~ mdeg(A))
. propose an algorithm based on a kernel computation

46



applications

minimal kernel bases and linear systems

linear system solving:
given A € K[X]™*™ nonsingular and v € K[X]1*™
find u € K[X]**™ and g € K[X] such that

uA =gv and g has minimal degree.

. the equation has a solution: u = gvA~! with g = det(A)

. but there is often no polynomial solution with g =1

. target complexity? (recall that det(A)A~! can have degree ~ mdeg(A))
. propose an algorithm based on a kernel computation

compute [u g] € K[X]**(m+1) kernel basis of F = [Av] € K[X](m+1)xm

» using the shift s = (rdeg(A), deg(v))
» complexity O7(m® max(deg(A), deg(v))) in fact:
»u, g is a solution to the equation uA = gv max(deg(A), dLnEV))

» minimality of deg(g) follows from basis of K (F)

46



applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: h = ged(f, g)

input: f and g univariate polynomials in K[X]
output: (u,v, h) where h = ged(f, g) = uf +vg
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applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: h = ged(f, g)

input: f and g univariate polynomials in K[X]
8 output: (u,v, h) where h = ged(f, g) = uf +vg

some notation:

. polynomials f = f/h and § = g/h f and g are coprime
. m = deg(f) and n = deg(g) we assume m,m > 0
A= deg(h) hence £ < min(m,n)

~ then deg(f) = m — £ and deg(g) =n — ¢

earlier in the course:
claim: gcd and xgcd are solved in O(M(d) log(d))

where d = max(m, n)
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applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: h = ged(f, g)

some notation:
. polynomials f = f/h and § = g/h f and g are coprime
. m = deg(f) and n = deg(g) we assume m,m > 0

result: gcd is solved in O(M(max(m, n)) log(max(m,n)))
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applications

fast gcd and extended gcd

- input: f and g univariate polynomials in K[X]
output: h = ged(f, g)

some notation:
. polynomials f = f/h and § = g/h f and g are coprime
. m = deg(f) and n = deg(g) we assume m,m > 0

result: gcd is solved in O(M(max(m, n)) log(max(m,n)))

lemma: [—g f] is a basis of the left kernel of [;]

proof:

this kernel has rank 1 (f and g are nonzero)

let [a b] be a basis of it; all other bases are [ca cb] for some ¢ € K\ {0}

since [—§ 1?][;] =—2f+ %g =0, we get [—§ f] = [Aa Ab] for some A € K[X] \ {0}

then A divides f and g, so A is a nonzero constant
48



applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: h = ged(f, g)
some notation:

. polynomials f = f/h and § = g/h f and g are coprime
. m = deg(f) and n = deg(g) we assume m,m > 0

result: gcd is solved in O(M(max(m, n)) log(max(m,n)))

lemma: [—g f] is a basis of the left kernel of [;]

algorithm: kernel basis via interpolation at sufficiently many points

» the input matrix F = [;] has degree max(m, n)

» the sought kernel basis has degree at most & = max(m,n)
1. pick & 4 deg(F) +1 =25 + 1 points o € K?+1 0(1)

= 2. find [—g ] via a reduced basis of J(«, [;]) O(M(d) log(6))
3. deduce h =g/§ O(M(%))

48



applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: (u,v, h) where h = ged(f, g) = uf +vg

some notation:

. polynomials f= f/hand g =g/h f and g are coprime
. m = deg(f), n = deg(g), { = deg(h) m,n >0, { < min(m,n)
~ deg(f) =m—{ and deg(g) =n—{(
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applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: (u,v, h) where h = ged(f, g) = uf +vg

some notation:

. polynomials f= f/hand g =g/h f and g are coprime
. m = deg(f), n = deg(g), { = deg(h) m,n >0, { < min(m,n)
~ deg(f) =m—{ and deg(g) =n—{(
lemma:
. there exists a unique (u,v) in K[X]? such that
uf +vg=nh,
deg(u) <n—{ and deg(v)<m—U{.

