
Vincent Neiger
Laboratoire LIP6, Sorbonne Université

vincent.neiger@lip6.fr

polynomial matrices:
fast approximation and applications

Algorithmes Efficaces en Calcul Formel
Master Parisien de Recherche en Informatique

9 December 2024

1

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

2

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

3

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶ division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶ multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶ Padé approximation f = p
q
mod Xd

▶ minpoly of linearly recurrent sequence

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(mωM(d) log(d)) operations in K

or a tiny bit more for matrix-GCD

4

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶ division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶ multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶ Padé approximation f = p
q
mod Xd

▶ minpoly of linearly recurrent sequence

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(mωM(d) log(d)) operations in K

or a tiny bit more for matrix-GCD

4

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶ division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶ multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶ Padé approximation f = p
q
mod Xd

▶ minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(mωM(d) log(d)) operations in K

or a tiny bit more for matrix-GCD

4

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶ division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶ multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶ Padé approximation f = p
q
mod Xd

▶ minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(mωM(d) log(d)) operations in K

or a tiny bit more for matrix-GCD

4

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,
→ compute p(X)

q(X) mod Xd algo?? O(??)

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,
→ compute p(X)

q(X) mod Xd algo?? O(??)
inv+mul: O(M(d))

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,
→ compute p(X)

q(X) mod Xd algo?? O(??)
inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?
→ compute p(X)

q(X) mod M(X) algo?? O(??)

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,
→ compute p(X)

q(X) mod Xd algo?? O(??)
inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?
→ compute p(X)

q(X) mod M(X) algo?? O(??)
xgcd+mul+rem O(M(d) log(d))

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,
→ compute p(X)

q(X) mod Xd algo?? O(??)
inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?
→ compute p(X)

q(X) mod M(X) algo?? O(??)
xgcd+mul+rem O(M(d) log(d))

given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?
→ compute p(X)

q(X) mod M(X) algo?? O(??)

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,
→ compute p(X)

q(X) mod Xd algo?? O(??)
inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?
→ compute p(X)

q(X) mod M(X) algo?? O(??)
xgcd+mul+rem O(M(d) log(d))

given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?
→ compute p(X)

q(X) mod M(X) algo?? O(??)
eval+div+interp O(M(d) log(d))

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lectures 3+6

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lectures 3+6

18C-nite sequences and rational series

Proposition. The sequence (un)n2N satis�es

8n2N; un+s+ cs¡1un+s¡1+ � � �+ c0un=0

if and only its generating series is of the form

X

n=0

1

unx
n=

p(x)
1+ cs¡1 x+ � � �+ c0 xs

=
p(x)

revs(�)
for some p2K[x]<s:

denominator $ recurrence, numerator$ initial values / residual

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lectures 3+6

19

From s to 2 s terms
[Fiduccia 1985, Shoup 1991]

un+s+ cs¡1un+s¡1+ � � �+ c0un=0

Problem. Given (u0; : : : ; us¡1), compute (us; : : : ; u2s¡1).

Using the previous proposition, write
X

n>0

unx
n=

p(x)
q(x)

with q= revs(�) and degp<s.

p(x)
q(x)

=u0+ � � �+us¡1 x
s¡1

|| |{z}} }

U0(x)

+O(xs)) p(x)=q(x)U0(x) remxs

Algorithm. Input: u0:s, c0:s Output: u0:N

1. Compute p=qU0 remxs O(M(s))

2. Compute the �rstN terms of p/q by a power series division O(M(N))

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lectures 3+6

numerator p and charpoly χ first N terms of the LRS (un)n∈N

expand p
rev(χ) mod XN

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lectures 3+6

numerator p and charpoly χ first N terms of the LRS (un)n∈N

expand p
rev(χ) mod XN

reconstruct from U(X) mod XN

⇝ Padé approximation

5

introduction

rational approximation and interpolation

Padé approximation:
given power series f(X) at precision d,
→ compute p(X),q(X) such that f = p

q
mod Xd

5

introduction

rational approximation and interpolation

Padé approximation:
given power series f(X) at precision d,
→ compute p(X),q(X) such that f = p

q
mod Xd

opinions on this algorithmic problem?

5

introduction

rational approximation and interpolation

Padé approximation:
given power series f(X) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod Xd

5

introduction

rational approximation and interpolation

Padé approximation:
given power series f(X) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod Xd

Cauchy interpolation:
given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod M(X)

5

introduction

rational approximation and interpolation

Padé approximation:
given power series f(X) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod Xd

Cauchy interpolation:
given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod M(X)

▶ degree constraints specified by the context
▶ usual choices have d1 + d2 ≈ d and existence of a solution

5

[1894, Journal de mathématiques pures et appliquées]

6

introduction

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ precision d ∈ Z>0

▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1f1 + · · ·+ pmfm = 0 mod Xd

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ pairwise distinct points α1, . . . ,αd ∈ K
▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(rational interpolation: particular case m = 2 and f2 = −1)

7

introduction

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ precision d ∈ Z>0

▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1f1 + · · ·+ pmfm = 0 mod Xd

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ pairwise distinct points α1, . . . ,αd ∈ K
▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(rational interpolation: particular case m = 2 and f2 = −1)

7

introduction

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ precision d ∈ Z>0

▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1f1 + · · ·+ pmfm = 0 mod Xd

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ pairwise distinct points α1, . . . ,αd ∈ K
▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(rational interpolation: particular case m = 2 and f2 = −1)

in this lecture: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard

2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ field elements α1, . . . ,αd ∈ K ⇝ not necessarily distinct
▶ degree bounds d1, . . . ,dm ∈ Z>0 ⇝ general “shift” s ∈ Zm

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1f1 + · · ·+ pmfm = 0 mod

∏
1⩽i⩽d(X− αi)

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm) ⇝ minimal s-row degree

(Hermite-Padé: α1 = · · · = αd = 0; interpolation: pairwise distinct points)

7

introduction

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ precision d ∈ Z>0

▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1f1 + · · ·+ pmfm = 0 mod Xd

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:
▶ polynomials f1, . . . , fm ∈ K[X]

▶ pairwise distinct points α1, . . . ,αd ∈ K
▶ degree bounds d1, . . . ,dm ∈ Z>0

output:
polynomials p1, . . . ,pm ∈ K[X] such that
▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(rational interpolation: particular case m = 2 and f2 = −1)

applications:

▶ univariate polynomials and linearly recurrent sequences
XGCD, rational reconstruction, “fast Berlekamp-Massey”, . . .

▶ sparse K-linear systems
Coppersmith’s block-Wiedemann approach

▶ structured K-matrices
Hankel/Toeplitz/Vandermonde, block structures, displacement rank, . . .

▶ computations with K-matrices
Krylov iterates, minimal/characteristic polynomial, Frobenius form, . . .

▶ computations with K[X]-matrices
determinant, nullspace/kernel, inversion, Hermite normal form, . . .

▶ computations with multivariate polynomials
multivariate interpolation, syzygy modules, Gröbner bases, . . .

7

introduction

approximation and structured linear system

K = F7

f = 2X7 + 2X6 + 5X4 + 2X2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod X8

[q p]

[
f
−1

]
= 0 mod X8

[q0 q1 q2 q3 q4 q5 | p0 p1 p2]

4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0

= 0

8

introduction

approximation and structured linear system

K = F7

f = 2X7 + 2X6 + 5X4 + 2X2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod X8

[q p]

[
f
−1

]
= 0 mod X8

[q0 q1 q2 q3 q4 q5 | p0 p1 p2]

4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0

= 0

8

introduction

approximation and structured linear system

K = F7

f = 2X7 + 2X6 + 5X4 + 2X2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod X8

[q p]

[
f
−1

]
= 0 mod X8

[q0 q1 q2 q3 q4 q5 | p0 p1 p2]

4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0

= 0

8

introduction

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial p(X, Y) ∈ K[X, Y]
such that p(αi,βi) = 0 for 1 ⩽ i ⩽ 8

M(X) = (X− 24) · · · (X− 59)
L(X) = Lagrange interpolant

}
−→ solutions = ideal ⟨M(X), Y − L(X)⟩

solutions of smaller X-degree: p(X, Y) = p0(X) + p1(X)Y + p2(X)Y
2

p(X,L(X)) =
[
p0 p1 p2

] 1
L
L2

 = 0 mod M(X)

▶ instance of univariate rational vector interpolation
▶ with a structured input equation (powers of L mod M)

9

introduction

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial p(X, Y) ∈ K[X, Y]
such that p(αi,βi) = 0 for 1 ⩽ i ⩽ 8

add degree constraints: seek p(X, Y) of the form
p00 + p01X+ p02X

2 + p03X
3 + p04X

4 + (p10 + p11X+ p12X
2)Y + p20Y

2:

[
p00 p01 p02 p03 p04 p10 p11 p12 p20

]

1 1 · · · 1
α1 α2 · · · α8

α2
1 α2

2 · · · α2
8

α3
1 α3

2 · · · α3
8

α4
1 α4

2 · · · α4
8

β1 β2 · · · β8

α1β1 α2β2 · · · α8β8

α2
1β1 α2

2β2 · · · α2
8β8

β2
1 β2

2 · · · β2
8

= 0

▶K-linear system
▶ two levels of structure

p(X,Y) = (2X4 + 56X3 + 42X2 + 48X+ 15) + (72X2 + 12X+ 30)Y + Y2

9

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a “free K[X]-module of rank m”, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶ basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with “minimal degrees”
▶ has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)
⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 +X2 + 5X+ 3 6X+ 5 2X+ 1

 ∈ K[X]3×3 3 × 3 matrix of degree 3
with entries in K[X] = F7[X]

operations in K[X]m×m
<d :

▶ combination of matrix and polynomial computations
▶ addition in O(m2d), naive multiplication in O(m3d2)

▶ some tools shared with K-matrices, others specific to K[X]-matrices

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

▶ Newton truncated inversion, matrix-QuoRem

▶ inversion and determinant via evaluation-interpolation

▶ vector rational approximation & interpolation

→ fast O˜(mωd)

→ medium O˜(mω+1d)

→ ???

11

introduction

polynomial matrices: reminder and motivation

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 +X2 + 5X+ 3 6X+ 5 2X+ 1

 ∈ K[X]3×3 3 × 3 matrix of degree 3
with entries in K[X] = F7[X]

operations in K[X]m×m
<d :

▶ combination of matrix and polynomial computations
▶ addition in O(m2d), naive multiplication in O(m3d2)

▶ some tools shared with K-matrices, others specific to K[X]-matrices

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

▶ Newton truncated inversion, matrix-QuoRem

▶ inversion and determinant via evaluation-interpolation

▶ vector rational approximation & interpolation

→ fast O˜(mωd)

→ medium O˜(mω+1d)

→ ???

