## Vincent Neiger

Laboratoire LIP6, Sorbonne Université

vincent.neiger@lip6.fr

# polynomial matrices: fast approximation and applications

Algorithmes Efficaces en Calcul Formel Master Parisien de Recherche en Informatique 9 December 2024

# outline

## introduction

## shifted reduced forms

fast algorithms

## applications

# outline

## introduction

- rational approximation and interpolation
- ► the vector case
- ► pol. matrices: reminders and motivation

## shifted reduced forms

fast algorithms

## applications

 $\Downarrow$  earlier in the course  $\Downarrow$ 

 $\Downarrow$  in this lecture  $\Downarrow$ 

#### $\Downarrow$ earlier in the course $\Downarrow$

- addition f + g, multiplication f \* g
- $\blacktriangleright$  division with remainder f=qg+r
- truncated inverse  $f^{-1} \mod X^d$
- extended GCD uf + vg = gcd(f, g)

- multipoint eval.  $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation  $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation  $f = \frac{p}{a} \mod X^d$
- minpoly of linearly recurrent sequence

 $\Downarrow$  in this lecture  $\Downarrow$ 

## $\Downarrow$ earlier in the course $\Downarrow$

#### O(M(d))

- $\blacktriangleright$  addition f+g, multiplication  $f\ast g$
- ${\scriptstyle \blacktriangleright}$  division with remainder f=qg+r
- $\blacktriangleright$  truncated inverse  $f^{-1} \mbox{ mod } X^d$
- extended GCD uf + vg = gcd(f, g)

#### $O(\mathsf{M}(d) \mathsf{log}(d))$

- multipoint eval.  $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- $\blacktriangleright$  interpolation  $f(\alpha_1),\ldots,f(\alpha_d)\mapsto f$
- Padé approximation  $f = \frac{p}{a} \mod X^d$
- minpoly of linearly recurrent sequence

## $\Downarrow$ in this lecture $\Downarrow$

## $\Downarrow$ earlier in the course $\Downarrow$

## O(M(d))

- $\blacktriangleright$  addition f+g, multiplication  $f\ast g$
- $\blacktriangleright$  division with remainder f=qg+r
- $\blacktriangleright$  truncated inverse  $f^{-1} \bmod X^d$
- extended GCD  $uf + \nu g = gcd(f, g)$

#### $O(\mathsf{M}(d) \mathsf{log}(d))$

- multipoint eval.  $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- $\blacktriangleright$  interpolation  $f(\alpha_1),\ldots,f(\alpha_d)\mapsto f$
- Padé approximation  $f = \frac{p}{q} \mod X^d$
- minpoly of linearly recurrent sequence

## $\Downarrow$ in this lecture $\Downarrow$

Padé approximation, sequence minpoly, extended GCD  $O(\mathsf{M}(d) \mathsf{log}(d)) \text{ operations in } \mathbb{K}$ 

#### matrix versions of these problems

 $O(\mathfrak{m}^{\omega}\mathsf{M}(d)\log(d))$  operations in  $\mathbb{K}$ 

or a tiny bit more for matrix-GCD

rational approximation and interpolation

 $\begin{array}{ll} \mbox{given power series } p(X) \mbox{ and } q(X) \mbox{ over } \mathbb{K} \mbox{ at precision } d, \\ \mbox{with } q(X) \mbox{ invertible,} \\ \rightarrow \mbox{ compute } \frac{p(X)}{q(X)} \mbox{ mod } X^d \mbox{ algo} \ref{eq: compute } O(\ref{eq: compute } d) \end{array}$ 

rational approximation and interpolation

given power series p(X) and q(X) over  $\mathbb K$  at precision d, with q(X) invertible,  $\rightarrow \text{ compute } \frac{p(X)}{q(X)} \text{ mod } X^d \qquad \qquad \text{algo?? O(??)} \\ \text{ inv+mul: O(M(d))}$ 

rational approximation and interpolation

 $\begin{array}{l} \mbox{given power series } p(X) \mbox{ and } q(X) \mbox{ over } \mathbb{K} \mbox{ at precision } d, \\ \mbox{with } q(X) \mbox{ invertible,} \\ \rightarrow \mbox{ compute } \frac{p(X)}{q(X)} \mbox{ mod } X^d & \mbox{algo?? } O(??) \\ \mbox{ inv+mul: } O(M(d)) \end{array}$ 

 $\begin{array}{ll} \mbox{given } M(X) \in \mathbb{K}[X] \mbox{ of degree } d > 0, \\ \mbox{given polynomials } p(X) \mbox{ and } q(X) \mbox{ over } \mathbb{K} \mbox{ of degree } < d, \\ \mbox{with } q(X) \mbox{ invertible modulo } M(X), \\ \mbox{ or mpute } \frac{p(X)}{q(X)} \mbox{ mod } M(X) \mbox{ algo} \ref{eq:model} O(\ref{eq:model}) \label{eq:model} \end{array}$ 

rational approximation and interpolation

 $\begin{array}{l} \mbox{given power series } p(X) \mbox{ and } q(X) \mbox{ over } \mathbb{K} \mbox{ at precision } d, \\ \mbox{with } q(X) \mbox{ invertible,} \\ \rightarrow \mbox{ compute } \frac{p(X)}{q(X)} \mbox{ mod } X^d \mbox{ algo} \ref{eq: series of the series of th$ 

rational approximation and interpolation

given power series p(X) and q(X) over  $\mathbb{K}$  at precision d, with q(X) invertible,  $\rightarrow \text{ compute } \frac{p(X)}{q(X)} \mod X^d$  algo?? O(??) inv+mul: O(M(d))

given 
$$M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X]$$
,  
for pairwise distinct  $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$ ,  
given polynomials  $p(X)$  and  $q(X)$  over  $\mathbb{K}$  of degree  $< d$ ,  
with  $q(X)$  invertible modulo  $M(X)$ , what does that mean?  
 $\rightarrow \text{ compute } \frac{p(X)}{q(X)} \mod M(X)$  algo??  $O(??)$ 

rational approximation and interpolation

given power series p(X) and q(X) over  $\mathbb{K}$  at precision d, with q(X) invertible,  $\rightarrow \text{ compute } \frac{p(X)}{q(X)} \mod X^d$  algo?? O(??) inv+mul: O(M(d))

given 
$$M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X]$$
,  
for pairwise distinct  $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$ ,  
given polynomials  $p(X)$  and  $q(X)$  over  $\mathbb{K}$  of degree  $< d$ ,  
with  $q(X)$  invertible modulo  $M(X)$ , what does that mean?  
 $\rightarrow \text{ compute } \frac{p(X)}{q(X)} \mod M(X)$  algo??  $O(??)$   
eval+div+interp  $O(M(d) \log(d))$ 

## rational approximation and interpolation

rational fractions ↔ linearly recurrent sequences reminders from lectures 3+6

## rational approximation and interpolation

 $\begin{array}{c} \textbf{rational fractions} \longleftrightarrow \textbf{linearly recurrent sequences} \\ \textbf{reminders from lectures 3+6} \end{array}$ 



#### rational approximation and interpolation

rational fractions  $\longleftrightarrow$  linearly recurrent sequences reminders from lectures 3+6



#### rational approximation and interpolation

rational fractions  $\longleftrightarrow$  linearly recurrent sequences reminders from lectures 3+6



#### rational approximation and interpolation

rational fractions  $\longleftrightarrow$  linearly recurrent sequences reminders from lectures 3+6



## rational approximation and interpolation

## Padé approximation:

given power series f(X) at precision d,  $\rightarrow$  compute p(X), q(X) such that  $f = \frac{p}{q} \mod X^d$ 

## rational approximation and interpolation

## Padé approximation:

given power series f(X) at precision d,  $\rightarrow$  compute p(X), q(X) such that  $f = \frac{p}{q} \text{ mod } X^d$ 

opinions on this algorithmic problem?

## rational approximation and interpolation

## Padé approximation:

given power series f(X) at precision d, given degree constraints  $d_1, d_2 > 0, \\ \rightarrow \text{ compute polynomials } (p(X), q(X)) \text{ of degrees} < (d_1, d_2) \\ \text{and such that } f = \frac{p}{q} \mod X^d$ 

## rational approximation and interpolation

## Padé approximation:

given power series f(X) at precision d, given degree constraints  $d_1, d_2 > 0, \\ \rightarrow \text{ compute polynomials } (p(X), q(X)) \text{ of degrees} < (d_1, d_2) \\ \text{ and such that } f = \frac{p}{q} \mod X^d$ 

#### **Cauchy interpolation:**

given  $M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X]$ , for pairwise distinct  $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$ , given degree constraints  $d_1, d_2 > 0$ ,  $\rightarrow$  compute polynomials (p(X), q(X)) of degrees  $< (d_1, d_2)$ and such that  $f = \frac{p}{a} \mod M(X)$ 

## rational approximation and interpolation

## Padé approximation:

given power series f(X) at precision d, given degree constraints  $d_1, d_2 > 0,$   $\rightarrow$  compute polynomials (p(X), q(X)) of degrees  $< (d_1, d_2)$  and such that  $f = \frac{p}{q} \mod X^d$ 

#### Cauchy interpolation:

given  $M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X]$ , for pairwise distinct  $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$ , given degree constraints  $d_1, d_2 > 0$ ,  $\rightarrow$  compute polynomials (p(X), q(X)) of degrees  $< (d_1, d_2)$ and such that  $f = \frac{p}{q} \mod M(X)$ 

- degree constraints specified by the context
- ${\scriptstyle \bullet}$  usual choices have  $d_1+d_2\approx d$  and existence of a solution

# Sur la généralisation des fractions continues algébriques; PAR M. H. PADÉ.

Docteur ès Sciences mathématiques, Professeur au lycée de Lille.