. 5 u v (f| _|h
. for this (u,v) € K[X]* one has [_g f] [g] = {O]’
and the leftmost matrix in this identity is unimodular

49



applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: (u,v, h) where h = ged(f, g) = uf +vg

some notation:

. polynomials f= f/hand g =g/h f and g are coprime
. m = deg(f), n = deg(g), { = deg(h) m,n >0, { < min(m,n)
~ deg(f) =m—{ and deg(g) =n—{(
theorem: : ) ( )
i _|revlun—£€—1) revivm—4£-—1 2%2
. defining R = [ ~rev(g.n —0) rev(F. m — 0) ] € K[X]?*2,
one has: rev(f, m)]  [x™T 21 rey(h, ()
' revig,n)| 0

rev(f,m)
rev(g,n) ])

= {[p q) € K[X]**2 ‘ p ql :2‘\’/((1;11))} — 0 mod xm+n—2€—1}

. the matrix R is a (—n, —m)-reduced basis of J(0, [

49



applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: (u,v, h) where h = ged(f, g) = uf +vg

some notation:

. polynomials f= f/hand g =g/h f and g are coprime

. m = deg(f), n = deg(g), { = deg(h) m,n >0, { < min(m,n)

~ deg(f) =m—{ and deg(g) =n—{(
theorem: : ) ( )

i _|revlun—£€—1) revivm—4£-—1 2%2
. defining R = [ ~rev(g.n —0) rev(F. m — 0) ] € K[X]?*2,
one has: rev(f, m)]  [x™T 21 rey(h, ()
) revig,n)| 0 .
'

rev(f,m)
rev(g,n) ])

= {[p q) € K[X]**2 ‘ p ql :2‘\’/((1;11))} — 0 mod xm+n—2€—1}

. the matrix R is a (—n, —m)-reduced basis of J(0, [
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applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
8 output: (u,v, h) where h = ged(f, g) = uf +vg

some notation:

. polynomials f= f/hand g =g/h f and g are coprime
. m = deg(f), n = deg(g), { = deg(h) m,n >0, { < min(m,n)
~ deg(f) =m—{ and deg(g) =n—{(

corollary: xgcd in O(M(d) log(d))

foranyd>n+m-—-2{—1 eg.d=n+m+1

lete=d—(n+m—20—1) hence e = 2¢
x¢ 0|,  [x®rev(un—€—1) x®rev(vy m—~{—1)

then [0 I}R_[ —rev(g,n—1¢) rev(f, m — ()

is a (—m, —m)-reduced basis of

= {[P ql € K[X]**2 ‘ [p dl {rev(f’ m)] =0 mod xd}

rev(g, n)
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applications

perspectives — row bases

a row basis of a matrix F € K[X]™*"

Ixm
is a basis of its K[X]-row space {pF | p € K[X]**™}

~ represented as R € K[X]"™*™, where 1 is the rank of F
~+ F = UR for some U € K[X]™*"
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perspectives — row bases

a row basis of a matrix F € K[X]™*"

Ixm
is a basis of its K[X]-row space {pF | p € K[X]**™}

~ represented as R € K[X]"™*™, where 1 is the rank of F
~+ F = UR for some U € K[X]™*"

examples:

» row basis for F € K[X]™*™ nonsingular?
» row basis of [;] for f, g coprime polynomials?

» K € K[X](Mm=T)XM 5 |eft kernel basis of F € K[X]™*"
row basis of K? column basis of K?
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perspectives — row bases

a row basis of a matrix F € K[X]™*"

Ixm
is a basis of its K[X]-row space {pF | p € K[X]**™}

~ represented as R € K[X]"™*™, where 1 is the rank of F
~+ F = UR for some U € K[X]™*"

examples:

» row basis for F € K[X]™*™ nonsingular? R=F
» row basis of [;] for f, g coprime polynomials?

» K € K[X](Mm=T)XM 5 |eft kernel basis of F € K[X]™*"
row basis of K? column basis of K?
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applications

perspectives — row bases

a row basis of a matrix F € K[X]™*"

Ixm
is a basis of its K[X]-row space {pF | p € K[X]**™}

~ represented as R € K[X]"™*™, where 1 is the rank of F
~+ F = UR for some U € K[X]™*"

examples:
» row basis for F € K[X]™*™ nonsingular? R=F
» row basis of [;] for f, g coprime polynomials? R =[1]

» K € K[X](Mm=T)XM 5 |eft kernel basis of F € K[X]™*"
row basis of K? column basis of K?