11

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of “average” degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶ multiplication
▶ kernel, system solving
▶ rank, determinant
▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem
▶ Hermite-Padé approximation
▶ vector rational interpolation
▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form
▶ row reduction: Popov form
▶ diagonalization: Smith form

12

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of “average” degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶ multiplication
▶ kernel, system solving
▶ rank, determinant
▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem
▶ Hermite-Padé approximation
▶ vector rational interpolation
▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form
▶ row reduction: Popov form
▶ diagonalization: Smith form

12

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of “average” degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶ multiplication
▶ kernel, system solving
▶ rank, determinant
▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem
▶ Hermite-Padé approximation
▶ vector rational interpolation
▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form
▶ row reduction: Popov form
▶ diagonalization: Smith form

12

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of “average” degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶ multiplication
▶ kernel, system solving
▶ rank, determinant
▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem
▶ Hermite-Padé approximation
▶ vector rational interpolation
▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form
▶ row reduction: Popov form
▶ diagonalization: Smith form

12

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

13

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

14

shifted reduced forms

reducedness: examples and properties

notation:
let A ∈ K[X]m×n with no zero row,
define d = (d1, . . . ,dm) = rdeg(A)

and Xd =

X
d1

. . .
Xdm

 ∈ K[X]m×m

definition: (row-wise) leading matrix
the leading matrix of A is the unique matrix lm(A) ∈ Km×n

such that A = Xdlm(A) +R with rdeg(R) < d entry-wise

equivalently, X−dA = lm(A) + terms of strictly negative degree

definition: (row-wise) reduced matrix
A ∈ K[X]m×n is said to be reduced
if lm(A) has full row rank

15

shifted reduced forms

reducedness: examples and properties

notation:
let A ∈ K[X]m×n with no zero row,
define d = (d1, . . . ,dm) = rdeg(A)

and Xd =

X
d1

. . .
Xdm

 ∈ K[X]m×m

definition: (row-wise) leading matrix
the leading matrix of A is the unique matrix lm(A) ∈ Km×n

such that A = Xdlm(A) +R with rdeg(R) < d entry-wise

equivalently, X−dA = lm(A) + terms of strictly negative degree

definition: (row-wise) reduced matrix
A ∈ K[X]m×n is said to be reduced
if lm(A) has full row rank

15

shifted reduced forms

reducedness: examples and properties

consider the following matrices, with K = F7:

A1 =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]

A2 =

 3X+ 1 4X+ 3 5X+ 5
0 4X2 + 6X 5

4X2 + 5X+ 2 5 6X2 + 1

A3 = transpose of A1

A4 = transpose of A2

answer the following, for i ∈ {1, 2, 3, 4}:
1. what is rdeg(Ai)?
2. what is lm(Ai)?
3. is Ai reduced?

16

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = F7,

A =

 3X+ 1 4X+ 3 5X+ 5
0 4X2 + 6X 5

4X2 + 5X+ 2 5 6X2 + 1

1. what is deg det(A)?

2. what is rdeg([4X2 + 1 2X 4X+ 5]A)?

3. is it possible to find a matrix

P =

[
p00 p01 p02

p10 p11 p12

]
whose rank is 2, whose degree is 1, and which is a
left-multiple of A?

18

shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = F7,

A =

 3X+ 1 4X+ 3 5X+ 5
0 4X2 + 6X 5

4X2 + 5X+ 2 5 6X2 + 1

1. what is deg det(A)?

2. what is rdeg([4X2 + 1 2X 4X+ 5]A)?

3. is it possible to find a matrix

P =

[
p00 p01 p02

p10 p11 p12

]
whose rank is 2, whose degree is 1, and which is a
left-multiple of A?

find a row vector u of degree 1 such that uA has
degree 2, where

A =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
18

shifted reduced forms

shifted forms and degree constraints

▶ input: fi’s and αi’s and degree constraints d1, . . . ,dm ∈ Z>0

▶ output: a solution p satisfying the constraints cdeg(p) < (d1, . . . ,dm)

keeping our problem in mind:

obstacle:
computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis P ∈ K[X]m×m of solutions

▶ think of particular constraints (d1, . . . ,dm) that can be handled via P

▶ give constraints (d1, . . . ,dm) for which P is “typically” not satisfactory

solution: compute P in shifted reduced form

19

shifted reduced forms

shifted forms and degree constraints

▶ input: fi’s and αi’s and degree constraints d1, . . . ,dm ∈ Z>0

▶ output: a solution p satisfying the constraints cdeg(p) < (d1, . . . ,dm)

keeping our problem in mind:

obstacle:
computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis P ∈ K[X]m×m of solutions

▶ think of particular constraints (d1, . . . ,dm) that can be handled via P

▶ give constraints (d1, . . . ,dm) for which P is “typically” not satisfactory

solution: compute P in shifted reduced form

19

shifted reduced forms

shifted forms and degree constraints

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 + X2 + 5X+ 3 6X+ 5 2X+ 1

using elementary row operations, transform A into. . .

Hermite form H =

 X6 + 6X4 + X3 + X+ 4 0 0
5X5 + 5X4 + 6X3 + 2X2 + 6X+ 3 X 0

3X4 + 5X3 + 4X2 + 6X+ 1 5 1

Popov form P =

X3 + 5X2 + 4X+ 1 2X+ 4 3X+ 5
1 X2 + 2X+ 3 X+ 2

3X+ 2 4X X2

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]
▶ triangular
▶ column normalized

16
15 0
15 0
15 0

4
3 7
1 5 3
3 6 1 2

elementary row transformations

Popov form [Popov, 1972]
▶ row reduced/distinct pivots
▶ column normalized

4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4

7 0 1 5
0 1 0

2
6 0 1 6

K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]
▶ triangular
▶ column normalized

16
15 0
15 0
15 0

4
3 7
1 5 3
3 6 1 2

elementary row transformations

Popov form [Popov, 1972]
▶ row reduced/distinct pivots
▶ column normalized

4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4

7 0 1 5
0 1 0

2
6 0 1 6

K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]
▶ triangular
▶ column normalized

16
15 0
15 0
15 0

4
3 7
1 5 3
3 6 1 2

elementary row transformations

Popov form [Popov, 1972]
▶ row reduced/distinct pivots
▶ column normalized

4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4

7 0 1 5
0 1 0

2
6 0 1 6

K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]
▶ triangular
▶ column normalized

16
15 0
15 0
15 0

4
3 7
1 5 3
3 6 1 2

elementary row transformations

Popov form [Popov, 1972]
▶ row reduced/distinct pivots
▶ column normalized

4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4

7 0 1 5
0 1 0

2
6 0 1 6

K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]
▶ triangular
▶ column normalized

16
15 0
15 0
15 0

4
3 7
1 5 3
3 6 1 2

elementary row transformations

Popov form [Popov, 1972]
▶ row reduced/distinct pivots
▶ column normalized

4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4

7 0 1 5
0 1 0

2
6 0 1 6

K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis
20

shifted reduced forms

shift: integer tuple s = (s1, . . . , sm) acting as column weights
→ connects Popov and Hermite forms

s = (0, 0, 0, 0)
Popov

4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4

7 0 1 5
0 1 0

2
6 0 1 6

s = (0, 2, 4, 6)
s-Popov

7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1

8 5 1
7 6 1

2
0 1 0

s = (0,D, 2D, 3D)
Hermite

16
15 0
15 0
15 0

4
3 7
1 5 3
3 6 1 2

▶ normal form, average column degree D/m

▶ shifted reduced form: same without normalization
▶ shifts arise naturally in algorithms (approximants, kernel, . . .)

20

shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai,j) ∈ K[X]m×n, and s = (s1, . . . , sn) ∈ Zn,

rdegs(A) = (rdegs(A1,∗), . . . , rdegs(Am,∗))

=

(
max

1⩽j⩽n
(deg(A1,j) + sj), . . . , max

1⩽j⩽n
(deg(Am,j) + sj)

)
∈ Zm

example: for the matrix A =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
,

describe rdeg(0,0,0)(A), rdeg(0,1,2)(A), and rdeg(−1,−3,−2)(A)

▶ rdegs(A) = rdeg(AXs)
▶ rdegs(A) only depends on s and the degrees in A
▶ rdegs+(c,...,c)(A) = rdegs(A) + c

21

shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai,j) ∈ K[X]m×n, and s = (s1, . . . , sn) ∈ Zn,

rdegs(A) = (rdegs(A1,∗), . . . , rdegs(Am,∗))

=

(
max

1⩽j⩽n
(deg(A1,j) + sj), . . . , max

1⩽j⩽n
(deg(Am,j) + sj)

)
∈ Zm

example: for the matrix A =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
,

describe rdeg(0,0,0)(A), rdeg(0,1,2)(A), and rdeg(−1,−3,−2)(A)

▶ rdegs(A) = rdeg(AXs)
▶ rdegs(A) only depends on s and the degrees in A
▶ rdegs+(c,...,c)(A) = rdegs(A) + c

21

shifted reduced forms

shifted forms and degree constraints

notation:
let A ∈ K[X]m×n with no zero row, and s ∈ Zn,
define d = (d1, . . . ,dm) = rdegs(A)

and Xd =

X
d1

. . .
Xdm

 ∈ K[X,X−1]m×m

definition: s-leading matrix / s-reduced matrix
assuming s ⩾ 0,
▶ the s-leading matrix of A is lms(A) = lm(AXs) ∈ Km×n

▶A ∈ K[X]m×n is s-reduced if lms(A) has full row rank

▶ these notions are invariant under s→ s+ (c, . . . , c)
▶ they coincide with the non-shifted case when s = (0, . . . , 0)
▶X−dAXs = lms(A) + terms of strictly negative degree

22

shifted reduced forms

shifted forms and degree constraints

notation:
let A ∈ K[X]m×n with no zero row, and s ∈ Zn,
define d = (d1, . . . ,dm) = rdegs(A)

and Xd =

X
d1

. . .
Xdm

 ∈ K[X,X−1]m×m

definition: s-leading matrix / s-reduced matrix
assuming s ⩾ 0,
▶ the s-leading matrix of A is lms(A) = lm(AXs) ∈ Km×n

▶A ∈ K[X]m×n is s-reduced if lms(A) has full row rank

▶ these notions are invariant under s→ s+ (c, . . . , c)
▶ they coincide with the non-shifted case when s = (0, . . . , 0)
▶X−dAXs = lms(A) + terms of strictly negative degree