# [1894, Journal de mathématiques pures et appliquées] INTRODUCTION.

M. Hermite s'est, dans un travail récemment paru ('), occupé de la généralisation des fractions continues algébriques. La question est de déterminer les polynomes  $X_1, X_2, ..., X_n$ , de degrés  $\mu_1, \mu_2, ..., \mu_n$ , qui satisfont à l'équation

$$S_1X_1 + S_2X_2 + \ldots + S_nX_n = S x^{\mu_1 + \mu_2 + \ldots + \mu_n + n-1},$$

 $S_1, S_2, \ldots, S_n$  étant des séries entières données, et S une série également entière. Ou plutôt, il s'agit d'obtenir un algorithme qui permette le calcul de proche en proche de ces systèmes de *n* polynomes, et qui soit analogue à l'algorithme par lequel le numérateur et le dénominateur d'une réduite d'une fraction continue se déduisent des numérateurs et dénominateurs des réduites précédentes. D'élégantes considé-

approximation and interpolation: the vector case

## Hermite-Padé approximation

[Hermite 1893, Padé 1894]

#### input:

- ${\scriptstyle \blacktriangleright}$  polynomials  $f_1,\ldots,f_m\in \mathbb{K}[X]$
- ${\scriptstyle \bullet} \mbox{ precision } d \in \mathbb{Z}_{>0}$
- ${\scriptstyle \bullet} \mbox{ degree bounds } d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

#### output:

polynomials  $p_1,\ldots,p_{\mathfrak{m}}\in\mathbb{K}[X]$  such that

$$\bullet p_1 f_1 + \dots + p_m f_m = 0 \mod X^d$$

(Padé approximation: particular case m=2 and  $f_2=-1$ )

approximation and interpolation: the vector case

## M-Padé approximation / vector rational interpolation

[Cauchy 1821, Mahler 1968]

## input:

- ${\scriptstyle \blacktriangleright}$  polynomials  $f_1,\ldots,f_m\in \mathbb{K}[X]$
- ${\scriptstyle \blacktriangleright}$  pairwise distinct points  $\alpha_1,\ldots,\alpha_d\in\mathbb{K}$
- ${\scriptstyle \bullet} \mbox{ degree bounds } d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

#### output:

polynomials  $p_1,\ldots,p_m\in\mathbb{K}[X]$  such that

- $\centerdot \, p_1(\alpha_i)f_1(\alpha_i) + \dots + p_m(\alpha_i)f_m(\alpha_i) = 0 \text{ for all } 1 \leqslant i \leqslant d$

(rational interpolation: particular case m=2 and  $f_2=-1$ )

## approximation and interpolation: the vector case

## in this lecture: modular equation and fast algebraic algorithms

[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard 2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

## input:

- ${\scriptstyle \bullet}$  polynomials  $f_1,\ldots,f_m\in \mathbb{K}[X]$
- ${\scriptstyle \bullet}\xspace$  field elements  $\alpha_1,\ldots,\,\alpha_d\in\mathbb{K}$
- ${\scriptstyle \bullet} \mbox{ degree bounds } d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

 $\stackrel{\scriptstyle \sim \rightarrow}{\quad} \text{not necessarily distinct} \\ \stackrel{\scriptstyle \sim \rightarrow}{\quad} \text{general "shift" } s \in \mathbb{Z}^m$ 

#### output:

polynomials  $p_1,\ldots,p_{\mathfrak{m}}\in\mathbb{K}[X]$  such that

• 
$$p_1 f_1 + \dots + p_m f_m = 0 \mod \prod_{1 \leqslant i \leqslant d} (X - \alpha_i)$$

(Hermite-Padé:  $\alpha_1 = \cdots = \alpha_d = 0$ ; interpolation: pairwise distinct points)

## approximation and interpolation: the vector case

### applications:

► univariate polynomials and linearly recurrent sequences XGCD, rational reconstruction, "fast Berlekamp-Massey", ...

► sparse K-linear systems Coppersmith's block-Wiedemann approach

▶ structured K-matrices

Hankel/Toeplitz/Vandermonde, block structures, displacement rank, ...

 $\blacktriangleright$  computations with  $\mathbb K\text{-matrices}$  Krylov iterates, minimal/characteristic polynomial, Frobenius form,  $\ldots$ 

 $\blacktriangleright$  computations with  $\mathbb{K}[X]\text{-matrices}$  determinant, nullspace/kernel, inversion, Hermite normal form,  $\ldots$ 

► computations with multivariate polynomials multivariate interpolation, syzygy modules, Gröbner bases, ...

approximation and structured linear system

$$\begin{split} \mathbb{K} &= \mathbb{F}_7 \\ f &= 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \\ d &= 8, \, d_1 = 3, \, d_2 = 6 \\ &\to \text{look for } (p,q) \text{ of degree} < (3,6) \text{ such that } f = \frac{p}{q} \text{ mod } X^8 \end{split}$$

$$\begin{bmatrix} q & p \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0 \mod X^8$$

approximation and structured linear system

$$\begin{split} \mathbb{K} &= \mathbb{F}_7 \\ f &= 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \\ d &= 8, d_1 = 3, d_2 = 6 \\ &\to \text{look for } (p, q) \text{ of degree} < (3, 6) \text{ such that } f = \frac{p}{a} \mod X^6 \end{split}$$

г <u>л</u>

$$\begin{bmatrix} q & p \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0 \mod X^{8}$$

$$\begin{bmatrix} q & q \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0$$

approximation and structured linear system

$$\begin{split} \mathbb{K} &= \mathbb{F}_7 \\ f &= 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \\ d &= 8, d_1 = 3, d_2 = 6 \\ &\to \text{look for } (p, q) \text{ of degree} < (3, 6) \text{ such that } f = \frac{p}{a} \mod X^6 \end{split}$$

 $\begin{bmatrix} q & p \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0 \mod X^{8}$   $\begin{bmatrix} q_{0} & q_{1} & q_{2} & q_{3} & q_{4} & q_{5} \mid p_{0} & p_{1} & p_{2} \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0$ 

## interpolation and structured linear system

application of vector rational interpolation: given pairwise distinct points  $\{(\alpha_i, \beta_i), 1 \leqslant i \leqslant 8\} = \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\},$  compute a bivariate polynomial  $p(X, Y) \in \mathbb{K}[X, Y]$  such that  $p(\alpha_i, \beta_i) = 0$  for  $1 \leqslant i \leqslant 8$ 

 $\left. \begin{array}{l} M(X) = (X-24) \cdots (X-59) \\ L(X) = \text{Lagrange interpolant} \end{array} \right\} \longrightarrow \text{solutions} = \text{ideal } \langle M(X), Y - L(X) \rangle \\ \end{array} \right.$ 

solutions of smaller X-degree:  $p(X, Y) = p_0(X) + p_1(X)Y + p_2(X)Y^2$ 

$$p(X, L(X)) = \begin{bmatrix} p_0 & p_1 & p_2 \end{bmatrix} \begin{bmatrix} 1 \\ L \\ L^2 \end{bmatrix} = 0 \mod M(X)$$

- ▶ instance of univariate rational vector interpolation
- with a structured input equation (powers of  $L \mod M$ )

## interpolation and structured linear system

# application of vector rational interpolation: given pairwise distinct points $\{(\alpha_i, \beta_i), 1 \leqslant i \leqslant 8\} = \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\},$ compute a bivariate polynomial $p(X, Y) \in \mathbb{K}[X, Y]$ such that $p(\alpha_i, \beta_i) = 0$ for $1 \leqslant i \leqslant 8$



## polynomial matrices: reminder and motivation

why polynomial matrices here?

polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is 
$$\begin{split} & \mathcal{S} = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \\ & \text{ recall } \mathcal{M}(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \end{split}$$

## polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is 
$$\begin{split} & \mathcal{S} = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \\ & \text{ recall } \mathcal{M}(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \end{split}$$

 $\mathbb S$  is a "free  $\mathbb K[X]\text{-module}$  of rank  $\mathfrak m$  ", meaning:

- $\blacktriangleright$  stable under  $\mathbb{K}[X]\text{-linear combinations}$
- $\scriptstyle \bullet$  admits a basis consisting of m elements
- basis =  $\mathbb{K}[X]$ -linear independence + generates all solutions
#### polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is 
$$\begin{split} & \mathcal{S} = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \\ & \text{ recall } \mathcal{M}(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \end{split}$$

 $\mathbb S$  is a "free  $\mathbb K[X]\text{-module}$  of rank  $\mathfrak m$  ", meaning:

- stable under  $\mathbb{K}[X]$ -linear combinations
- $\scriptstyle \bullet$  admits a basis consisting of m elements
- basis =  $\mathbb{K}[X]$ -linear independence + generates all solutions

 $\begin{array}{ll} \bullet \ & S \subset \mathbb{K}[X]^m \ \Rightarrow \ & S \text{ has rank} \leqslant m \\ \bullet \ & M(X)\mathbb{K}[X]^m \subset \ & S \ \Rightarrow \ & S \text{ has rank} \geqslant m \end{array}$ 

remark: solutions are not considered modulo M e.g.  $(M,0,\ldots,0)$  is in  ${\cal S}$  and may appear in a basis

#### polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is 
$$\begin{split} & \mathcal{S} = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \\ & \text{ recall } \mathcal{M}(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \end{split}$$

#### basis of solutions:

- square nonsingular matrix  $\mathbf{P}$  in  $\mathbb{K}[X]^{m \times m}$
- $\blacktriangleright$  each row of **P** is a solution
- lacksimany solution is a  $\mathbb{K}[X]$ -combination  $\mathbf{uP}$ ,  $\mathbf{u} \in \mathbb{K}[X]^{1 imes m}$

i.e.  ${\mathbb S}$  is the  ${\mathbb K}[X]\text{-row}$  space of P

#### polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is 
$$\begin{split} & \mathcal{S} = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \\ & \text{ recall } \mathcal{M}(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \end{split}$$

#### basis of solutions:

- square nonsingular matrix  $\mathbf{P}$  in  $\mathbb{K}[X]^{m \times m}$
- $\blacktriangleright$  each row of **P** is a solution
- ullet any solution is a  $\mathbb{K}[X]$ -combination  $\mathbf{uP}$ ,  $\mathbf{u} \in \mathbb{K}[X]^{1 imes m}$

i.e.  ${\mathbb S}$  is the  ${\mathbb K}[X]\text{-row}$  space of P

## prove: det(P) is a divisor of $M(X)^m$

polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is 
$$\begin{split} & \mathcal{S} = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \\ & \text{ recall } \mathcal{M}(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \end{split}$$

## **basis of solutions:** • square nonsingular matrix P in $\mathbb{K}[X]^{m \times m}$ • each row of P is a solution • any solution is a $\mathbb{K}[X]$ -combination $\mathbf{u}\mathbf{P}, \mathbf{u} \in \mathbb{K}[X]^{1 \times m}$ i.e. S is the $\mathbb{K}[X]$ -row space of P

prove:  $det(\mathbf{P})$  is a divisor of  $M(X)^m$ 

prove: any other basis is UP for  $U\in\mathbb{K}[X]^{m\times m}$  with  $\mathsf{det}(U)\in\mathbb{K}\setminus\{0\}$ 

#### polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is 
$$\begin{split} & \mathcal{S} = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \\ & \text{ recall } \mathcal{M}(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \end{split}$$

#### basis of solutions:

- square nonsingular matrix  $\mathbf{P}$  in  $\mathbb{K}[X]^{m \times m}$
- ${\scriptstyle \blacktriangleright}$  each row of P is a solution
- ${\scriptstyle \bullet}$  any solution is a  $\mathbb{K}[X]{\rm -combination}~{\bf uP}, {\bf u} \in \mathbb{K}[X]^{1 \times m}$

i.e.  ${\mathbb S}$  is the  ${\mathbb K}[X]\text{-row}$  space of P

computing a basis of S with "minimal degrees"

- ▶ has many more applications than a single small-degree solution
- ▶ is in most cases the fastest known strategy anyway(!)
- $\rightsquigarrow$  degree minimality ensured via shifted reduced forms