50



applications

perspectives — row bases

a row basis of a matrix F € K[X]™*"

Ixm
is a basis of its K[X]-row space {pF | p € K[X]**™}

~ represented as R € K[X]"™*™, where 1 is the rank of F
~+ F = UR for some U € K[X]™*"

examples:
» row basis for F € K[X]™*™ nonsingular? R=F
» row basis of [;] for f, g coprime polynomials? R =[1]

» K € K[X](Mm=T)XM 5 |eft kernel basis of F € K[X]™*"
row basis of K? column basis of K? R=KandC=1,_,

K has full rank so C is (m —r) x (m — ) nonsingular

and by definition K = CK for some K

so KF = 0= KF =0, hence K = VK

from K = CVK, with K having full row rank, we deduce CV =1,, .
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applications

perspectives — row bases

a row basis of a matrix F € K[X]™*"

Ixm
is a basis of its K[X]-row space {pF | p € K[X]**™}

~ represented as R € K[X]"™*™, where 1 is the rank of F
~+ F = UR for some U € K[X]™*"

applications:

» compute an s-reduced basis of the row space

» verify that a matrix is a kernel basis

» triangularization: Hermite normal form and determinant
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applications

perspectives — row bases

a row basis of a matrix F € K[X]™*"

Ixm
is a basis of its K[X]-row space {pF | p € K[X]**™}

~ represented as R € K[X]"™*™, where 1 is the rank of F
~+ F = UR for some U € K[X]™*"

applications:

» compute an s-reduced basis of the row space

» verify that a matrix is a kernel basis

» triangularization: Hermite normal form and determinant

algorithm:

» K < left kernel basis for F

» G < right kernel basis for K

» R + matrix such that F = GR

complexity O"(mn®~!deg(F)), assuming m > N [Zhou-Labahn, 2013]

50



applications

perspectives — triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012]
triangularization of m x m matrix A using 7 x 7 blocks

|
not computed * Al A2 B *
/K 1 K2 A3 A4_/OB

kernel basis of [ﬁ;] KiA> +KrAy row basis of [23]
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applications

perspectives — triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012]
triangularization of m x m matrix A using 7 x 7 blocks

|
not computed * Al A2 B *
/K 1 K2 A3 A4_/OB

kernel basis of [ﬁ;] KiA> +KrAy row basis of [23]

is unimodular

. * ok
main property: {Kl KJ

» Hermite form of A = Hermite form of [I(){ E}
»det(A) = det(R) det(B)

Hermite normal form and determinant in O™(m® deg(A))
[Zhou, 2012] [Labahn-Neiger-Zhou, 2017]
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applications

perspectives — block Wiedemann techniques

given a sparse matrix A € K™*™:
»solve a linear system Au=v
» compute the minimal polynomial of A

. sparse means that A has a large proportion of zero entries
. goal: exploit sparsity to do better than exponent w

[Wiedemann 1986, Coppersmith 1994, Kaltofen 1995, Villard 1997]
block Wiedemann approach, for block dimension m:
1. choose random blocking matrices U,V € K™*™
2. compute linearly recurrent sequence of matrices in
UTV,UTAV,... UTARV, ...

3. find polynomial matrix generator P € K[X]™*™ of this sequence

Kmxm
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applications

perspectives — block Wiedemann techniques

given a sparse matrix A € K™*™:
»solve a linear system Au=v
» compute the minimal polynomial of A

. sparse means that A has a large proportion of zero entries
. goal: exploit sparsity to do better than exponent w

[Wiedemann 1986, Coppersmith 1994, Kaltofen 1995, Villard 1997]
block Wiedemann approach, for block dimension m:
1. choose random blocking matrices U,V € K™*™
2. compute linearly recurrent sequence of matrices in
UTV,UTAV,... UTARV, ...

3. find polynomial matrix generator P € K[X]™*™ of this sequence

Kmxm

»generically, d = 2.~ — 1 terms of the sequence are sufficient
» step 3 is matrix-Padé approx., in O"(m®d) = O"(m®n)
» often, m is taken as the number of threads available for

parallel computation of the matrix sequence
52



introduction

shifted reduced forms

fast algorithms

applications

» rational approximation and interpolation
» the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
» shifted forms and degree constraints
» stability under multiplication

» iterative algorithm and output size
» base case: modulus of degree 1
» recursion: residual and basis multiplication

» minimal kernel bases and linear systems
» fast gcd and extended ged
» perspectives
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