22

shifted reduced forms

shifted forms and degree constraints

exercise: for each of the matrices below, and each shift s,
1. give the s-leading matrix
2. deduce whether the matrix is s-reduced

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 +X2 + 5X+ 3 6X+ 5 2X+ 1

H =

 X6 + 6X4 +X3 +X+ 4 0 0
5X5 + 5X4 + 6X3 + 2X2 + 6X+ 3 X 0

3X4 + 5X3 + 4X2 + 6X+ 1 5 1

P =

X3 + 5X2 + 4X+ 1 2X+ 4 3X+ 5
1 X2 + 2X+ 3 X+ 2

3X+ 2 4X X2

s = (0, 0, 0), s = (0, 5, 6), s = (−3,−2,−2)

23

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), “no surprising cancellation”

▶ proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module
▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), “no surprising cancellation”

▶ proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module
▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), “no surprising cancellation”

▶ proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module
▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), “no surprising cancellation”

▶ proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module
▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication
[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]
▶ compute a first basis P1 for a subproblem
▶ update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 to be reduced:
1. is it implied by “P1 reduced and P2 reduced”?
2. any idea of how to fix this?

we want P2P1 to be reduced
theorem: implied by “P1 is reduced and P2 is t-reduced”
where t = rdeg(P1)

we want P2P1 to be s-reduced
theorem: implied by “P1 is s-reduced and P2 is t-reduced”
where t = rdegs(P1)

25

shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication
[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]
▶ compute a first basis P1 for a subproblem
▶ update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 to be reduced:
1. is it implied by “P1 reduced and P2 reduced”?
2. any idea of how to fix this?

we want P2P1 to be reduced
theorem: implied by “P1 is reduced and P2 is t-reduced”
where t = rdeg(P1)

we want P2P1 to be s-reduced
theorem: implied by “P1 is s-reduced and P2 is t-reduced”
where t = rdegs(P1)

25

shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication
[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]
▶ compute a first basis P1 for a subproblem
▶ update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 to be reduced:
1. is it implied by “P1 reduced and P2 reduced”?
2. any idea of how to fix this?

we want P2P1 to be reduced
theorem: implied by “P1 is reduced and P2 is t-reduced”
where t = rdeg(P1)

we want P2P1 to be s-reduced
theorem: implied by “P1 is s-reduced and P2 is t-reduced”
where t = rdegs(P1)

25

shifted reduced forms

stability under multiplication

let M ⊆M1 be two K[X]-submodules of K[X]m of rank m,
let P1 ∈ K[X]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),
▶ the rank of the module M2 = {λ ∈ K[X]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[X]m×m of M2,
the product P2P1 is a basis of M
▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[X]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.
Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,
the nonsingularity of A ensures that MA has rank m; this implies that M2 has
rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1

is nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p

is a K[X]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists
λ ∈ K[X]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈
K[X]1×m such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-
erty. Using X−dP2P1X

s = X−dP2X
tX−tP1X

s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-
fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

26

shifted reduced forms

stability under multiplication

let M ⊆M1 be two K[X]-submodules of K[X]m of rank m,
let P1 ∈ K[X]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),
▶ the rank of the module M2 = {λ ∈ K[X]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[X]m×m of M2,
the product P2P1 is a basis of M
▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[X]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.
Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,
the nonsingularity of A ensures that MA has rank m; this implies that M2 has
rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1

is nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p

is a K[X]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists
λ ∈ K[X]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈
K[X]1×m such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-
erty. Using X−dP2P1X

s = X−dP2X
tX−tP1X

s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-
fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

26

shifted reduced forms

stability under multiplication

let M ⊆M1 be two K[X]-submodules of K[X]m of rank m,
let P1 ∈ K[X]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),
▶ the rank of the module M2 = {λ ∈ K[X]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[X]m×m of M2,
the product P2P1 is a basis of M
▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[X]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.
Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,
the nonsingularity of A ensures that MA has rank m; this implies that M2 has
rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1

is nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p

is a K[X]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists
λ ∈ K[X]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈
K[X]1×m such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-
erty. Using X−dP2P1X

s = X−dP2X
tX−tP1X

s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-
fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

26

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

27

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶ base case: modulus of degree 1
▶ recursion: residual and basis multiplication

28

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

input: vector F =

[
f1
...

fm

]
, points α1, . . . ,αd ∈ K, shift s = (s1, . . . , sm) ∈ Zm

1. P =

[
−p1−...
−pm−

]
= identity matrix in K[X]m×m

2. for i from 1 to d:

a. evaluate updated vector

 (p1 · F)(αi)...
(pm · F)(αi)

 = (P · F)(αi)

b. choose pivot π with smallest sπ such that (pπ · F)(αi) ̸= 0
update pivot shift sπ = sπ + 1

c. eliminate: /* after this, ∀j ̸= π, (pj · F)(αi) = 0 */

for j ̸= π do pj ← pj −
(pj · F)(αi)

(pπ · F)(αi)
pπ; pπ ← (X− αi)pπ

after i iterations: P is an s-reduced basis of solutions for (α1, . . . ,αi)

29

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

values

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

values

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1

values

1 1 1 1 1 1 1 1
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 X+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1

values

0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 X+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1

values

0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 X+ 73 0 0 0
X+ 90 1 0 0

56X+ 16 0 1 0
12X+ 66 0 0 1

values

0 7 88 8 59 3 93 35
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 X2 + 42X+ 65 0 0 0
X+ 90 1 0 0

56X+ 16 0 1 0
12X+ 66 0 0 1

values

0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 X2 + 42X+ 65 0 0 0
X+ 90 1 0 0

56X+ 16 0 1 0
12X+ 66 0 0 1

values

0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 X3 + 27X2 + 17X+ 92 0 0 0
54X2 + 38X+ 11 1 0 0
17X2 + 91X+ 54 0 1 0
66X2 + 68X+ 88 0 0 1

values

0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 X3 + 27X2 + 17X+ 92 0 0 0
54X2 + 38X+ 11 1 0 0
17X2 + 91X+ 54 0 1 0
66X2 + 68X+ 88 0 0 1

values

0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 3 4 6]

basis

 X3 + 31X2 + 27X+ 3 36 0 0
54X3 + 56X2 + 56X+ 36 X+ 65 0 0

56X2 + 43X+ 35 60 1 0
52X2 + 33X+ 60 68 0 1

values

0 0 0 0 95 50 66 0
0 0 0 0 54 0 19 58
0 0 0 0 4 45 79 95
0 0 0 0 7 31 41 17

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 5 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 3 4 6]

basis

 X4 + 45X3 + 73X2 + 90X+ 42 36X+ 19 0 0
81X3 + 20X2 + 9X+ 20 X+ 67 0 0

2X3 + 21X2 + 41 35 1 0
52X3 + 15X2 + 79X+ 22 0 0 1

values

0 0 0 0 0 13 13 0
0 0 0 0 0 89 55 58
0 0 0 0 0 48 17 95
0 0 0 0 0 12 78 17

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 6 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 4 4 6]

basis

 X4 + 19X3 + 57X2 + 44X+ 26 74X+ 43 0 0
81X4 + 64X3 + 51X2 + 68X+ 42 X2 + 40X+ 34 0 0

3X3 + 44X2 + 54X+ 64 6X+ 49 1 0
28X3 + 45X2 + 44X+ 52 50X+ 52 0 1

values

0 0 0 0 0 0 66 70
0 0 0 0 0 0 3 13
0 0 0 0 0 0 56 55
0 0 0 0 0 0 15 7

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 7 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 4 4 6]

basis

X5 + 96X4 + 65X3 + 68X2 + 19X+ 62 74X2 + 18X+ 13 0 0
6X4 + 94X3 + 44X2 + 66X+ 32 X2 + 19X+ 10 0 0
55X4 + 78X3 + 75X2 + 49X+ 39 2X+ 86 1 0
13X4 + 81X3 + 10X2 + 34X+ 2 42X+ 29 0 1

values

0 0 0 0 0 0 0 14
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 25
0 0 0 0 0 0 0 44

30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 X5 + 12X4 + 10X3 + 34X2 + 65X+ 2 60X2 + 43X+ 67 0 0
6X5+31X4+27X3+89X2+18X+52 X3 + 57X2 + 53X+ 89 0 0

2X4 + 56X3 + 42X2 + 48X+ 15 72X2 + 12X+ 30 1 0
40X4 + 19X3 + 14X2 + 40X+ 49 53X2 + 79X+ 74 0 1

values

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

30

fast algorithms

base case: modulus of degree 1

modular vector equation

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < d

▶ field elements (α1, . . . ,αd) ∈ Kd

▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod

∏
1⩽i⩽d(X− αi)

▶P generates all vectors p such that pF = 0 mod
∏

1⩽i⩽d(X− αi)

▶P is s-reduced

notation: I(α,F) = {p ∈ K[X]1×m | pF = 0 mod
∏

1⩽i⩽d(X− αi)}

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α)

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1 F ∈ Km×1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α) (PF)(α) = P(α)F = 0

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

31

fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α)

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1 F ∈ Km×1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α) (PF)(α) = P(α)F = 0

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

31

fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α)

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1 F ∈ Km×1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α) (PF)(α) = P(α)F = 0

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

31

fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α)

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1 F ∈ Km×1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α) (PF)(α) = P(α)F = 0

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

iterative algorithm: P =

Iπ−1 λ1 0
0 X− α 0
0 λ2 Im−π

where
▶π minimizes sπ among indices such that (pπF)(αi) ̸= 0
▶ the vectors λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

31

fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α)

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1 F ∈ Km×1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α) (PF)(α) = P(α)F = 0

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

iterative algorithm: P =

Iπ−1 λ1 0
0 X− α 0
0 λ2 Im−π

where
▶π minimizes sπ among indices such that (pπF)(αi) ̸= 0
▶ the vectors λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

iterative algorithm:
▶P = identity matrix in K[X]m×m

▶ for i from 1 to d:
a. from the evaluation F(αi), find Pi as above
b. update shift sπ ← sπ + 1

c. update P← PiP as well as F← PiF
X−αi

mod
∏

i+1⩽j⩽d(X− αj)

called residual vector
31

fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α)

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1 F ∈ Km×1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α) (PF)(α) = P(α)F = 0

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

iterative algorithm: P =

Iπ−1 λ1 0
0 X− α 0
0 λ2 Im−π

where
▶π minimizes sπ among indices such that (pπF)(αi) ̸= 0
▶ the vectors λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications PiF and PiP
▶ at any stage F has degree < d and size m× 1
▶ at any stage P has degree ⩽ d and size m×m

normalizing at each step + refined analysis yields O(md2)

31

fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α)

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

input:
▶ vector F = [f1 · · · fm]T ∈ K[X]m×1 of degree < 1 F ∈ Km×1

▶ field element α ∈ K
▶ shift s = (s1, . . . , sm) ∈ Zm

output:
matrix P ∈ K[X]m×m such that
▶PF = 0 mod (X− α) (PF)(α) = P(α)F = 0

▶P generates all vectors p such that pF = 0 mod (X− α)

▶P is s-reduced

modular vector reconstruction: base case

iterative algorithm: P =

Iπ−1 λ1 0
0 X− α 0
0 λ2 Im−π

where
▶π minimizes sπ among indices such that (pπF)(αi) ̸= 0
▶ the vectors λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

correctness:
▶ the main task is to prove the base case with Pi

▶ then, direct consequence of the “basis multiplication theorem”

31

fast algorithms

iterative algorithm – complexity aspects

▶ input size: md+ d elements from K
. md coefficients of F, assumed reduced modulo M(X)

. d points α1, . . . ,αd

▶ output size: ⩽ m2(d+ 1) elements from K
. m×m matrix P of degree at most i at step i

is this output size bound tight?