#### polynomial matrices: reminder and motivation

 $\mathbf{A} = \begin{bmatrix} 3X+4 & X^3+4X+1 & 4X^2+3 \\ 5 & 5X^2+3X+1 & 5X+3 \\ 3X^3+X^2+5X+3 & 6X+5 & 2X+1 \end{bmatrix} \in \mathbb{K}[X]^{3\times 3} \qquad \begin{array}{c} 3\times 3 \text{ matrix of degree 3} \\ \text{with entries in } \mathbb{K}[X] = \mathbb{F}_7[X] \end{array}$ 

operations in  $\mathbb{K}[X]_{\leq d}^{m \times m}$ :

- combination of matrix and polynomial computations
- $\scriptstyle \bullet$  addition in  $O(m^2d),$  naive multiplication in  $O(m^3d^2)$
- $\blacktriangleright$  some tools shared with  $\mathbb K\text{-matrices},$  others specific to  $\mathbb K[X]\text{-matrices}$

[Cantor-Kaltofen'91]

multiplication in  $O(m^{\omega} d \log(d) + m^2 d \log(d) \log \log(d))$ 

 $\in O(\mathfrak{m}^{\omega}\mathsf{M}(d))\subset O\tilde{}(\mathfrak{m}^{\omega}d)$ 

## polynomial matrices: reminder and motivation

 $\mathbf{A} = \begin{bmatrix} 3X+4 & X^3+4X+1 & 4X^2+3 \\ 5 & 5X^2+3X+1 & 5X+3 \\ 3X^3+X^2+5X+3 & 6X+5 & 2X+1 \end{bmatrix} \in \mathbb{K}[X]^{3\times 3} \qquad \begin{array}{c} 3\times 3 \text{ matrix of degree } 3 \\ \text{with entries in } \mathbb{K}[X] = \mathbb{F}_7[X] \end{array}$ 

operations in  $\mathbb{K}[X]_{\leq d}^{m \times m}$ :

- combination of matrix and polynomial computations
- $\scriptstyle \bullet$  addition in  $O(m^2d),$  naive multiplication in  $O(m^3d^2)$
- $\blacktriangleright$  some tools shared with  $\mathbb K\text{-matrices},$  others specific to  $\mathbb K[X]\text{-matrices}$

#### [Cantor-Kaltofen'91]

### multiplication in $O(m^{\omega} d \log(d) + m^2 d \log(d) \log \log(d))$

 $\in O(\mathfrak{m}^{\omega}\mathsf{M}(d))\subset \mathsf{O}\tilde{}(\mathfrak{m}^{\omega}d)$ 

- ► Newton truncated inversion, matrix-QuoRem
- ▶ inversion and determinant via evaluation-interpolation
- ▶ vector rational approximation & interpolation

- $\rightarrow$  fast  $O^{\sim}(m^{\omega}d)$
- $\rightarrow$  medium O<sup>~</sup>(m<sup> $\omega$ +1</sup>d)

 $\rightarrow$  ???

## polynomial matrices: reminder and motivation

 $\begin{array}{rcl} \mbox{reductions of most problems to polynomial matrix multiplication} \\ \mbox{matrix } m \times m \mbox{ of degree } d & \rightarrow & O^{\sim}(m^{\omega} d) \\ & & of "average" \mbox{ degree } \frac{D}{m} & \rightarrow & O^{\sim}(m^{\omega} \frac{D}{m}) \end{array}$ 

#### classical matrix operations

- multiplication
- kernel, system solving
- ▶ rank, determinant
- inversion  $O^{(m^3d)}$

#### univariate specific operations

- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

#### transformation to normal forms

- ▶ triangularization: Hermite form
- ▶ row reduction: Popov form
- diagonalization: Smith form

## polynomial matrices: reminder and motivation

 $\begin{array}{rcl} \mbox{reductions of most problems to polynomial matrix multiplication} \\ \mbox{matrix } m \times m \mbox{ of degree } d & \rightarrow & O^{\tilde{}}(m^{\omega} d) \\ & & of "average" \mbox{ degree } \frac{D}{m} & \rightarrow & O^{\tilde{}}(m^{\omega} \frac{D}{m}) \end{array}$ 



#### transformation to normal forms

- ▶ triangularization: Hermite form
- ▶ row reduction: Popov form
- diagonalization: Smith form

### polynomial matrices: reminder and motivation

 $\begin{array}{rcl} \mbox{reductions of most problems to polynomial matrix multiplication} \\ \mbox{matrix } m \times m \mbox{ of degree } d & \rightarrow & O~(m^{\omega} d) \\ & & of "average" \mbox{ degree } \frac{D}{m} & \rightarrow & O~(m^{\omega} \frac{D}{m}) \end{array}$ 



#### transformation to normal forms

- ▶ triangularization: Hermite form
- ▶ row reduction: Popov form
- diagonalization: Smith form

## polynomial matrices: reminder and motivation

 $\begin{array}{rcl} \mbox{reductions of most problems to polynomial matrix multiplication} \\ \mbox{matrix } m \times m \mbox{ of degree } d & \rightarrow & O^{\tilde{}}(m^{\omega} d) \\ & & of "average" \mbox{ degree } \frac{D}{m} & \rightarrow & O^{\tilde{}}(m^{\omega} \frac{D}{m}) \end{array}$ 



- row reduction: Popov form
- diagonalization: Smith form

# outline

## introduction

- rational approximation and interpolation
- ► the vector case
- ► pol. matrices: reminders and motivation

## shifted reduced forms

fast algorithms

#### applications

# outline

## introduction

shifted reduced forms

- rational approximation and interpolation
- ► the vector case
- ▶ pol. matrices: reminders and motivation
- ▶ reducedness: examples and properties
- ▶ shifted forms and degree constraints
- stability under multiplication

## fast algorithms

#### applications

#### reducedness: examples and properties

#### notation:

let 
$$\mathbf{A} \in \mathbb{K}[X]^{m \times n}$$
 with no zero row,  
define  $\mathbf{d} = (d_1, \dots, d_m) = \mathsf{rdeg}(\mathbf{A})$   
and  $\mathbf{X}^{\mathbf{d}} = \begin{bmatrix} X^{d_1} & & \\ & \ddots & \\ & & X^{d_m} \end{bmatrix} \in \mathbb{K}[X]^{m \times m}$ 

### definition: (row-wise) leading matrix

the leading matrix of A is the unique matrix  ${\sf Im}(A) \in \mathbb{K}^{m \times n}$  such that  $A = X^d {\sf Im}(A) + R$  with  ${\sf rdeg}(R) < d$  entry-wise

equivalently,  $X^{-d}A = \mathsf{Im}\left(A\right) + \mathsf{terms}$  of strictly negative degree

#### reducedness: examples and properties

#### notation:

let 
$$\mathbf{A} \in \mathbb{K}[X]^{m \times n}$$
 with no zero row,  
define  $\mathbf{d} = (d_1, \dots, d_m) = \mathsf{rdeg}(\mathbf{A})$   
and  $\mathbf{X}^{\mathbf{d}} = \begin{bmatrix} X^{d_1} & & \\ & \ddots & \\ & & X^{d_m} \end{bmatrix} \in \mathbb{K}[X]^{m \times m}$ 

### definition: (row-wise) leading matrix

the leading matrix of A is the unique matrix  ${\sf Im}(A) \in \mathbb{K}^{m \times n}$  such that  $A = X^d {\sf Im}(A) + R$  with  ${\sf rdeg}(R) < d$  entry-wise

equivalently,  $X^{-d}A = \mathsf{Im}\left(A\right) + \mathsf{terms}$  of strictly negative degree

#### definition: (row-wise) reduced matrix

 $\mathbf{A} \in \mathbb{K}[X]^{m \times n}$  is said to be reduced if  $\mathsf{Im}(\mathbf{A})$  has full row rank

#### reducedness: examples and properties

consider the following matrices, with  $\mathbb{K}=\mathbb{F}_7:$ 

$$\mathbf{A}_{1} = \begin{bmatrix} 3X+4 & X^{3}+4X+1 & 4X^{2}+3\\ 5 & 5X^{2}+3X+1 & 5X+3 \end{bmatrix}$$
$$\mathbf{A}_{2} = \begin{bmatrix} 3X+1 & 4X+3 & 5X+5\\ 0 & 4X^{2}+6X & 5\\ 4X^{2}+5X+2 & 5 & 6X^{2}+1 \end{bmatrix}$$

 $A_3 = transpose of A_1$ 

 $\mathbf{A}_4 = \text{transpose of } \mathbf{A}_2$ 

answer the following, for  $i \in \{1, 2, 3, 4\}$ :

- 1. what is  $\mathsf{rdeg}(\mathbf{A}_i)$ ?
- 2. what is  $Im(\mathbf{A}_i)$ ?
- 3. is  $\mathbf{A}_i$  reduced?

reducedness: examples and properties

let  $\mathbf{A} \in \mathbb{K}[X]^{m \times n}$  with  $m \leqslant n$ , the following are equivalent:

(i) A is reduced (i.e. Im(A) has full rank)

reducedness: examples and properties

let  $\mathbf{A} \in \mathbb{K}[X]^{m \times n}$  with  $m \leq n$ , the following are equivalent:

(i)  $\mathbf{A}$  is reduced (i.e.  $Im(\mathbf{A})$  has full rank)

(ii) for any vector  $\mathbf{u} = [\mathbf{u}_1 \ 1 \ \mathbf{u}_2] \in \mathbb{K}[X]^{1 \times m}$  with 1 at index i,  $\mathsf{rdeg}(\mathbf{u} \mathbf{A}) \geqslant \mathsf{rdeg}(\mathbf{A}_{i,*})$ 

reducedness: examples and properties

let  $\mathbf{A} \in \mathbb{K}[X]^{m \times n}$  with  $m \leq n$ , the following are equivalent:

(i)  $\mathbf{A}$  is reduced (i.e.  $Im(\mathbf{A})$  has full rank)

(ii) for any vector  $\mathbf{u} = [\mathbf{u}_1 \ 1 \ \mathbf{u}_2] \in \mathbb{K}[X]^{1 \times m}$  with 1 at index i,  $\mathsf{rdeg}(\mathbf{u} \mathbf{A}) \geqslant \mathsf{rdeg}(\mathbf{A}_{i,*})$ 

(iii) predictable degree: for any vector  $\mathbf{u} = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$ , rdeg $(\mathbf{u}\mathbf{A}) = \max_{1 \leqslant i \leqslant m} (deg(u_i) + rdeg(\mathbf{A}_{i,*}))$ 

reducedness: examples and properties

let  $\mathbf{A} \in \mathbb{K}[X]^{m \times n}$  with  $m \leqslant n$ , the following are equivalent:

(i)  $\mathbf{A}$  is reduced (i.e.  $Im(\mathbf{A})$  has full rank)

(ii) for any vector  $\mathbf{u} = [\mathbf{u}_1 \ 1 \ \mathbf{u}_2] \in \mathbb{K}[X]^{1 \times m}$  with 1 at index i,  $\mathsf{rdeg}(\mathbf{u} \mathbf{A}) \geqslant \mathsf{rdeg}(\mathbf{A}_{i,*})$ 

(iii) predictable degree: for any vector  $\mathbf{u} = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$ , rdeg $(\mathbf{u}\mathbf{A}) = \max_{1 \leqslant i \leqslant m} (deg(u_i) + rdeg(\mathbf{A}_{i,*}))$ 