▶ one can prove deg(det(P)) ⩽ d

. P is a basis of I(α,F), which is the kernel of K[X]m → K[X]/⟨M(X)⟩,p 7→ pF

. K[X]m/I(α,F) has K-dimension at most dimK(K[X]/⟨M(X)⟩) = d

▶ normalized bases have average column degree ⩽ d, and size ⩽ m(d+ 1)

▶ yet the bound Θ(m2(d+ 1)) is tight for this algorithm
. normalizing at each step is feasible for the iterative version

. but is much harder to incorporate in fast divide and conquer versions

32

fast algorithms

iterative algorithm – complexity aspects

▶ input size: md+ d elements from K
. md coefficients of F, assumed reduced modulo M(X)

. d points α1, . . . ,αd

▶ output size: ⩽ m2(d+ 1) elements from K
. m×m matrix P of degree at most i at step i

is this output size bound tight?

▶ one can prove deg(det(P)) ⩽ d

. P is a basis of I(α,F), which is the kernel of K[X]m → K[X]/⟨M(X)⟩,p 7→ pF

. K[X]m/I(α,F) has K-dimension at most dimK(K[X]/⟨M(X)⟩) = d

▶ normalized bases have average column degree ⩽ d, and size ⩽ m(d+ 1)

▶ yet the bound Θ(m2(d+ 1)) is tight for this algorithm
. normalizing at each step is feasible for the iterative version

. but is much harder to incorporate in fast divide and conquer versions

32

fast algorithms

iterative algorithm – complexity aspects

example instance of Hermite-Padé approximation
where the output size is in Ω(m2d)

parameters: K = F97, m = 4, α = 0, d = 128, s = (0, . . . , 0)

choose random polynomial R(X) of degree < 128

F =

f1
f2
f3
f4

 =

R

R+ XR
XR+ X2R
X2R+ X3R

▶ approximants are p such that pF = 0 mod X128

▶F has small vectors in its left kernel
⇒ reduced approximant basis has unbalanced row degrees (1, 1, 1, 125)

▶ will help to build an example with output size Ω(m2d)

33

fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

i 1

2 3 4 · · ·

s (0, 0, 0, 0)

(1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0) · · ·

f1 R

XR 0 0 0

f2 R+ XR

XR X2R 0 0

f3 XR+ X2R

XR+ X2R X2R X3R 0

f4 X2R+ X3R

X2R+ X3R X2R+ X3R X3R X4R

P

1
0 0

0
0

1 0
1 1
0 0 0

0

1 0
1 1 0
1 1 1
0 0 0 0

1 0
1 1 0
1 1 1 0
1 1 1 1

 · · ·

degrees and “pivots” in final basis P:

1 0
1 1 0
1 1 1 0

125 125 125 125

34

fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

i 1 2

3 4 · · ·

s (0, 0, 0, 0) (1, 0, 0, 0)

(1, 1, 0, 0) (1, 1, 1, 0) · · ·

f1 R XR

0 0 0

f2 R+ XR XR

X2R 0 0

f3 XR+ X2R XR+ X2R

X2R X3R 0

f4 X2R+ X3R X2R+ X3R

X2R+ X3R X3R X4R

P

1
0 0

0
0

1 0
1 1
0 0 0

0

1 0
1 1 0
1 1 1
0 0 0 0

1 0
1 1 0
1 1 1 0
1 1 1 1

 · · ·

degrees and “pivots” in final basis P:

1 0
1 1 0
1 1 1 0

125 125 125 125

34

fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

i 1 2 3

4 · · ·

s (0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0)

(1, 1, 1, 0) · · ·

f1 R XR 0

0 0

f2 R+ XR XR X2R

0 0

f3 XR+ X2R XR+ X2R X2R

X3R 0

f4 X2R+ X3R X2R+ X3R X2R+ X3R

X3R X4R

P

1
0 0

0
0

1 0
1 1
0 0 0

0

1 0
1 1 0
1 1 1
0 0 0 0

1 0
1 1 0
1 1 1 0
1 1 1 1

 · · ·

degrees and “pivots” in final basis P:

1 0
1 1 0
1 1 1 0

125 125 125 125

34

fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

i 1 2 3 4

· · ·

s (0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0)

· · ·

f1 R XR 0 0

0

f2 R+ XR XR X2R 0

0

f3 XR+ X2R XR+ X2R X2R X3R

0

f4 X2R+ X3R X2R+ X3R X2R+ X3R X3R

X4R

P

1
0 0

0
0

1 0
1 1
0 0 0

0

1 0
1 1 0
1 1 1
0 0 0 0

1 0
1 1 0
1 1 1 0
1 1 1 1

 · · ·

degrees and “pivots” in final basis P:

1 0
1 1 0
1 1 1 0

125 125 125 125

34

fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

i 1 2 3 4 · · ·
s (0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0) · · ·
f1 R XR 0 0 0
f2 R+ XR XR X2R 0 0
f3 XR+ X2R XR+ X2R X2R X3R 0
f4 X2R+ X3R X2R+ X3R X2R+ X3R X3R X4R

P

1
0 0

0
0

1 0
1 1
0 0 0

0

1 0
1 1 0
1 1 1
0 0 0 0

1 0
1 1 0
1 1 1 0
1 1 1 1

 · · ·

degrees and “pivots” in final basis P:

1 0
1 1 0
1 1 1 0

125 125 125 125

34

fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

i 1 2 3 4 · · ·
s (0, 0, 0, 0) (1, 0, 0, 0) (1, 1, 0, 0) (1, 1, 1, 0) · · ·
f1 R XR 0 0 0
f2 R+ XR XR X2R 0 0
f3 XR+ X2R XR+ X2R X2R X3R 0
f4 X2R+ X3R X2R+ X3R X2R+ X3R X3R X4R

P

1
0 0

0
0

1 0
1 1
0 0 0

0

1 0
1 1 0
1 1 1
0 0 0 0

1 0
1 1 0
1 1 1 0
1 1 1 1

 · · ·

degrees and “pivots” in final basis P:

1 0
1 1 0
1 1 1 0

125 125 125 125

34

fast algorithms

iterative algorithm – complexity aspects

parameters: m = 8, d = 128, s = (0, 0, 0, 0,d,d,d,d)

input F: same f1, f2, f3, f4 / random f5, f6, f7, f8

i = 4

1 0
1 1 0
1 1 1 0
1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

i = 128

1 0
1 1 0
1 1 1 0
125 125 125 125
124 124 124 124 0
124 124 124 124 0
124 124 124 124 0
124 124 124 124 0

▶1/4 of the entries have degree ≈ d: size Θ(m2d)

▶ remark: complexity of iterative algorithm is O(m2d2)
→ improved to O(md2) via normalization

▶ opinions on a “reasonable” target cost for fast algorithms?

35

fast algorithms

iterative algorithm – complexity aspects

parameters: m = 8, d = 128, s = (0, 0, 0, 0,d,d,d,d)

input F: same f1, f2, f3, f4 / random f5, f6, f7, f8

i = 4

1 0
1 1 0
1 1 1 0
1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

i = 128

1 0
1 1 0
1 1 1 0
125 125 125 125
124 124 124 124 0
124 124 124 124 0
124 124 124 124 0
124 124 124 124 0

▶1/4 of the entries have degree ≈ d: size Θ(m2d)

▶ remark: complexity of iterative algorithm is O(m2d2)
→ improved to O(md2) via normalization

▶ opinions on a “reasonable” target cost for fast algorithms?

35

fast algorithms

iterative algorithm – complexity aspects

parameters: m = 8, d = 128, s = (0, 0, 0, 0,d,d,d,d)

input F: same f1, f2, f3, f4 / random f5, f6, f7, f8

i = 4

1 0
1 1 0
1 1 1 0
1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

i = 128

1 0
1 1 0
1 1 1 0
125 125 125 125
124 124 124 124 0
124 124 124 124 0
124 124 124 124 0
124 124 124 124 0

▶1/4 of the entries have degree ≈ d: size Θ(m2d)

▶ remark: complexity of iterative algorithm is O(m2d2)
→ improved to O(md2) via normalization

▶ opinions on a “reasonable” target cost for fast algorithms?
35

fast algorithms

recursion: residual and basis multiplication

divide and conquer algorithm:
input: F, (α1, . . . ,αd), s | output: P
▶ if d = 1, use the base case algorithm to find P and return
▶ otherwise:
a. M1 ← (X− α1) · · · (X− α⌊d/2⌋); M2 ← (X− α⌊d/2⌋+1) · · · (X− αd)

b. P1 ← call the algorithm on F rem M1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual: G← 1
M1

P1F

e. P2 ← call the algorithm on G rem M2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

36

fast algorithms

recursion: residual and basis multiplication

divide and conquer algorithm:
input: F, (α1, . . . ,αd), s | output: P
▶ if d = 1, use the base case algorithm to find P and return
▶ otherwise:
a. M1 ← (X− α1) · · · (X− α⌊d/2⌋); M2 ← (X− α⌊d/2⌋+1) · · · (X− αd)

b. P1 ← call the algorithm on F rem M1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual: G← 1
M1

P1F

e. P2 ← call the algorithm on G rem M2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ about the residual: {p | pP1F = 0 mod M} = {p | pG = 0 mod M2}

36

fast algorithms

recursion: residual and basis multiplication

divide and conquer algorithm:
input: F, (α1, . . . ,αd), s | output: P
▶ if d = 1, use the base case algorithm to find P and return
▶ otherwise:
a. M1 ← (X− α1) · · · (X− α⌊d/2⌋); M2 ← (X− α⌊d/2⌋+1) · · · (X− αd)

b. P1 ← call the algorithm on F rem M1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual: G← 1
M1

P1F

e. P2 ← call the algorithm on G rem M2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ about the residual: {p | pP1F = 0 mod M} = {p | pG = 0 mod M2}

complexity O(mωM(d) log(d)):
▶ if ω = 2, quasi-linear in worst-case output size
▶ most expensive step in the recursion is the product P2P1

▶ equation C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))
36

fast algorithms

recursion: residual and basis multiplication

complexity of each step:
▶ residual G← 1

M1
P1F O(m2M(d))

▶F rem M1 and G rem M2 O(mM(d))
▶ product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶ partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

37

fast algorithms

recursion: residual and basis multiplication

complexity of each step:
▶ residual G← 1

M1
P1F O(m2M(d))

▶F rem M1 and G rem M2 O(mM(d))
▶ product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs . . . ??

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶ partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

37

fast algorithms

recursion: residual and basis multiplication

complexity of each step:
▶ residual G← 1

M1
P1F O(m2M(d))

▶F rem M1 and G rem M2 O(mM(d))
▶ product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶ partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

37

fast algorithms

recursion: residual and basis multiplication

complexity of each step:
▶ residual G← 1

M1
P1F O(m2M(d))

▶F rem M1 and G rem M2 O(mM(d))
▶ product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶ partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

37

fast algorithms

recursion: residual and basis multiplication

complexity of each step:
▶ residual G← 1

M1
P1F O(m2M(d))

▶F rem M1 and G rem M2 O(mM(d))
▶ product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶ partial linearization
▶ base case for d ≈ m,

costs O(mω)

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

37

fast algorithms

recursion: residual and basis multiplication

complexity of each step:
▶ residual G← 1

M1
P1F O(m2M(d))

▶F rem M1 and G rem M2 O(mM(d))
▶ product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶ partial linearization
▶ base case for d ≈ m,

costs O(mω)

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

37

fast algorithms

recursion: residual and basis multiplication

state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F ∈ K[X]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod Xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

38

fast algorithms

recursion: residual and basis multiplication

state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F ∈ K[X]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod Xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

▶ more recently: O (̃mω−1nd) for F mod Xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
⇝ any s, no genericity assumption, returns the canonical basis “s-Popov”

38

fast algorithms

recursion: residual and basis multiplication

state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F ∈ K[X]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod Xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

▶ more recently: O (̃mω−1nd) for F mod Xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
⇝ any s, no genericity assumption, returns the canonical basis “s-Popov”

▶F mod M and general modular matrix equations in similar complexity
[Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]
⇝ any s, no genericity assumption, returns the canonical “s-Popov” basis

38

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶ base case: modulus of degree 1
▶ recursion: residual and basis multiplication

39

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶ base case: modulus of degree 1
▶ recursion: residual and basis multiplication

▶ minimal kernel bases and linear systems
▶ fast gcd and extended gcd
▶ perspectives

40

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0
0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix? → usual nullspace
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0
X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1
0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

for F ∈ K[X]m×n, its left kernel is

K(F) = {p ∈ K[X]1×m | pF = 0}

▶K(F) is a K[X]-module
▶ it has rank m− r, where r is the rank of F

⇒ basis K ∈ K[X](m−r)×m

kernel basis for a constant matrix?
input matrix F

5 6
6 1
2 6
5 2
5 6

kernel basis K5 6 1 0 0

0 5 0 1 0
0 0 3 2 1

kernel basis of the following matrix over F2?
input matrix F

1 0 0
0 1 0
0 0 1
X2 X2 +X+ 1 X2 +X

X2 + 1 X2 X2 +X+ 1
X2 X2 +X X2

kernel basis K X2 X2 +X+ 1 X2 +X 1 0 0

X2 + 1 X2 X2 +X+ 1 0 1 0
X2 X2 +X X2 0 0 1

kernel basis of the following block matrix with G nonsingular?

input matrix F[
G
H

]
∈ K[X](n+m)×n

kernel basis K

. . . is left multiple of
[
−HG−1 Im

]
. . . det(G)

[
−HG−1 Im

]
is left multiple of it

kernel basis of the following 4 × 1 vector with R ∈ K[X] \ {0}?

input matrix F
R

R+ XR
XR+ X2R
X2R+ X3R

kernel basis K1+ X −1

0 X −1
0 0 X −1

inclusion K(F) ⊂ I(M,F) = {p ∈ K[X]1×m | pF = 0 mod M}

⇒ recover kernel via interpolation with suitable choices of M

41

applications

minimal kernel bases and linear systems

input:
▶ matrix F ∈ K[X]m×n

▶δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

algorithm via interpolation at sufficiently many points
▶d← δ+ deg(F) + 1

▶α← choose some (α1, . . . ,αd) in Kd (not necessarily distinct)

▶P ∈ K[X]m×m ← reduced basis of I(α,F)
▶K ∈ K[X]k×m ← rows of P which have degree ⩽ δ

⇒ K is a reduced basis of K(F)

⇒ complexity O(mωM(⌈nd
m
⌉) log(⌈nd

m
⌉))

how to find the degree bound δ?

42

applications

minimal kernel bases and linear systems

input:
▶ matrix F ∈ K[X]m×n

▶δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

algorithm via interpolation at sufficiently many points
▶d← δ+ deg(F) + 1

▶α← choose some (α1, . . . ,αd) in Kd (not necessarily distinct)

▶P ∈ K[X]m×m ← reduced basis of I(α,F)
▶K ∈ K[X]k×m ← rows of P which have degree ⩽ δ

⇒ K is a reduced basis of K(F)

⇒ complexity O(mωM(⌈nd
m
⌉) log(⌈nd

m
⌉))

how to find the degree bound δ?

42

applications

minimal kernel bases and linear systems

input:
▶ matrix F ∈ K[X]m×n

▶δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

algorithm via interpolation at sufficiently many points
▶d← δ+ deg(F) + 1

▶α← choose some (α1, . . . ,αd) in Kd (not necessarily distinct)

▶P ∈ K[X]m×m ← reduced basis of I(α,F)
▶K ∈ K[X]k×m ← rows of P which have degree ⩽ δ

⇒ K is a reduced basis of K(F)

⇒ complexity O(mωM(⌈nd
m
⌉) log(⌈nd

m
⌉))

how to find the degree bound δ?

42

applications

minimal kernel bases and linear systems

▶ take d← δ+ deg(F) + 1 and some α← (α1, . . . ,αd) in Kd

▶P ∈ K[X]m×m reduced basis of I(α,F)
▶K ∈ K[X]k×m rows of P which have degree ⩽ δ

knowing δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

⇒ K is a reduced basis of K(F)

proof:
⇒ K is reduced by construction

. K satisfies KF = 0 mod (X− α1) · · · (X− αd)

. and deg(K) ⩽ δ, hence deg(KF) ⩽ δ+ deg(F) < d

⇒ KF = 0, i.e. the rows of K are in K(F)

. let B ∈ K[X](m−r)×m be a basis of K(F) of degree ⩽ δ

. then B = UP for some U

. by the predictable degree property, in fact B = VK

⇒ any vector in K(F) is generated by K

43

applications

minimal kernel bases and linear systems

▶ take d← δ+ deg(F) + 1 and some α← (α1, . . . ,αd) in Kd

▶P ∈ K[X]m×m reduced basis of I(α,F)
▶K ∈ K[X]k×m rows of P which have degree ⩽ δ

knowing δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

⇒ K is a reduced basis of K(F)

proof:
⇒ K is reduced by construction

. K satisfies KF = 0 mod (X− α1) · · · (X− αd)

. and deg(K) ⩽ δ, hence deg(KF) ⩽ δ+ deg(F) < d

⇒ KF = 0, i.e. the rows of K are in K(F)

. let B ∈ K[X](m−r)×m be a basis of K(F) of degree ⩽ δ

. then B = UP for some U

. by the predictable degree property, in fact B = VK

⇒ any vector in K(F) is generated by K

43

applications

minimal kernel bases and linear systems

how to find the degree bound δ?
knowing δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

a specific bound may be known from the context e.g. gcd, “row bases”

▶ a general bound is δ = n deg(F)

▶ yields complexity O (̃mω⌈n
2 deg(F)
m

⌉) how far from “optimal”?

proof:
complexity O (̃mω⌈nd

m
⌉)

with d = δ+ deg(F) + 1 = (n+ 1) deg(F) + 1

proof:
up to row and column permutation, F = [G ∗

H ∗]
with G ∈ K[X]r×r nonsingular
then, K(F) = K([GH])

the matrix [−H(det(G)G−1) det(G)Im−r] has polynomial entries,
it has rank m− r and its rows are in K(F),
it has degree ⩽ max(deg det(G), deg(H) + (r− 1) deg(G)) ⩽ r deg(F)

by degree minimality of reduced matrices,
any reduced basis of K(F) must have degree ⩽ r deg(F)

▶ rules of thumb, generically:
“quantity of information is preserved”

+
“degrees in reduced basis are uniform”

⇝ (m− r)m deg(K) ≈ mn deg(F)
⇔ deg(K) ≈ n

m−r
deg(F), which is ⩽ n

m−n
deg(F)

example: if F is m× m
2 , generically deg(K) = deg(F)

⇒ d = 2 deg(F) + 1 and complexity O (̃mω deg(F)) how far from optimal?

44

applications

minimal kernel bases and linear systems

how to find the degree bound δ?
knowing δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

a specific bound may be known from the context e.g. gcd, “row bases”

▶ a general bound is δ = n deg(F)

▶ yields complexity O (̃mω⌈n
2 deg(F)
m

⌉) how far from “optimal”?

proof:
complexity O (̃mω⌈nd

m
⌉)

with d = δ+ deg(F) + 1 = (n+ 1) deg(F) + 1

proof:
up to row and column permutation, F = [G ∗

H ∗]
with G ∈ K[X]r×r nonsingular
then, K(F) = K([GH])

the matrix [−H(det(G)G−1) det(G)Im−r] has polynomial entries,
it has rank m− r and its rows are in K(F),
it has degree ⩽ max(deg det(G), deg(H) + (r− 1) deg(G)) ⩽ r deg(F)

by degree minimality of reduced matrices,
any reduced basis of K(F) must have degree ⩽ r deg(F)

▶ rules of thumb, generically:
“quantity of information is preserved”

+
“degrees in reduced basis are uniform”

⇝ (m− r)m deg(K) ≈ mn deg(F)
⇔ deg(K) ≈ n

m−r
deg(F), which is ⩽ n

m−n
deg(F)

example: if F is m× m
2 , generically deg(K) = deg(F)

⇒ d = 2 deg(F) + 1 and complexity O (̃mω deg(F)) how far from optimal?