(iv) degree minimality: rdeg(A)  $\preccurlyeq$  rdeg(UA) holds for any nonsingular matrix  $\mathbf{U} \in \mathbb{K}[X]^{m \times m}$ , where  $\preccurlyeq$  sorts the tuples in nondecreasing order and then uses lexicographic comparison

reducedness: examples and properties

let  $\mathbf{A} \in \mathbb{K}[X]^{m \times n}$  with  $m \leqslant n$ , the following are equivalent:

(i)  $\mathbf{A}$  is reduced (i.e.  $Im(\mathbf{A})$  has full rank)

(ii) for any vector  $\mathbf{u} = [\mathbf{u}_1 \ 1 \ \mathbf{u}_2] \in \mathbb{K}[X]^{1 \times m}$  with 1 at index i,  $\mathsf{rdeg}(\mathbf{u} \mathbf{A}) \geqslant \mathsf{rdeg}(\mathbf{A}_{i,*})$ 

(iii) predictable degree: for any vector  $\mathbf{u} = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$ , rdeg $(\mathbf{u}\mathbf{A}) = \max_{1 \leqslant i \leqslant m} (deg(u_i) + rdeg(\mathbf{A}_{i,*}))$ 

(iv) degree minimality: rdeg(A)  $\preccurlyeq$  rdeg(UA) holds for any nonsingular matrix  $\mathbf{U} \in \mathbb{K}[X]^{m \times m}$ , where  $\preccurlyeq$  sorts the tuples in nondecreasing order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) =  $|\mathsf{rdeg}(A)|$  (only when  $\mathfrak{m}=\mathfrak{n})$ 

## reducedness: examples and properties

recall the matrix, with 
$$\mathbb{K} = \mathbb{F}_7$$
,  
 $\mathbf{A} = \begin{bmatrix} 3X+1 & 4X+3 & 5X+5\\ 0 & 4X^2+6X & 5\\ 4X^2+5X+2 & 5 & 6X^2+1 \end{bmatrix}$   
1. what is deg det( $\mathbf{A}$ )?  
2. what is rdeg( $[4X^2+1 & 2X & 4X+5]\mathbf{A}$ )?  
3. is it possible to find a matrix  
 $\mathbf{P} = \begin{bmatrix} p_{00} & p_{01} & p_{02}\\ p_{10} & p_{11} & p_{12} \end{bmatrix}$   
whose rank is 2, whose degree is 1, and which is a left-multiple of  $\mathbf{A}$ ?

#### reducedness: examples and properties

recall the matrix, with 
$$\mathbb{K} = \mathbb{F}_7$$
,  
 $\mathbf{A} = \begin{bmatrix} 3X+1 & 4X+3 & 5X+5\\ 0 & 4X^2+6X & 5\\ 4X^2+5X+2 & 5 & 6X^2+1 \end{bmatrix}$   
1. what is deg det( $\mathbf{A}$ )?  
2. what is rdeg( $[4X^2+1 & 2X & 4X+5]\mathbf{A}$ )?  
3. is it possible to find a matrix  
 $\mathbf{P} = \begin{bmatrix} p_{00} & p_{01} & p_{02}\\ p_{10} & p_{11} & p_{12} \end{bmatrix}$   
whose rank is 2, whose degree is 1, and which is a left-multiple of  $\mathbf{A}$ ?

find a row vector  $\mathbf{u}$  of degree 1 such that  $\mathbf{uA}$  has degree 2, where  $\mathbf{A} = \begin{bmatrix} 3X+4 & X^3+4X+1 & 4X^2+3\\ 5 & 5X^2+3X+1 & 5X+3 \end{bmatrix}$ 

## shifted forms and degree constraints

keeping our problem in mind:

- $\bullet$  input:  $f_i{\,}'s$  and  $\alpha_i{\,}'s$  and degree constraints  $d_1,\ldots,d_m\in\mathbb{Z}_{>0}$
- ${\scriptstyle \bullet}$  output: a solution p satisfying the constraints  $\mathsf{cdeg}(p) < (d_1, \ldots, d_m)$

# **obstacle:** computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis  $P \in \mathbb{K}[X]^{m \times m}$  of solutions

- ${\scriptstyle \bullet}$  think of particular constraints  $(d_1,\ldots,d_m)$  that can be handled via  ${\bf P}$
- ${\scriptstyle \bullet}$  give constraints  $(d_1,\ldots,d_m)$  for which P is "typically" not satisfactory

### shifted forms and degree constraints

keeping our problem in mind:

- $\bullet$  input:  $f_i{\,}'s$  and  $\alpha_i{\,}'s$  and degree constraints  $d_1,\ldots,d_m\in\mathbb{Z}_{>0}$
- ${\scriptstyle \bullet}$  output: a solution p satisfying the constraints  $\mathsf{cdeg}(p) < (d_1, \ldots, d_m)$

**obstacle:** computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis  $P \in \mathbb{K}[X]^{m \times m}$  of solutions

- ${\scriptstyle \bullet}$  think of particular constraints  $(d_1,\ldots,d_m)$  that can be handled via  ${\bf P}$
- ${\scriptstyle \bullet}$  give constraints  $(d_1,\ldots,d_m)$  for which P is "typically" not satisfactory

#### solution: compute P in shifted reduced form

shifted forms and degree constraints

$$\mathbf{A} = \begin{bmatrix} 3X+4 & X^3+4X+1 & 4X^2+3 \\ 5 & 5X^2+3X+1 & 5X+3 \\ 3X^3+X^2+5X+3 & 6X+5 & 2X+1 \end{bmatrix}$$

using elementary row operations, transform  ${\bf A}$  into...

Hermite form 
$$\mathbf{H} = \begin{bmatrix} X^6 + 6X^4 + X^3 + X + 4 & 0 & 0\\ 5X^5 + 5X^4 + 6X^3 + 2X^2 + 6X + 3 & X & 0\\ 3X^4 + 5X^3 + 4X^2 + 6X + 1 & 5 & 1 \end{bmatrix}$$

**Popov form** 
$$\mathbf{P} = \begin{bmatrix} X^3 + 5X^2 + 4X + 1 & 2X + 4 & 3X + 5 \\ 1 & X^2 + 2X + 3 & X + 2 \\ 3X + 2 & 4X & X^2 \end{bmatrix}$$

#### shifted forms and degree constraints



$$\begin{bmatrix} 10 \\ 15 & 0 \\ 15 & 0 \\ 15 & 0 \\ 15 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 3 & 7 \\ 1 & 5 & 3 \\ 3 & 6 & 1 & 2 \end{bmatrix}$$

#### shifted forms and degree constraints



#### shifted forms and degree constraints



#### shifted forms and degree constraints



invariant: D = deg(det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6

► average column degree is  $\frac{D}{m}$ ► size of object is  $mD + m^2 = m^2(\frac{D}{m} + 1)$ 

#### shifted forms and degree constraints



[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

**shifted reduced** form: **arbitrary** degree constraints + **no** column normalization

pprox minimal, non-reduced,  $\prec$ -Gröbner basis

shift: integer tuple  $s = (s_1, \dots, s_m)$  acting as column weights  $\rightarrow$  connects Popov and Hermite forms

| $\mathbf{s} = (0, 0, 0, 0)$<br>Popov     | 4<br>3<br>3<br>3     | 3<br>4<br>3<br>3 | 3<br>3<br>4<br>3        | 3<br>3<br>3<br>4 | [7<br>0<br>6     | 0<br>1<br>0 | 1<br>2<br>1   | 5<br>0<br>6 |
|------------------------------------------|----------------------|------------------|-------------------------|------------------|------------------|-------------|---------------|-------------|
| s = (0, 2, 4, 6)<br>s-Popov              | 7<br>6<br>6<br>6     | 4<br>5<br>4<br>4 | 2<br>2<br><b>3</b><br>2 | 0<br>0<br>0<br>1 | 8<br>7<br>0      | 5<br>6<br>1 | 1<br>1<br>2   | 0           |
| $\mathbf{s} = (0, D, 2D, 3D)$<br>Hermite | 16<br>15<br>15<br>15 | 0                | 0                       | 0                | 4<br>3<br>1<br>3 | 7<br>5<br>6 | <b>3</b><br>1 | 2           |

- $\blacktriangleright$  normal form, average column degree D/m
- ▶ shifted reduced form: same without normalization
- $\blacktriangleright$  shifts arise naturally in algorithms (approximants, kernel, ...)

shifted forms and degree constraints

shifted row degree of a polynomial matrix = the list of the maximum shifted degree in each of its rows

$$\begin{split} &\text{for } \mathbf{A} = (\mathfrak{a}_{i,j}) \in \mathbb{K}[X]^{m \times n} \text{, and } \mathbf{s} = (s_1, \dots, s_n) \in \mathbb{Z}^n \text{,} \\ &\text{rdeg}_{\mathbf{s}}(\mathbf{A}) = (\text{rdeg}_{\mathbf{s}}(\mathbf{A}_{1,*}), \dots, \text{rdeg}_{\mathbf{s}}(\mathbf{A}_{m,*})) \\ &= \left( \max_{1 \leqslant j \leqslant n} (\text{deg}(\mathbf{A}_{1,j}) + s_j), \ \dots, \ \max_{1 \leqslant j \leqslant n} (\text{deg}(\mathbf{A}_{m,j}) + s_j) \right) \in \mathbb{Z}^m \end{split}$$

example: for the matrix  $\mathbf{A} = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix}$ , describe  $\mathsf{rdeg}_{(0,0,0)}(\mathbf{A})$ ,  $\mathsf{rdeg}_{(0,1,2)}(\mathbf{A})$ , and  $\mathsf{rdeg}_{(-1,-3,-2)}(\mathbf{A})$ 

shifted forms and degree constraints

shifted row degree of a polynomial matrix = the list of the maximum shifted degree in each of its rows

for 
$$\mathbf{A} = (a_{i,j}) \in \mathbb{K}[X]^{m \times n}$$
, and  $\mathbf{s} = (s_1, \dots, s_n) \in \mathbb{Z}^n$ ,  
 $\mathsf{rdeg}_{\mathbf{s}}(\mathbf{A}) = (\mathsf{rdeg}_{\mathbf{s}}(\mathbf{A}_{1,*}), \dots, \mathsf{rdeg}_{\mathbf{s}}(\mathbf{A}_{m,*}))$   
 $= \begin{pmatrix} \max_{1 \leqslant j \leqslant n} (\mathsf{deg}(\mathbf{A}_{1,j}) + s_j), \ \dots, \ \max_{1 \leqslant j \leqslant n} (\mathsf{deg}(\mathbf{A}_{m,j}) + s_j) \end{pmatrix} \in \mathbb{Z}^m$ 

example: for the matrix  $\mathbf{A} = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix}$ , describe  $\mathsf{rdeg}_{(0,0,0)}(\mathbf{A})$ ,  $\mathsf{rdeg}_{(0,1,2)}(\mathbf{A})$ , and  $\mathsf{rdeg}_{(-1,-3,-2)}(\mathbf{A})$ 