44

applications

minimal kernel bases and linear systems

how to find the degree bound δ?
knowing δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

a specific bound may be known from the context e.g. gcd, “row bases”

▶ a general bound is δ = n deg(F)

▶ yields complexity O (̃mω⌈n
2 deg(F)
m

⌉) how far from “optimal”?

proof:
complexity O (̃mω⌈nd

m
⌉)

with d = δ+ deg(F) + 1 = (n+ 1) deg(F) + 1

proof:
up to row and column permutation, F = [G ∗

H ∗]
with G ∈ K[X]r×r nonsingular
then, K(F) = K([GH])

the matrix [−H(det(G)G−1) det(G)Im−r] has polynomial entries,
it has rank m− r and its rows are in K(F),
it has degree ⩽ max(deg det(G), deg(H) + (r− 1) deg(G)) ⩽ r deg(F)

by degree minimality of reduced matrices,
any reduced basis of K(F) must have degree ⩽ r deg(F)

▶ rules of thumb, generically:
“quantity of information is preserved”

+
“degrees in reduced basis are uniform”

⇝ (m− r)m deg(K) ≈ mn deg(F)
⇔ deg(K) ≈ n

m−r
deg(F), which is ⩽ n

m−n
deg(F)

example: if F is m× m
2 , generically deg(K) = deg(F)

⇒ d = 2 deg(F) + 1 and complexity O (̃mω deg(F)) how far from optimal?

44

applications

minimal kernel bases and linear systems

how to find the degree bound δ?
knowing δ ∈ Z>0 such that there exists a basis of K(F) of degree ⩽ δ

a specific bound may be known from the context e.g. gcd, “row bases”

▶ a general bound is δ = n deg(F)

▶ yields complexity O (̃mω⌈n
2 deg(F)
m

⌉) how far from “optimal”?

proof:
complexity O (̃mω⌈nd

m
⌉)

with d = δ+ deg(F) + 1 = (n+ 1) deg(F) + 1

proof:
up to row and column permutation, F = [G ∗

H ∗]
with G ∈ K[X]r×r nonsingular
then, K(F) = K([GH])

the matrix [−H(det(G)G−1) det(G)Im−r] has polynomial entries,
it has rank m− r and its rows are in K(F),
it has degree ⩽ max(deg det(G), deg(H) + (r− 1) deg(G)) ⩽ r deg(F)

by degree minimality of reduced matrices,
any reduced basis of K(F) must have degree ⩽ r deg(F)

▶ rules of thumb, generically:
“quantity of information is preserved”

+
“degrees in reduced basis are uniform”

⇝ (m− r)m deg(K) ≈ mn deg(F)
⇔ deg(K) ≈ n

m−r
deg(F), which is ⩽ n

m−n
deg(F)

example: if F is m× m
2 , generically deg(K) = deg(F)

⇒ d = 2 deg(F) + 1 and complexity O (̃mω deg(F)) how far from optimal?
44

applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

▶ complexity O (̃mω⌈n deg(F)
m
⌉) without assumption

▶ computes s-reduced basis of K(F) for s = rdeg(F)

▶n large: divide and conquer on n, via residual + basis multiplication
⇝ partial linearization for multiplying matrices with weakly unbalanced degrees
▶n small: use fast approximation/interpolation algorithms
⇝ well-chosen d yields at least half the kernel efficiently

if n > m
2 :

K1 ← recursive call on first n
2 columns of F, and shift s

G← multiply K1 · F∗,n2 ..n (last n
2 columns of F)

K2 ← recursive call on G, and shift t = rdegs(K1)

return K2K1

if n ⩽ m
2 :

δ← degree of kernel basis expected generically
d← δ+ deg(F) + 1 and take some α← (α1, . . . ,αd) in Kd

P ∈ K[X]m×m ← s-reduced basis of I(α,F)
K1,Q← rows of P which are in K(F) / which are not in K(F)

K2 ← recursive call on 1
(X−α1)···(X−αd)QF, return [K1

K2
]

45

applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

▶ complexity O (̃mω⌈n deg(F)
m
⌉) without assumption

▶ computes s-reduced basis of K(F) for s = rdeg(F)

▶n large: divide and conquer on n, via residual + basis multiplication
⇝ partial linearization for multiplying matrices with weakly unbalanced degrees
▶n small: use fast approximation/interpolation algorithms
⇝ well-chosen d yields at least half the kernel efficiently

if n > m
2 :

K1 ← recursive call on first n
2 columns of F, and shift s

G← multiply K1 · F∗,n2 ..n (last n
2 columns of F)

K2 ← recursive call on G, and shift t = rdegs(K1)

return K2K1

if n ⩽ m
2 :

δ← degree of kernel basis expected generically
d← δ+ deg(F) + 1 and take some α← (α1, . . . ,αd) in Kd

P ∈ K[X]m×m ← s-reduced basis of I(α,F)
K1,Q← rows of P which are in K(F) / which are not in K(F)

K2 ← recursive call on 1
(X−α1)···(X−αd)QF, return [K1

K2
]

45

applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

▶ complexity O (̃mω⌈n deg(F)
m
⌉) without assumption

▶ computes s-reduced basis of K(F) for s = rdeg(F)

▶n large: divide and conquer on n, via residual + basis multiplication
⇝ partial linearization for multiplying matrices with weakly unbalanced degrees
▶n small: use fast approximation/interpolation algorithms
⇝ well-chosen d yields at least half the kernel efficiently

if n > m
2 :

K1 ← recursive call on first n
2 columns of F, and shift s

G← multiply K1 · F∗,n2 ..n (last n
2 columns of F)

K2 ← recursive call on G, and shift t = rdegs(K1)

return K2K1

if n ⩽ m
2 :

δ← degree of kernel basis expected generically
d← δ+ deg(F) + 1 and take some α← (α1, . . . ,αd) in Kd

P ∈ K[X]m×m ← s-reduced basis of I(α,F)
K1,Q← rows of P which are in K(F) / which are not in K(F)

K2 ← recursive call on 1
(X−α1)···(X−αd)QF, return [K1

K2
]

45

applications

minimal kernel bases and linear systems

linear system solving:
given A ∈ K[X]m×m nonsingular and v ∈ K[X]1×m

find u ∈ K[X]1×m and g ∈ K[X] such that
uA = gv and g has minimal degree.

. the equation has a solution: u = gvA−1 with g = det(A)

. but there is often no polynomial solution with g = 1

. target complexity? (recall that det(A)A−1 can have degree ≈ m deg(A))

. propose an algorithm based on a kernel computation

compute [u g] ∈ K[X]1×(m+1) kernel basis of F =

[
A
−v

]
∈ K[X](m+1)×m

▶ using the shift s = (rdeg(A), deg(v))

▶ complexity O (̃mω max(deg(A), deg(v)))

▶u,g is a solution to the equation uA = gv

▶ minimality of deg(g) follows from basis of K(F)

in fact:
max(deg(A), deg(v)

m
)

46

applications

minimal kernel bases and linear systems

linear system solving:
given A ∈ K[X]m×m nonsingular and v ∈ K[X]1×m

find u ∈ K[X]1×m and g ∈ K[X] such that
uA = gv and g has minimal degree.

. the equation has a solution: u = gvA−1 with g = det(A)

. but there is often no polynomial solution with g = 1

. target complexity? (recall that det(A)A−1 can have degree ≈ m deg(A))

. propose an algorithm based on a kernel computation

compute [u g] ∈ K[X]1×(m+1) kernel basis of F =

[
A
−v

]
∈ K[X](m+1)×m

▶ using the shift s = (rdeg(A), deg(v))

▶ complexity O (̃mω max(deg(A), deg(v)))

▶u,g is a solution to the equation uA = gv

▶ minimality of deg(g) follows from basis of K(F)

in fact:
max(deg(A), deg(v)

m
)

46

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: h = gcd(f,g)

input: f and g univariate polynomials in K[X]
output: (u, v,h) where h = gcd(f,g) = uf+ vg

gcd

xgcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f) and n = deg(g) we assume m,n > 0

. ℓ = deg(h) hence ℓ ⩽ min(m,n)

⇝ then deg(f̄) = m− ℓ and deg(ḡ) = n− ℓ

claim: gcd and xgcd are solved in O(M(d) log(d))

earlier in the course:

where d = max(m,n)

47

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: h = gcd(f,g)

input: f and g univariate polynomials in K[X]
output: (u, v,h) where h = gcd(f,g) = uf+ vg

gcd

xgcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f) and n = deg(g) we assume m,n > 0

. ℓ = deg(h) hence ℓ ⩽ min(m,n)

⇝ then deg(f̄) = m− ℓ and deg(ḡ) = n− ℓ

claim: gcd and xgcd are solved in O(M(d) log(d))

earlier in the course:

where d = max(m,n)

47

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: h = gcd(f,g)

gcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f) and n = deg(g) we assume m,n > 0

result: gcd is solved in O(M(max(m,n)) log(max(m,n)))

lemma: [−ḡ f̄] is a basis of the left kernel of [fg]

proof:
this kernel has rank 1 (f and g are nonzero)

let [a b] be a basis of it; all other bases are [ca cb] for some c ∈ K \ {0}

since [−ḡ f̄][fg] = − g
h
f+ f

h
g = 0, we get [−ḡ f̄] = [λa λb] for some λ ∈ K[X] \ {0}

then λ divides f̄ and ḡ, so λ is a nonzero constant

algorithm: kernel basis via interpolation at sufficiently many points
▶ the input matrix F = [fg] has degree max(m,n)
▶ the sought kernel basis has degree at most δ = max(m,n)

⇒

1. pick δ+ deg(F) + 1 = 2δ+ 1 points α ∈ K2δ+1 O(1)
2. find [−ḡ f̄] via a reduced basis of I(α, [fg]) O(M(δ) log(δ))
3. deduce h = g/ḡ O(M(δ))

48

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: h = gcd(f,g)

gcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f) and n = deg(g) we assume m,n > 0

result: gcd is solved in O(M(max(m,n)) log(max(m,n)))

lemma: [−ḡ f̄] is a basis of the left kernel of [fg]

proof:
this kernel has rank 1 (f and g are nonzero)

let [a b] be a basis of it; all other bases are [ca cb] for some c ∈ K \ {0}

since [−ḡ f̄][fg] = − g
h
f+ f

h
g = 0, we get [−ḡ f̄] = [λa λb] for some λ ∈ K[X] \ {0}

then λ divides f̄ and ḡ, so λ is a nonzero constant

algorithm: kernel basis via interpolation at sufficiently many points
▶ the input matrix F = [fg] has degree max(m,n)
▶ the sought kernel basis has degree at most δ = max(m,n)

⇒

1. pick δ+ deg(F) + 1 = 2δ+ 1 points α ∈ K2δ+1 O(1)
2. find [−ḡ f̄] via a reduced basis of I(α, [fg]) O(M(δ) log(δ))
3. deduce h = g/ḡ O(M(δ))

48

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: h = gcd(f,g)

gcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f) and n = deg(g) we assume m,n > 0

result: gcd is solved in O(M(max(m,n)) log(max(m,n)))

lemma: [−ḡ f̄] is a basis of the left kernel of [fg]

proof:
this kernel has rank 1 (f and g are nonzero)

let [a b] be a basis of it; all other bases are [ca cb] for some c ∈ K \ {0}

since [−ḡ f̄][fg] = − g
h
f+ f

h
g = 0, we get [−ḡ f̄] = [λa λb] for some λ ∈ K[X] \ {0}

then λ divides f̄ and ḡ, so λ is a nonzero constant

algorithm: kernel basis via interpolation at sufficiently many points
▶ the input matrix F = [fg] has degree max(m,n)
▶ the sought kernel basis has degree at most δ = max(m,n)

⇒

1. pick δ+ deg(F) + 1 = 2δ+ 1 points α ∈ K2δ+1 O(1)
2. find [−ḡ f̄] via a reduced basis of I(α, [fg]) O(M(δ) log(δ))
3. deduce h = g/ḡ O(M(δ))

48

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: (u, v,h) where h = gcd(f,g) = uf+ vg

xgcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f), n = deg(g), ℓ = deg(h) m,n > 0, ℓ ⩽ min(m,n)

⇝ deg(f̄) = m− ℓ and deg(ḡ) = n− ℓ

lemma:
. there exists a unique (u, v) in K[X]2 such that{

uf+ vg = h,
deg(u) < n− ℓ and deg(v) < m− ℓ.

. for this (u, v) ∈ K[X]2 one has
[
u v

−ḡ f̄

] [
f
g

]
=

[
h
0

]
,

and the leftmost matrix in this identity is unimodular

theorem:
. defining R =

[
rev(u,n− ℓ− 1) rev(v,m− ℓ− 1)
− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
∈ K[X]2×2,

one has: R

[
rev(f,m)
rev(g,n)

]
=

[
xm+n−2ℓ−1 rev(h, ℓ)

0

]
. the matrix R is a (−n,−m)-reduced basis of I(0, [rev(f,m)

rev(g,n)])

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xm+n−2ℓ−1

}
ℓ is unknown!

corollary: xgcd in O(M(d) log(d))
for any d ⩾ n+m− 2ℓ− 1 e.g. d = n+m+ 1

let e = d− (n+m− 2ℓ− 1) hence e = 2ℓ

then
[
xe 0
0 1

]
R =

[
xe rev(u,n− ℓ− 1) xe rev(v,m− ℓ− 1)

− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
is a (−n,−m)-reduced basis of

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xd

}

49

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: (u, v,h) where h = gcd(f,g) = uf+ vg

xgcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f), n = deg(g), ℓ = deg(h) m,n > 0, ℓ ⩽ min(m,n)

⇝ deg(f̄) = m− ℓ and deg(ḡ) = n− ℓ

lemma:
. there exists a unique (u, v) in K[X]2 such that{

uf+ vg = h,
deg(u) < n− ℓ and deg(v) < m− ℓ.

. for this (u, v) ∈ K[X]2 one has
[
u v

−ḡ f̄

] [
f
g

]
=

[
h
0

]
,

and the leftmost matrix in this identity is unimodular

theorem:
. defining R =

[
rev(u,n− ℓ− 1) rev(v,m− ℓ− 1)
− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
∈ K[X]2×2,

one has: R

[
rev(f,m)
rev(g,n)

]
=

[
xm+n−2ℓ−1 rev(h, ℓ)

0

]
. the matrix R is a (−n,−m)-reduced basis of I(0, [rev(f,m)

rev(g,n)])

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xm+n−2ℓ−1

}
ℓ is unknown!

corollary: xgcd in O(M(d) log(d))
for any d ⩾ n+m− 2ℓ− 1 e.g. d = n+m+ 1

let e = d− (n+m− 2ℓ− 1) hence e = 2ℓ

then
[
xe 0
0 1

]
R =

[
xe rev(u,n− ℓ− 1) xe rev(v,m− ℓ− 1)

− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
is a (−n,−m)-reduced basis of

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xd

}

49

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: (u, v,h) where h = gcd(f,g) = uf+ vg

xgcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f), n = deg(g), ℓ = deg(h) m,n > 0, ℓ ⩽ min(m,n)

⇝ deg(f̄) = m− ℓ and deg(ḡ) = n− ℓ

lemma:
. there exists a unique (u, v) in K[X]2 such that{

uf+ vg = h,
deg(u) < n− ℓ and deg(v) < m− ℓ.

. for this (u, v) ∈ K[X]2 one has
[
u v

−ḡ f̄

] [
f
g

]
=

[
h
0

]
,

and the leftmost matrix in this identity is unimodular

theorem:
. defining R =

[
rev(u,n− ℓ− 1) rev(v,m− ℓ− 1)
− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
∈ K[X]2×2,

one has: R

[
rev(f,m)
rev(g,n)

]
=

[
xm+n−2ℓ−1 rev(h, ℓ)

0

]
. the matrix R is a (−n,−m)-reduced basis of I(0, [rev(f,m)

rev(g,n)])

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xm+n−2ℓ−1

}

ℓ is unknown!

corollary: xgcd in O(M(d) log(d))
for any d ⩾ n+m− 2ℓ− 1 e.g. d = n+m+ 1

let e = d− (n+m− 2ℓ− 1) hence e = 2ℓ

then
[
xe 0
0 1

]
R =

[
xe rev(u,n− ℓ− 1) xe rev(v,m− ℓ− 1)

− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
is a (−n,−m)-reduced basis of

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xd

}

49

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: (u, v,h) where h = gcd(f,g) = uf+ vg

xgcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f), n = deg(g), ℓ = deg(h) m,n > 0, ℓ ⩽ min(m,n)

⇝ deg(f̄) = m− ℓ and deg(ḡ) = n− ℓ

lemma:
. there exists a unique (u, v) in K[X]2 such that{

uf+ vg = h,
deg(u) < n− ℓ and deg(v) < m− ℓ.

. for this (u, v) ∈ K[X]2 one has
[
u v

−ḡ f̄

] [
f
g

]
=

[
h
0

]
,

and the leftmost matrix in this identity is unimodular

theorem:
. defining R =

[
rev(u,n− ℓ− 1) rev(v,m− ℓ− 1)
− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
∈ K[X]2×2,

one has: R

[
rev(f,m)
rev(g,n)

]
=

[
xm+n−2ℓ−1 rev(h, ℓ)

0

]
. the matrix R is a (−n,−m)-reduced basis of I(0, [rev(f,m)

rev(g,n)])

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xm+n−2ℓ−1

}
ℓ is unknown!

corollary: xgcd in O(M(d) log(d))
for any d ⩾ n+m− 2ℓ− 1 e.g. d = n+m+ 1

let e = d− (n+m− 2ℓ− 1) hence e = 2ℓ

then
[
xe 0
0 1

]
R =

[
xe rev(u,n− ℓ− 1) xe rev(v,m− ℓ− 1)

− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
is a (−n,−m)-reduced basis of

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xd

}

49

applications

fast gcd and extended gcd

input: f and g univariate polynomials in K[X]
output: (u, v,h) where h = gcd(f,g) = uf+ vg

xgcd

some notation:
. polynomials f̄ = f/h and ḡ = g/h f̄ and ḡ are coprime
. m = deg(f), n = deg(g), ℓ = deg(h) m,n > 0, ℓ ⩽ min(m,n)

⇝ deg(f̄) = m− ℓ and deg(ḡ) = n− ℓ

lemma:
. there exists a unique (u, v) in K[X]2 such that{

uf+ vg = h,
deg(u) < n− ℓ and deg(v) < m− ℓ.

. for this (u, v) ∈ K[X]2 one has
[
u v

−ḡ f̄

] [
f
g

]
=

[
h
0

]
,

and the leftmost matrix in this identity is unimodular

theorem:
. defining R =

[
rev(u,n− ℓ− 1) rev(v,m− ℓ− 1)
− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
∈ K[X]2×2,

one has: R

[
rev(f,m)
rev(g,n)

]
=

[
xm+n−2ℓ−1 rev(h, ℓ)

0

]
. the matrix R is a (−n,−m)-reduced basis of I(0, [rev(f,m)

rev(g,n)])

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xm+n−2ℓ−1

}
ℓ is unknown!

corollary: xgcd in O(M(d) log(d))
for any d ⩾ n+m− 2ℓ− 1 e.g. d = n+m+ 1

let e = d− (n+m− 2ℓ− 1) hence e = 2ℓ

then
[
xe 0
0 1

]
R =

[
xe rev(u,n− ℓ− 1) xe rev(v,m− ℓ− 1)

− rev(ḡ,n− ℓ) rev(f̄,m− ℓ)

]
is a (−n,−m)-reduced basis of

=

{
[p q] ∈ K[X]1×2

∣∣∣ [p q]

[
rev(f,m)
rev(g,n)

]
= 0 mod xd

}
49

applications

perspectives — row bases

a row basis of a matrix F ∈ K[X]m×n

is a basis of its K[X]-row space
{pF | p ∈ K[X]1×m}

⇝ represented as R ∈ K[X]r×n, where r is the rank of F
⇝ F = UR for some U ∈ K[X]m×r

examples:

▶ row basis for F ∈ K[X]m×m nonsingular?

▶ row basis of
[
f
g

]
for f,g coprime polynomials?

▶K ∈ K[X](m−r)×m a left kernel basis of F ∈ K[X]m×n

row basis of K? column basis of K?