- ${\scriptstyle \blacktriangleright } \operatorname{rdeg}_{s}(\mathbf{A}) = \operatorname{rdeg}(\mathbf{A}\mathbf{X}^{s})$
- ${\scriptstyle \sf \bullet} \, {\sf rdeg}_s(A)$  only depends on s and the degrees in A

## shifted forms and degree constraints

#### notation:

let 
$$\mathbf{A} \in \mathbb{K}[X]^{m \times n}$$
 with no zero row, and  $\mathbf{s} \in \mathbb{Z}^n$ , define  $\mathbf{d} = (d_1, \dots, d_m) = \mathsf{rdeg}_{\mathbf{s}}(\mathbf{A})$  and  $\mathbf{X}^{\mathbf{d}} = \begin{bmatrix} X^{d_1} & & \\ & \ddots & \\ & & X^{d_m} \end{bmatrix} \in \mathbb{K}[X, X^{-1}]^{m \times m}$ 

#### definition: s-leading matrix / s-reduced matrix

assuming  $s \ge 0$ ,

- ullet the s-leading matrix of A is  $\mathsf{Im}_{s}(A) = \mathsf{Im}(AX^{s}) \in \mathbb{K}^{m imes n}$
- ${\scriptstyle \bullet}\, {\bf A} \in \mathbb{K}[X]^{m \times n}$  is s-reduced if  ${\sf Im}_{s}({\bf A})$  has full row rank

## shifted forms and degree constraints

#### notation:

let 
$$\mathbf{A} \in \mathbb{K}[X]^{m \times n}$$
 with no zero row, and  $\mathbf{s} \in \mathbb{Z}^n$ , define  $\mathbf{d} = (d_1, \dots, d_m) = \mathsf{rdeg}_{\mathbf{s}}(\mathbf{A})$  and  $\mathbf{X}^{\mathbf{d}} = \begin{bmatrix} X^{d_1} & & \\ & \ddots & \\ & & X^{d_m} \end{bmatrix} \in \mathbb{K}[X, X^{-1}]^{m \times m}$ 

#### definition: s-leading matrix / s-reduced matrix

assuming  $s \ge 0$ ,

- the s-leading matrix of A is  $\mathsf{Im}_{s}(A) = \mathsf{Im}(AX^{s}) \in \mathbb{K}^{m \times n}$
- ${\scriptstyle \blacktriangleright}\, {\bf A} \in \mathbb{K}[X]^{m \times n}$  is s-reduced if  ${\sf Im}_{{\boldsymbol s}}({\bf A})$  has full row rank
- ${\scriptstyle \bullet}$  these notions are invariant under  $s \rightarrow s + (c, \ldots, c)$
- ${\scriptstyle \bullet}$  they coincide with the non-shifted case when  $s=({\tt 0},\ldots,{\tt 0})$
- ${\scriptstyle\blacktriangleright}\, X^{-d}AX^s = {\sf Im}_s(A) + {\sf terms}$  of strictly negative degree
shifted forms and degree constraints

exercise: for each of the matrices below, and each shift s, 1. give the s-leading matrix 2. deduce whether the matrix is s-reduced

$$\mathbf{A} = \begin{bmatrix} 3X+4 & X^3+4X+1 & 4X^2+3\\ 5 & 5X^2+3X+1 & 5X+3\\ 3X^3+X^2+5X+3 & 6X+5 & 2X+1 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} X^6 + 6X^4 + X^3 + X + 4 & 0 & 0\\ 5X^5 + 5X^4 + 6X^3 + 2X^2 + 6X + 3 & X & 0\\ 3X^4 + 5X^3 + 4X^2 + 6X + 1 & 5 & 1 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} X^3 + 5X^2 + 4X + 1 & 2X + 4 & 3X + 5 \\ 1 & X^2 + 2X + 3 & X + 2 \\ 3X + 2 & 4X & X^2 \end{bmatrix}$$

$$\mathbf{s} = (0, 0, 0), \ \mathbf{s} = (0, 5, 6), \ \mathbf{s} = (-3, -2, -2)$$

shifted forms and degree constraints

the characterizations generalize to the s-shifted case, using s-row degrees and s-leading matrices where appropriate (proofs: direct, with: A is s-reduced  $\Leftrightarrow AX^s$  is reduced)

for example recall the predictable degree property:

 $\begin{array}{l} \mathbf{A} \text{ is reduced if and only if for any } \mathbf{u} = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m},\\ \mathsf{rdeg}(\mathbf{u} \mathbf{A}) = \mathsf{max}_{1 \leqslant i \leqslant m}(\mathsf{deg}(u_i) + \mathsf{rdeg}(\mathbf{A}_{i,*})) \end{array}$ 

shifted forms and degree constraints

the characterizations generalize to the s-shifted case, using s-row degrees and s-leading matrices where appropriate (proofs: direct, with: A is s-reduced  $\Leftrightarrow AX^s$  is reduced)

for example recall the predictable degree property:

 $\begin{array}{l} \mathbf{A} \text{ is reduced if and only if for any } \mathbf{u} = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m},\\ \mathsf{rdeg}(\mathbf{u} \mathbf{A}) = \mathsf{max}_{1 \leqslant i \leqslant m}(\mathsf{deg}(u_i) + \mathsf{rdeg}(\mathbf{A}_{i,*})) \end{array}$ 

 ${\scriptstyle \bullet}$  this means  $\mathsf{rdeg}(\mathbf{u}A) = \mathsf{rdeg}_t(\mathbf{u})$  where  $t = \mathsf{rdeg}(A)$ 

 $\textbf{`i.e. rdeg}(\mathbf{uA}) = \mathsf{rdeg}(\mathbf{uX}^{\mathsf{rdeg}(\mathbf{A})}) \textbf{, ``no surprising cancellation''}$ 

- proof: let  $\delta = \mathsf{rdeg}_t(\mathbf{u})$ , our goal is to show  $\mathsf{rdeg}(\mathbf{u}\mathbf{A}) = \delta$  terms of  $X^{-\delta}\mathbf{u}\mathbf{A}$  have degree  $\leqslant 0$ , and  $X^{-\delta}\mathbf{u}\mathbf{A} = (X^{-\delta}\mathbf{u}X^t)(\mathbf{X}^{-t}\mathbf{A})$ ; the term of degree 0 is  $\mathsf{Im}_t(\mathbf{u})\mathsf{Im}(\mathbf{A})$ , it is nonzero since  $\mathsf{Im}(\mathbf{A})$  has full rank and  $\mathsf{Im}_t(\mathbf{u}) \neq 0$  (the case  $\mathbf{u} = \mathbf{0}$  is trivial)

shifted forms and degree constraints

the characterizations generalize to the s-shifted case, using s-row degrees and s-leading matrices where appropriate (proofs: direct, with: A is s-reduced  $\Leftrightarrow AX^s$  is reduced)

for example recall the predictable degree property:

 $\begin{array}{l} \mathbf{A} \text{ is reduced if and only if for any } \mathbf{u} = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m},\\ \mathsf{rdeg}(\mathbf{u} \mathbf{A}) = \mathsf{max}_{1 \leqslant i \leqslant m}(\mathsf{deg}(u_i) + \mathsf{rdeg}(\mathbf{A}_{i,*})) \end{array}$ 

$$\begin{split} \mathbf{A} \text{ is } \mathbf{s}\text{-reduced if and only if for any } \mathbf{u} &= [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m},\\ \mathsf{rdeg}_{\mathbf{s}}(\mathbf{u}\mathbf{A}) &= \mathsf{max}_{1 \leqslant i \leqslant m}(\mathsf{deg}(u_i) + \mathsf{rdeg}_{\mathbf{s}}(\mathbf{A}_{i,*}))\\ \text{this means } \mathsf{rdeg}_{\mathbf{s}}(\mathbf{u}\mathbf{A}) &= \mathsf{rdeg}_{\mathbf{t}}(\mathbf{u}), \text{ where } \mathbf{t} = \mathsf{rdeg}_{\mathbf{s}}(\mathbf{A}) \end{split}$$

shifted forms and degree constraints

the characterizations generalize to the s-shifted case, using s-row degrees and s-leading matrices where appropriate (proofs: direct, with: A is s-reduced  $\Leftrightarrow AX^s$  is reduced)

for example recall the predictable degree property:

 $\begin{array}{l} \mathbf{A} \text{ is reduced if and only if for any } \mathbf{u} = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m},\\ \mathsf{rdeg}(\mathbf{u} \mathbf{A}) = \mathsf{max}_{1 \leqslant i \leqslant m}(\mathsf{deg}(u_i) + \mathsf{rdeg}(\mathbf{A}_{i,*})) \end{array}$ 

$$\begin{split} \mathbf{A} \text{ is } \mathbf{s}\text{-reduced if and only if for any } \mathbf{u} &= [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m},\\ \mathsf{rdeg}_{\mathbf{s}}(\mathbf{u}\mathbf{A}) &= \mathsf{max}_{1 \leqslant \mathfrak{i} \leqslant m}(\mathsf{deg}(\mathfrak{u}_\mathfrak{i}) + \mathsf{rdeg}_{\mathbf{s}}(\mathbf{A}_{\mathfrak{i},*}))\\ \text{this means } \mathsf{rdeg}_{\mathbf{s}}(\mathbf{u}\mathbf{A}) &= \mathsf{rdeg}_{\mathbf{t}}(\mathbf{u}), \text{ where } \mathbf{t} = \mathsf{rdeg}_{\mathbf{s}}(\mathbf{A}) \end{split}$$

- $\blacktriangleright$  s-reduced forms provide vectors of minimal s-degree in the module
- $\blacktriangleright$  satisfying degree constraints  $(d_1,\ldots,d_m)$   $\Rightarrow$  taking  $s=(-d_1,\ldots,-d_m)$
- $\bullet \text{ indeed } \mathsf{cdeg}([p_1 \ \cdots \ p_{\mathfrak{m}}]) < (d_1, \ldots, d_{\mathfrak{m}})$
- if and only if  $\mathsf{rdeg}_{(-d_1,\ldots,-d_\mathfrak{m})}([p_1 \ \cdots \ p_\mathfrak{m}]) < 0$

#### stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000] [divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

- $\blacktriangleright$  compute a first basis  $P_1$  for a subproblem
- update the input instance to get the second subproblem
- ${\scriptstyle \bullet}$  compute a second basis  $P_2$  for this second subproblem
- $\blacktriangleright$  the output basis of solutions is  $\mathbf{P}_2\mathbf{P}_1$

we want  $P_2P_1$  to be reduced: 1. is it implied by " $P_1$  reduced and  $P_2$  reduced"? 2. any idea of how to fix this?

#### stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000] [divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

- $\blacktriangleright$  compute a first basis  $P_1$  for a subproblem
- update the input instance to get the second subproblem
- $\blacktriangleright$  compute a second basis  $\mathbf{P}_2$  for this second subproblem
- $\blacktriangleright$  the output basis of solutions is  $\mathbf{P}_2\mathbf{P}_1$

```
we want P_2P_1 to be reduced:
1. is it implied by "P_1 reduced and P_2 reduced"?
2. any idea of how to fix this?
```

```
we want P_2P_1 to be reduced
theorem: implied by "P_1 is reduced and P_2 is t-reduced"
where t = rdeg(P_1)
```

#### stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000] [divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

- $\blacktriangleright$  compute a first basis  $P_1$  for a subproblem
- update the input instance to get the second subproblem
- $\blacktriangleright$  compute a second basis  $\mathbf{P}_2$  for this second subproblem
- $\blacktriangleright$  the output basis of solutions is  $\mathbf{P}_2\mathbf{P}_1$

```
we want P_2P_1 to be reduced:
1. is it implied by "P_1 reduced and P_2 reduced"?
2. any idea of how to fix this?
```

```
we want P_2P_1 to be s-reduced
theorem: implied by "P_1 is s-reduced and P_2 is t-reduced"
where t = \mathsf{rdeg}_s(P_1)
```

stability under multiplication

let  $\mathcal{M}\subseteq \mathcal{M}_1$  be two  $\mathbb{K}[X]$ -submodules of  $\mathbb{K}[X]^m$  of rank m, let  $P_1\in \mathbb{K}[X]^{m\times m}$  be a basis of  $\mathcal{M}_1$ , let  $s\in \mathbb{Z}^m$  and  $t=\mathsf{rdeg}_s(P_1)$ , • the rank of the module  $\mathcal{M}_2=\{\lambda\in \mathbb{K}[X]^{1\times m}\mid \lambda P_1\in \mathcal{M}\}$  is m and for any basis  $P_2\in \mathbb{K}[X]^{m\times m}$  of  $\mathcal{M}_2$ , the product  $P_2P_1$  is a basis of  $\mathcal{M}$ • if  $P_1$  is s-reduced and  $P_2$  is t-reduced, then  $P_2P_1$  is s-reduced

#### stability under multiplication

let  $\mathcal{M}\subseteq \mathcal{M}_1$  be two  $\mathbb{K}[X]$ -submodules of  $\mathbb{K}[X]^m$  of rank m, let  $P_1\in \mathbb{K}[X]^{m\times m}$  be a basis of  $\mathcal{M}_1$ , let  $s\in \mathbb{Z}^m$  and  $t=\mathsf{rdeg}_s(P_1)$ , • the rank of the module  $\mathcal{M}_2=\{\lambda\in \mathbb{K}[X]^{1\times m}\mid \lambda P_1\in \mathcal{M}\}$  is m and for any basis  $P_2\in \mathbb{K}[X]^{m\times m}$  of  $\mathcal{M}_2$ , the product  $P_2P_1$  is a basis of  $\mathcal{M}$ • if  $P_1$  is s-reduced and  $P_2$  is t-reduced, then  $P_2P_1$  is s-reduced

Let  $A \in \mathbb{K}[X]^{m \times m}$  denote the adjugate of  $P_1$ . Then, we have  $AP_1 = det(P_1)I_m$ . Thus,  $pAP_1 = det(P_1)p \in \mathcal{M}$  for all  $p \in \mathcal{M}$ , and therefore  $\mathcal{M}A \subseteq \mathcal{M}_2$ . Now, the nonsingularity of A ensures that  $\mathcal{M}A$  has rank m; this implies that  $\mathcal{M}_2$  has rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix  $P_2P_1$  is nonsingular since  $det(P_2P_1) \neq 0$ . Now let  $p \in \mathcal{M}$ ; we want to prove that p is a  $\mathbb{K}[X]$ -linear combination of the rows of  $P_2P_1$ . First,  $p \in \mathcal{M}_1$ , so there exists  $\lambda \in \mathbb{K}[X]^{1 \times m}$  such that  $p = \lambda P_1$ . But then  $\lambda \in \mathcal{M}_2$ , and thus there exists  $\mu \in \mathbb{K}[X]^{1 \times m}$  such that  $\lambda = \mu P_2$ . This yields the combination  $p = \mu P_2P_1$ .

#### stability under multiplication

$$\begin{split} &\text{let }\mathcal{M}\subseteq\mathcal{M}_1\text{ be two }\mathbb{K}[X]\text{-submodules of }\mathbb{K}[X]^m\text{ of rank }m,\\ &\text{let }P_1\in\mathbb{K}[X]^{m\times m}\text{ be a basis of }\mathcal{M}_1,\\ &\text{let }s\in\mathbb{Z}^m\text{ and }t=\text{rdeg}_s(P_1),\\ &\text{ the rank of the module }\mathcal{M}_2=\{\lambda\in\mathbb{K}[X]^{1\times m}\mid\lambda P_1\in\mathcal{M}\}\text{ is }m\\ &\text{ and for any basis }P_2\in\mathbb{K}[X]^{m\times m}\text{ of }\mathcal{M}_2,\\ &\text{ the product }P_2P_1\text{ is a basis of }\mathcal{M}\\ &\text{ if }P_1\text{ is }s\text{-reduced and }P_2\text{ is }t\text{-reduced},\\ &\text{ then }P_2P_1\text{ is }s\text{-reduced} \end{split}$$

Let  $d=\mathsf{rdeg}_t(P_2);$  we have  $d=\mathsf{rdeg}_s(P_2P_1)$  by the predictable degree property. Using  $X^{-d}P_2P_1X^s=X^{-d}P_2X^tX^{-t}P_1X^s$ , we obtain that  $\mathsf{Im}_s(P_2P_1)=\mathsf{Im}_t(P_2)\mathsf{Im}_s(P_1)$ . By assumption,  $\mathsf{Im}_t(P_2)$  and  $\mathsf{Im}_s(P_1)$  are invertible, and therefore  $\mathsf{Im}_s(P_2P_1)$  is invertible as well; thus  $P_2P_1$  is s-reduced.

# outline

#### introduction

shifted reduced forms

- rational approximation and interpolation
- ► the vector case
- ► pol. matrices: reminders and motivation
- ▶ reducedness: examples and properties
- ▶ shifted forms and degree constraints
- stability under multiplication

#### fast algorithms

#### applications

# outline

#### introduction

shifted reduced forms

fast algorithms

#### $\scriptstyle \bullet$ rational approximation and interpolation

- the vector case
- ► pol. matrices: reminders and motivation
- ▶ reducedness: examples and properties
- shifted forms and degree constraints
- stability under multiplication
- iterative algorithm and output size
- ▶ base case: modulus of degree 1
- ▶ recursion: residual and basis multiplication

#### applications

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

$$\label{eq:rescaled} \text{input: vector } \mathbf{F} = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix} \text{, points } \alpha_1, \dots, \alpha_d \in \mathbb{K} \text{, shift } \mathbf{s} = (s_1, \dots, s_m) \in \mathbb{Z}^m$$

1. 
$$\mathbf{P} = \begin{bmatrix} -\mathbf{p}_1 - \\ \vdots \\ -\mathbf{p}_m - \end{bmatrix} = \text{identity matrix in } \mathbb{K}[X]^{m \times m}$$

2. for i from 1 to d:

а

. evaluate updated vector 
$$\begin{bmatrix} (\mathbf{p}_1 \cdot \mathbf{F})(\alpha_i) \\ \vdots \\ (\mathbf{p}_m \cdot \mathbf{F})(\alpha_i) \end{bmatrix} = (\mathbf{P} \cdot \mathbf{F})(\alpha_i)$$

- b. choose pivot  $\pi$  with smallest  $s_{\pi}$  such that  $(\mathbf{p}_{\pi} \cdot \mathbf{F})(\alpha_i) \neq 0$ update pivot shift  $s_{\pi} = s_{\pi} + 1$
- $\begin{array}{ll} \text{c. eliminate:} & /* \text{ after this, } \forall j \neq \pi, \ (p_j \cdot F)(\alpha_i) = 0 \ */ \\ \text{for } j \neq \pi \text{ do } p_j \leftarrow p_j \frac{(p_j \cdot F)(\alpha_i)}{(p_\pi \cdot F)(\alpha_i)} p_\pi; & p_\pi \leftarrow (X \alpha_i) p_\pi \end{array}$

after i iterations: P is an s-reduced basis of solutions for  $(\alpha_1,\ldots,\alpha_i)$ 

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                      |                     | [                   | 02                 | 4 6                 | ]                   |                     |                     |                  |                  |
|--------|----------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|------------------|------------------|
| basis  |                      | 1<br>0<br>0<br>0    |                     |                    |                     |                     | 0<br>1<br>0<br>0    |                     | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | 「1<br>80<br>95<br>34 | 1<br>73<br>91<br>47 | 1<br>73<br>91<br>47 | 1<br>35<br>61<br>1 | 1<br>66<br>88<br>85 | 1<br>46<br>79<br>45 | 1<br>91<br>36<br>75 | 1<br>64<br>22<br>50 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                            |                     | [(                  | 02                 | 4 6                 | ]                   |                     |                     |                  |                  |
|--------|----------------------------|---------------------|---------------------|--------------------|---------------------|---------------------|---------------------|---------------------|------------------|------------------|
| basis  |                            | 1<br>0<br>0<br>0    |                     |                    |                     |                     | 0<br>1<br>0<br>0    |                     | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | <b>1</b><br>80<br>95<br>34 | 1<br>73<br>91<br>47 | 1<br>73<br>91<br>47 | 1<br>35<br>61<br>1 | 1<br>66<br>88<br>85 | 1<br>46<br>79<br>45 | 1<br>91<br>36<br>75 | 1<br>64<br>22<br>50 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                                      |                     | [                   | 02                  | 4 6                 | ]                   |                     |                     |                  |                  |
|--------|------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|------------------|------------------|
| basis  | :                                                    | 1<br>17<br>2<br>63  |                     |                     |                     |                     | 0<br>1<br>0<br>0    |                     | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | $\left[\begin{array}{c}1\\0\\0\\0\end{array}\right]$ | 1<br>90<br>93<br>13 | 1<br>90<br>93<br>13 | 1<br>52<br>63<br>64 | 1<br>83<br>90<br>51 | 1<br>63<br>81<br>11 | 1<br>11<br>38<br>41 | 1<br>81<br>24<br>16 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                  |                              | [                    | 12                  | 4 6                  | ]                   |                      |                      |                  |                  |
|--------|------------------|------------------------------|----------------------|---------------------|----------------------|---------------------|----------------------|----------------------|------------------|------------------|
| basis  | X                | + <b>73</b><br>17<br>2<br>63 |                      |                     |                      |                     | 0<br>1<br>0<br>0     |                      | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | 0<br>0<br>0<br>0 | 7<br>90<br>93<br>13          | 88<br>90<br>93<br>13 | 8<br>52<br>63<br>64 | 59<br>83<br>90<br>51 | 3<br>63<br>81<br>11 | 93<br>11<br>38<br>41 | 35<br>81<br>24<br>16 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                  |                              | [                    | 12                  | 4 6                  | ]                   |                      |                      |                  |                  |
|--------|------------------|------------------------------|----------------------|---------------------|----------------------|---------------------|----------------------|----------------------|------------------|------------------|
| basis  | X -<br>1<br>6    | + <b>73</b><br>17<br>2<br>53 |                      |                     |                      |                     | 0<br>1<br>0<br>0     |                      | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | 0<br>0<br>0<br>0 | 7<br>90<br>93<br>13          | 88<br>90<br>93<br>13 | 8<br>52<br>63<br>64 | 59<br>83<br>90<br>51 | 3<br>63<br>81<br>11 | 93<br>11<br>38<br>41 | 35<br>81<br>24<br>16 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                          |                              | [                   | 1 2                 | 4 6                  | ]                   |                    |                      |                  |                  |
|--------|--------------------------|------------------------------|---------------------|---------------------|----------------------|---------------------|--------------------|----------------------|------------------|------------------|
| basis  | X -<br>X -<br>56X<br>12X | + 73<br>+ 90<br>+ 16<br>+ 66 |                     |                     |                      |                     | 0<br>1<br>0<br>0   |                      | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | 0<br>0<br>0<br>0         | 7<br>0<br>0<br>0             | 88<br>81<br>74<br>2 | 8<br>60<br>26<br>63 | 59<br>45<br>96<br>80 | 3<br>66<br>55<br>47 | 93<br>7<br>8<br>90 | 35<br>19<br>44<br>48 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                       |                              | [2                  | 2                   | 4 6]                 |                      |                    |                      |                  |                  |
|--------|---------------------------------------|------------------------------|---------------------|---------------------|----------------------|----------------------|--------------------|----------------------|------------------|------------------|
| basis  | $X^{2} + 42$<br>X +<br>56X -<br>12X - | X + 65<br>90<br>⊢ 16<br>⊢ 66 | i                   |                     |                      |                      | 0<br>1<br>0<br>0   |                      | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | 0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0             | 47<br>81<br>74<br>2 | 8<br>60<br>26<br>63 | 61<br>45<br>96<br>80 | 85<br>66<br>55<br>47 | 44<br>7<br>8<br>90 | 10<br>19<br>44<br>48 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