K has full rank so C is (m− r)× (m− r) nonsingular
and by definition K = CK̄ for some K̄
so KF = 0⇒ K̄F = 0, hence K̄ = VK

from K = CVK, with K having full row rank, we deduce CV = Im−r

applications:
▶ compute an s-reduced basis of the row space
▶ verify that a matrix is a kernel basis
▶ triangularization: Hermite normal form and determinant

algorithm:
▶K← left kernel basis for F
▶G← right kernel basis for K
▶R← matrix such that F = GR
complexity O (̃mnω−1 deg(F)), assuming m ⩾ n [Zhou-Labahn, 2013]

50

applications

perspectives — row bases

a row basis of a matrix F ∈ K[X]m×n

is a basis of its K[X]-row space
{pF | p ∈ K[X]1×m}

⇝ represented as R ∈ K[X]r×n, where r is the rank of F
⇝ F = UR for some U ∈ K[X]m×r

examples:

▶ row basis for F ∈ K[X]m×m nonsingular?

▶ row basis of
[
f
g

]
for f,g coprime polynomials?

▶K ∈ K[X](m−r)×m a left kernel basis of F ∈ K[X]m×n

row basis of K? column basis of K?

K has full rank so C is (m− r)× (m− r) nonsingular
and by definition K = CK̄ for some K̄
so KF = 0⇒ K̄F = 0, hence K̄ = VK

from K = CVK, with K having full row rank, we deduce CV = Im−r

applications:
▶ compute an s-reduced basis of the row space
▶ verify that a matrix is a kernel basis
▶ triangularization: Hermite normal form and determinant

algorithm:
▶K← left kernel basis for F
▶G← right kernel basis for K
▶R← matrix such that F = GR
complexity O (̃mnω−1 deg(F)), assuming m ⩾ n [Zhou-Labahn, 2013]

50

applications

perspectives — row bases

a row basis of a matrix F ∈ K[X]m×n

is a basis of its K[X]-row space
{pF | p ∈ K[X]1×m}

⇝ represented as R ∈ K[X]r×n, where r is the rank of F
⇝ F = UR for some U ∈ K[X]m×r

examples:

▶ row basis for F ∈ K[X]m×m nonsingular? R = F

▶ row basis of
[
f
g

]
for f,g coprime polynomials?

▶K ∈ K[X](m−r)×m a left kernel basis of F ∈ K[X]m×n

row basis of K? column basis of K?

K has full rank so C is (m− r)× (m− r) nonsingular
and by definition K = CK̄ for some K̄
so KF = 0⇒ K̄F = 0, hence K̄ = VK

from K = CVK, with K having full row rank, we deduce CV = Im−r

applications:
▶ compute an s-reduced basis of the row space
▶ verify that a matrix is a kernel basis
▶ triangularization: Hermite normal form and determinant

algorithm:
▶K← left kernel basis for F
▶G← right kernel basis for K
▶R← matrix such that F = GR
complexity O (̃mnω−1 deg(F)), assuming m ⩾ n [Zhou-Labahn, 2013]

50

applications

perspectives — row bases

a row basis of a matrix F ∈ K[X]m×n

is a basis of its K[X]-row space
{pF | p ∈ K[X]1×m}

⇝ represented as R ∈ K[X]r×n, where r is the rank of F
⇝ F = UR for some U ∈ K[X]m×r

examples:

▶ row basis for F ∈ K[X]m×m nonsingular? R = F

▶ row basis of
[
f
g

]
for f,g coprime polynomials? R = [1]

▶K ∈ K[X](m−r)×m a left kernel basis of F ∈ K[X]m×n

row basis of K? column basis of K?

K has full rank so C is (m− r)× (m− r) nonsingular
and by definition K = CK̄ for some K̄
so KF = 0⇒ K̄F = 0, hence K̄ = VK

from K = CVK, with K having full row rank, we deduce CV = Im−r

applications:
▶ compute an s-reduced basis of the row space
▶ verify that a matrix is a kernel basis
▶ triangularization: Hermite normal form and determinant

algorithm:
▶K← left kernel basis for F
▶G← right kernel basis for K
▶R← matrix such that F = GR
complexity O (̃mnω−1 deg(F)), assuming m ⩾ n [Zhou-Labahn, 2013]

50

applications

perspectives — row bases

a row basis of a matrix F ∈ K[X]m×n

is a basis of its K[X]-row space
{pF | p ∈ K[X]1×m}

⇝ represented as R ∈ K[X]r×n, where r is the rank of F
⇝ F = UR for some U ∈ K[X]m×r

examples:

▶ row basis for F ∈ K[X]m×m nonsingular? R = F

▶ row basis of
[
f
g

]
for f,g coprime polynomials? R = [1]

▶K ∈ K[X](m−r)×m a left kernel basis of F ∈ K[X]m×n

row basis of K? column basis of K? R = K and C = Im−r

K has full rank so C is (m− r)× (m− r) nonsingular
and by definition K = CK̄ for some K̄
so KF = 0⇒ K̄F = 0, hence K̄ = VK

from K = CVK, with K having full row rank, we deduce CV = Im−r

applications:
▶ compute an s-reduced basis of the row space
▶ verify that a matrix is a kernel basis
▶ triangularization: Hermite normal form and determinant

algorithm:
▶K← left kernel basis for F
▶G← right kernel basis for K
▶R← matrix such that F = GR
complexity O (̃mnω−1 deg(F)), assuming m ⩾ n [Zhou-Labahn, 2013]

50

applications

perspectives — row bases

a row basis of a matrix F ∈ K[X]m×n

is a basis of its K[X]-row space
{pF | p ∈ K[X]1×m}

⇝ represented as R ∈ K[X]r×n, where r is the rank of F
⇝ F = UR for some U ∈ K[X]m×r

examples:

▶ row basis for F ∈ K[X]m×m nonsingular? R = F

▶ row basis of
[
f
g

]
for f,g coprime polynomials? R = [1]

▶K ∈ K[X](m−r)×m a left kernel basis of F ∈ K[X]m×n

row basis of K? column basis of K? R = K and C = Im−r

K has full rank so C is (m− r)× (m− r) nonsingular
and by definition K = CK̄ for some K̄
so KF = 0⇒ K̄F = 0, hence K̄ = VK

from K = CVK, with K having full row rank, we deduce CV = Im−r

applications:
▶ compute an s-reduced basis of the row space
▶ verify that a matrix is a kernel basis
▶ triangularization: Hermite normal form and determinant

algorithm:
▶K← left kernel basis for F
▶G← right kernel basis for K
▶R← matrix such that F = GR
complexity O (̃mnω−1 deg(F)), assuming m ⩾ n [Zhou-Labahn, 2013]

50

applications

perspectives — row bases

a row basis of a matrix F ∈ K[X]m×n

is a basis of its K[X]-row space
{pF | p ∈ K[X]1×m}

⇝ represented as R ∈ K[X]r×n, where r is the rank of F
⇝ F = UR for some U ∈ K[X]m×r

examples:

▶ row basis for F ∈ K[X]m×m nonsingular? R = F

▶ row basis of
[
f
g

]
for f,g coprime polynomials? R = [1]

▶K ∈ K[X](m−r)×m a left kernel basis of F ∈ K[X]m×n

row basis of K? column basis of K? R = K and C = Im−r

K has full rank so C is (m− r)× (m− r) nonsingular
and by definition K = CK̄ for some K̄
so KF = 0⇒ K̄F = 0, hence K̄ = VK

from K = CVK, with K having full row rank, we deduce CV = Im−r

applications:
▶ compute an s-reduced basis of the row space
▶ verify that a matrix is a kernel basis
▶ triangularization: Hermite normal form and determinant

algorithm:
▶K← left kernel basis for F
▶G← right kernel basis for K
▶R← matrix such that F = GR
complexity O (̃mnω−1 deg(F)), assuming m ⩾ n [Zhou-Labahn, 2013]

50

applications

perspectives — triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

main property:
[
∗ ∗
K1 K2

]
is unimodular

▶ Hermite form of A = Hermite form of
[
R ∗
0 B

]
▶det(A) = det(R) det(B)

Hermite normal form and determinant in O (̃mω deg(A))

[Zhou, 2012] [Labahn-Neiger-Zhou, 2017]

51

applications

perspectives — triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

main property:
[
∗ ∗
K1 K2

]
is unimodular

▶ Hermite form of A = Hermite form of
[
R ∗
0 B

]
▶det(A) = det(R) det(B)

Hermite normal form and determinant in O (̃mω deg(A))

[Zhou, 2012] [Labahn-Neiger-Zhou, 2017]
51

applications

perspectives — block Wiedemann techniques

given a sparse matrix A ∈ Kn×n:
▶ solve a linear system Au = v
▶ compute the minimal polynomial of A

. sparse means that A has a large proportion of zero entries

. goal: exploit sparsity to do better than exponent ω

[Wiedemann 1986, Coppersmith 1994, Kaltofen 1995, Villard 1997]
block Wiedemann approach, for block dimension m:
1. choose random blocking matrices U,V ∈ Kn×m

2. compute linearly recurrent sequence of matrices in Km×m

UTV,UTAV, . . . ,UTAkV, . . .

3. find polynomial matrix generator P ∈ K[X]m×m of this sequence

▶ generically, d = 2 n
m

− 1 terms of the sequence are sufficient
▶ step 3 is matrix-Padé approx., in O (̃mωd) = O (̃mω−1n)
▶ often, m is taken as the number of threads available for
parallel computation of the matrix sequence

52

applications

perspectives — block Wiedemann techniques

given a sparse matrix A ∈ Kn×n:
▶ solve a linear system Au = v
▶ compute the minimal polynomial of A

. sparse means that A has a large proportion of zero entries

. goal: exploit sparsity to do better than exponent ω

[Wiedemann 1986, Coppersmith 1994, Kaltofen 1995, Villard 1997]
block Wiedemann approach, for block dimension m:
1. choose random blocking matrices U,V ∈ Kn×m

2. compute linearly recurrent sequence of matrices in Km×m

UTV,UTAV, . . . ,UTAkV, . . .

3. find polynomial matrix generator P ∈ K[X]m×m of this sequence

▶ generically, d = 2 n
m

− 1 terms of the sequence are sufficient
▶ step 3 is matrix-Padé approx., in O (̃mωd) = O (̃mω−1n)
▶ often, m is taken as the number of threads available for
parallel computation of the matrix sequence

52

summary

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶ pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶ base case: modulus of degree 1
▶ recursion: residual and basis multiplication

▶ minimal kernel bases and linear systems
▶ fast gcd and extended gcd
▶ perspectives

53