| shift  |                                       |                              | [2                         | 2                   | 4 6]                 |                      |                    |                      |                  |                  |
|--------|---------------------------------------|------------------------------|----------------------------|---------------------|----------------------|----------------------|--------------------|----------------------|------------------|------------------|
| basis  | $X^{2} + 42$<br>X +<br>56X -<br>12X - | X + 65<br>90<br>⊢ 16<br>⊢ 66 | 5                          |                     |                      |                      | 0<br>1<br>0<br>0   |                      | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | 0<br>0<br>0<br>0                      | 0<br>0<br>0<br>0             | <b>47</b><br>81<br>74<br>2 | 8<br>60<br>26<br>63 | 61<br>45<br>96<br>80 | 85<br>66<br>55<br>47 | 44<br>7<br>8<br>90 | 10<br>19<br>44<br>48 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |     |                                                                                                     |                                  | [                        | <mark>3</mark> 2   | 4 6                  | ]                   |                      |                      |                  |                      |
|--------|-----|-----------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|--------------------|----------------------|---------------------|----------------------|----------------------|------------------|----------------------|
| basis  | [ , | $   \begin{array}{r} X^3 + 27X^2 \\     54X^2 + 3 \\     17X^2 + 3 \\     66X^2 + 3   \end{array} $ | + 17X<br>38X +<br>91X +<br>58X + | 1 + 92<br>11<br>54<br>88 |                    |                      |                     | 0<br>1<br>0<br>0     |                      | 0<br>0<br>1<br>0 | 0 -<br>0<br>0<br>1 _ |
| values |     | 0<br>0<br>0<br>0                                                                                    | 0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0         | 39<br>7<br>65<br>9 | 74<br>41<br>66<br>32 | 50<br>0<br>45<br>31 | 26<br>55<br>77<br>84 | 52<br>74<br>20<br>29 |                  |                      |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                                                   |                                  | [                        | 3 2                | 4 6                  | ]                   |                      |                      |                  |                  |
|--------|-------------------------------------------------------------------|----------------------------------|--------------------------|--------------------|----------------------|---------------------|----------------------|----------------------|------------------|------------------|
| basis  | $+ 27X^{2}$<br>$54X^{2} + 32$<br>$17X^{2} + 92$<br>$56X^{2} + 92$ | + 17X<br>38X +<br>91X +<br>68X + | 1 + 92<br>11<br>54<br>88 |                    |                      |                     | 0<br>1<br>0<br>0     |                      | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values | 0<br>0<br>0<br>0                                                  | 0<br>0<br>0<br>0                 | 0<br>0<br>0<br>0         | 39<br>7<br>65<br>9 | 74<br>41<br>66<br>32 | 50<br>0<br>45<br>31 | 26<br>55<br>77<br>84 | 52<br>74<br>20<br>29 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                                                                                                      |                  |                  | [3               | 3 3              | 4 6                | 5]                  |                          |                     |                  |                  |
|--------|----------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--------------------|---------------------|--------------------------|---------------------|------------------|------------------|
| basis  | $\begin{array}{c} X^3 + 31X^2 + 27X + 3\\ 54X^3 + 56X^2 + 56X + 3\\ 56X^2 + 43X + 35\\ 52X^2 + 33X + 60 \end{array}$ |                  |                  |                  |                  |                    | >                   | 36<br>( + 65<br>60<br>68 |                     | 0<br>0<br>1<br>0 | 0<br>0<br>0<br>1 |
| values |                                                                                                                      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 95<br>54<br>4<br>7 | 50<br>0<br>45<br>31 | 66<br>19<br>79<br>41     | 0<br>58<br>95<br>17 |                  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                        |                  |                  | [                | 43                          | 4 6              | 5]                   |                      |                     |  |  |  |
|--------|----------------------------------------|------------------|------------------|------------------|-----------------------------|------------------|----------------------|----------------------|---------------------|--|--|--|
| basis  | $X^4 + 452$<br>$81X^3$<br>2<br>$52X^3$ | 42               |                  | 36<br>X          | X + 19<br>X + 67<br>35<br>0 | )                | ()<br>               | )<br>)<br>[<br>)     | 0<br>0<br>0<br>1    |  |  |  |
| values |                                        | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0            | 0<br>0<br>0<br>0 | 13<br>89<br>48<br>12 | 13<br>55<br>17<br>78 | 0<br>58<br>95<br>17 |  |  |  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                                                                                                                                          |                  |                  | [•               | 4 <mark>4</mark> | 4 6              | 5]                                                  |                     |                     |  |                  |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|-----------------------------------------------------|---------------------|---------------------|--|------------------|
| basis  | $\begin{array}{c} X^4 + 19X^3 + 57X^2 + 44X + 26 \\ 81X^4 + 64X^3 + 51X^2 + 68X + 42 \\ 3X^3 + 44X^2 + 54X + 64 \\ 28X^3 + 45X^2 + 44X + 52 \end{array}$ |                  |                  |                  |                  |                  | $74X + 43 \\ X^2 + 40X + 34 \\ 6X + 49 \\ 50X + 52$ |                     |                     |  | 0<br>0<br>0<br>1 |
| values |                                                                                                                                                          | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0                                    | 66<br>3<br>56<br>15 | 70<br>13<br>55<br>7 |  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                                                                  |                                                                                                                                      |                  | [                | 54               | 4                | 6]                                                     |                  |                     |  |                  |
|--------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|--------------------------------------------------------|------------------|---------------------|--|------------------|
| basis  | $\begin{bmatrix} X^5 + 96X^4 - 6X^4 + 94\\ 55X^4 + 94\\ 13X^4 + 8 \end{bmatrix}$ | $+65X^{3} + 68X^{2} + 19X + 62$<br>$+X^{3} + 44X^{2} + 66X + 32$<br>$+8X^{3} + 75X^{2} + 49X + 39$<br>$+81X^{3} + 10X^{2} + 34X + 2$ |                  |                  |                  |                  | $74X^{2} + 18X + 13 X^{2} + 19X + 10 2X + 86 42X + 29$ |                  |                     |  | 0<br>0<br>0<br>1 |
| values |                                                                                  | 0<br>0<br>0<br>0                                                                                                                     | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0                                       | 0<br>0<br>0<br>0 | 14<br>1<br>25<br>44 |  |                  |

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field  $\mathbb{F}_{97}$ input: (24, 31, 15, 32, 83, 27, 20, 59) and  $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$ 

| shift  |                                                                                        |                                                                                                                                             |                  | [!               | 5 <mark>5</mark> | 4 6                                                                                                            | ]                |                  |                  |                  |                      |
|--------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|----------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|----------------------|
| basis  | $\begin{bmatrix} X^5 + 12X^4 \\ 6X^5 + 31X^4 \\ 2X^4 + 56 \\ 40X^4 + 19 \end{bmatrix}$ | $\begin{array}{c} + 10X^3 + 34X^2 + 65X + 2 \\ + 27X^3 + 89X^2 + 18X + 52 \\ X^3 + 42X^2 + 48X + 15 \\ 9X^3 + 14X^2 + 40X + 49 \end{array}$ |                  |                  |                  | $\begin{array}{c} 60X^2 + 43X + 67\\ X^3 + 57X^2 + 53X + 89\\ 72X^2 + 12X + 30\\ 53X^2 + 79X + 74 \end{array}$ |                  |                  |                  | 0<br>0<br>1<br>0 | 0 -<br>0<br>0<br>1 _ |
| values |                                                                                        | 0<br>0<br>0<br>0                                                                                                                            | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0                                                                                               | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 |                  |                      |

#### base case: modulus of degree 1

#### modular vector equation

input:

- ${\scriptstyle \bullet} \text{ vector } \mathbf{F} = [f_1 \ \cdots \ f_m]^{\sf T} \in \mathbb{K}[X]^{m \times 1} \text{ of degree} < d$
- ${\scriptstyle \bullet}$  field elements  $(\alpha_1,\ldots,\alpha_d)\in \mathbb{K}^d$
- $\bullet \mathsf{ shift } s = (s_1, \ldots, s_m) \in \mathbb{Z}^m$

#### output:

matrix  $P \in \mathbb{K}[X]^{m \times m}$  such that

- $\mathbf{PF}=0 \mbox{ mod } \prod_{1\leqslant i\leqslant d} (X-\alpha_i)$
- ${\scriptstyle \bullet}\, P$  generates all vectors p such that  $pF=0 \mbox{ mod } \prod_{1\leqslant i\leqslant d} (X-\alpha_i)$
- $\bullet \mathbf{P}$  is s-reduced

notation:  $\mathbb{I}(\pmb{\alpha},\mathbf{F})=\{\mathbf{p}\in\mathbb{K}[X]^{1\times\mathfrak{m}}\mid\mathbf{pF}=0\text{ mod }\prod_{1\leqslant i\leqslant d}(X-\alpha_i)\}$ 

#### base case: modulus of degree 1

#### modular vector reconstruction: base case

input:

- ${\scriptstyle \bullet} \text{ vector } \mathbf{F} = [f_1 \ \cdots \ f_m]^{\sf T} \in \mathbb{K}[X]^{m \times 1} \text{ of degree} < 1$
- $\bullet \ \text{field element} \ \alpha \in \mathbb{K}$
- $\bullet \mathsf{ shift } s = (s_1, \ldots, s_m) \in \mathbb{Z}^m$

#### output:

matrix  $P \in \mathbb{K}[X]^{\mathfrak{m} \times \mathfrak{m}}$  such that

- ${\scriptstyle \bullet} \, {\bf PF} = 0 \ \text{mod} \ (X-\alpha)$
- ${\scriptstyle \bullet} \, {\bf P}$  generates all vectors  ${\bf p}$  such that  ${\bf pF}=0 \mbox{ mod } (X-\alpha)$
- $\bullet \mathbf{P}$  is s-reduced

#### base case: modulus of degree 1

#### modular vector reconstruction: base case

#### input:

- $\textbf{ vector } \mathbf{F} = [f_1 \ \cdots \ f_m]^\mathsf{T} \in \mathbb{K}[X]^{m \times 1} \text{ of degree} < 1 \qquad \qquad \mathbf{F} \in \mathbb{K}^{m \times 1}$
- ${\scriptstyle \bullet} \, {\sf field} \, \, {\sf element} \, \, \alpha \in \mathbb{K}$
- $\bullet \mathsf{ shift } s = (s_1, \ldots, s_m) \in \mathbb{Z}^m$

#### output:

matrix  $P \in \mathbb{K}[X]^{m \times m}$  such that

•  $\mathbf{PF} = 0 \mod (X - \alpha)$ 

- $(\mathbf{PF})(\alpha) = \mathbf{P}(\alpha)\mathbf{F} = \mathbf{0}$
- ${\scriptstyle \bullet}\, {\bf P}$  generates all vectors  ${\bf p}$  such that  ${\bf pF}=0 \mbox{ mod } (X-\alpha)$
- $\bullet \mathbf{P}$  is s-reduced

#### base case: modulus of degree 1

modular vector reconstruction: base case

$$\label{eq:relative} \mbox{iterative algorithm:} \qquad P = \begin{bmatrix} I_{\pi-1} & \lambda_1 & 0 \\ 0 & X-\alpha & 0 \\ 0 & \lambda_2 & I_{m-\pi} \end{bmatrix}$$

where

- $\pi$  minimizes  $s_{\pi}$  among indices such that  $(\mathbf{p}_{\pi}\mathbf{F})(\alpha_{i}) \neq 0$
- $\blacktriangleright$  the vectors  $\lambda_1\in\mathbb{K}^{(\pi-1)\times 1}$  and  $\lambda_2\in\mathbb{K}^{(m-\pi)\times 1}$  are constant

#### base case: modulus of degree 1

modular vector reconstruction: base case

$$\label{eq:relative} \mbox{iterative algorithm:} \qquad P = \begin{bmatrix} I_{\pi-1} & \lambda_1 & 0 \\ 0 & X-\alpha & 0 \\ 0 & \lambda_2 & I_{m-\pi} \end{bmatrix}$$

where

•  $\pi$  minimizes  $s_{\pi}$  among indices such that  $(\mathbf{p}_{\pi}\mathbf{F})(\alpha_i) \neq 0$ 

 $\blacktriangleright$  the vectors  $\lambda_1\in\mathbb{K}^{(\pi-1)\times 1}$  and  $\lambda_2\in\mathbb{K}^{(m-\pi)\times 1}$  are constant

#### iterative algorithm:

- $\mathbf{P} = \text{identity matrix in } \mathbb{K}[X]^{m \times m}$
- ▶ for i from 1 to d:
  - a. from the evaluation  $F(\alpha_i),$  find  $P_i$  as above
  - **b.** update shift  $s_{\pi} \leftarrow s_{\pi} + 1$
  - **c.** update  $\mathbf{P} \leftarrow \mathbf{P}_i \mathbf{P}$  as well as  $\mathbf{F} \leftarrow \frac{\mathbf{P}_i \mathbf{F}}{X \alpha_i} \mod \prod_{i+1 \leq j \leq d} (X \alpha_j)$

called residual vector

#### base case: modulus of degree 1

modular vector reconstruction: base case

$$\label{eq:product} \text{iterative algorithm:} \qquad P = \begin{bmatrix} I_{\pi-1} & \lambda_1 & 0 \\ 0 & X-\alpha & 0 \\ 0 & \lambda_2 & I_{m-\pi} \end{bmatrix}$$

where

- $\pi$  minimizes  $s_{\pi}$  among indices such that  $(\mathbf{p}_{\pi}\mathbf{F})(\alpha_i) \neq 0$
- $\blacktriangleright$  the vectors  $\lambda_1\in\mathbb{K}^{(\pi-1)\times 1}$  and  $\lambda_2\in\mathbb{K}^{(m-\pi)\times 1}$  are constant

complexity  $O(m^2d^2)$ :

- iteration with d steps
- $\scriptstyle \bullet$  each step: evaluation of F + multiplications  $P_{\rm i}F$  and  $P_{\rm i}P$
- ${\scriptstyle \bullet}$  at any stage  ${\bf F}$  has degree < d and size  $m \times 1$
- $\scriptstyle \bullet$  at any stage  ${\bf P}$  has degree  $\leqslant d$  and size  $m\times m$

normalizing at each step + refined analysis yields  $O(md^2)$ 

#### base case: modulus of degree 1

modular vector reconstruction: base case

$$\label{eq:relative} \mbox{iterative algorithm:} \qquad P = \begin{bmatrix} I_{\pi-1} & \lambda_1 & 0 \\ 0 & X-\alpha & 0 \\ 0 & \lambda_2 & I_{m-\pi} \end{bmatrix}$$

where

- $\pi$  minimizes  $s_{\pi}$  among indices such that  $(\mathbf{p}_{\pi}\mathbf{F})(\alpha_i) \neq 0$
- $\blacktriangleright$  the vectors  $\lambda_1\in\mathbb{K}^{(\pi-1)\times 1}$  and  $\lambda_2\in\mathbb{K}^{(m-\pi)\times 1}$  are constant

#### correctness:

- ${\scriptstyle \bullet}$  the main task is to prove the base case with  ${\bf P}_{i}$
- ▶ then, direct consequence of the "basis multiplication theorem"
#### iterative algorithm – complexity aspects

- ${\scriptstyle \bullet} \text{ input size: } md+d \text{ elements from } \mathbb{K}$ 
  - . md coefficients of  ${\bf F}\xspace{-1mu}$  , assumed reduced modulo M(X)
  - . d points  $\alpha_1,\ldots,\alpha_d$
- ${\scriptstyle \bullet} \, \text{output size:} \leqslant m^2(d+1)$  elements from  $\mathbb K$ 
  - .  $m\times m$  matrix P of degree at most i at step i

is this output size bound tight?

#### iterative algorithm – complexity aspects

- ${\scriptstyle \bullet} \text{ input size: } md+d \text{ elements from } \mathbb{K}$ 

  - . d points  $\alpha_1,\ldots,\alpha_d$
- ${\scriptstyle \bullet} \, \text{output size:} \leqslant m^2(d+1)$  elements from  $\mathbb K$

.  $m \times m$  matrix  $I\!\!P$  of degree at most i at step i

### is this output size bound tight?

- ${\scriptstyle \blacktriangleright}$  one can prove  ${\sf deg}({\sf det}(P)) \leqslant d$ 
  - . P is a basis of  $\mathbb{J}(\alpha,F)$ , which is the kernel of  $\mathbb{K}[X]^m \to \mathbb{K}[X]/\langle M(X)\rangle, p \mapsto pF$
  - .  $\mathbb{K}[X]^m/\mathbb{I}(\pmb{\alpha},F)$  has  $\mathbb{K}\text{-dimension}$  at most  $\text{dim}_\mathbb{K}(\mathbb{K}[X]/\langle M(X)\rangle)=d$
- ${\scriptstyle \bullet}$  normalized bases have average column degree  $\leqslant d,$  and size  $\leqslant m(d+1)$
- $\scriptstyle \bullet$  yet the bound  $\Theta(m^2(d+1))$  is tight for this algorithm
  - . normalizing at each step is feasible for the iterative version
  - . but is much harder to incorporate in fast divide and conquer versions

#### iterative algorithm – complexity aspects

example instance of Hermite-Padé approximation where the output size is in  $\Omega(m^2d)$ 

parameters:  $\mathbb{K} = \mathbf{F}_{97}$ ,  $\mathfrak{m} = 4$ ,  $\boldsymbol{\alpha} = \mathbf{0}$ ,  $\mathfrak{d} = 128$ ,  $\mathbf{s} = (0, \dots, 0)$ 

choose random polynomial R(X) of degree  $<128\,$ 

$$\mathbf{F} = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} = \begin{bmatrix} R \\ R + XR \\ XR + X^2R \\ X^2R + X^3R \end{bmatrix}$$

- approximants are  ${f p}$  such that  ${f p}{f F}=0$  mod  $X^{128}$
- $ightarrow {f F}$  has small vectors in its left kernel
- $\Rightarrow$  reduced approximant basis has unbalanced row degrees (1, 1, 1, 125)
- will help to build an example with output size  $\Omega(m^2d)$

#### iterative algorithm – complexity aspects

running the iterative algorithm:

| i              | 1             |
|----------------|---------------|
| s              | (0, 0, 0, 0)  |
| $f_1$          | R             |
| $f_2$          | R + XR        |
| f <sub>3</sub> | $XR + X^2R$   |
| $f_4$          | $X^2R + X^3R$ |
|                |               |

Р

### iterative algorithm - complexity aspects

| i              | 1                                                                    | 2             |
|----------------|----------------------------------------------------------------------|---------------|
| S              | ( <mark>0</mark> , 0, 0, 0)                                          | (1, 0, 0, 0)  |
| $f_1$          | R                                                                    | XR            |
| $f_2$          | $\mathbf{R} + \mathbf{XR}$                                           | XR            |
| f <sub>3</sub> | $XR + X^2R$                                                          | $XR + X^2R$   |
| $f_4$          | $X^2R + X^3R$                                                        | $X^2R + X^3R$ |
| Р              | $\begin{bmatrix} 1 & & \\ 0 & 0 & \\ & & 0 \\ & & & 0 \end{bmatrix}$ |               |

### iterative algorithm – complexity aspects

. •

. ...

•

.. ..

| running the iterative algorithm: |                             |                                                                                  |                  |
|----------------------------------|-----------------------------|----------------------------------------------------------------------------------|------------------|
| i                                | 1                           | 2                                                                                | 3                |
| S                                | ( <mark>0</mark> , 0, 0, 0) | (1, <mark>0</mark> , 0, 0)                                                       | (1, 1, 0, 0)     |
| f <sub>1</sub>                   | R                           | XR                                                                               | 0                |
| $f_2$                            | R + XR                      | XR                                                                               | X <sup>2</sup> R |
| f <sub>3</sub>                   | $XR + X^2R$                 | $XR + X^2R$                                                                      | X <sup>2</sup> R |
| $f_4$                            | $X^2R + X^3R$               | $X^2R + X^3R$                                                                    | $X^2R + X^3R$    |
| Р                                |                             | $\begin{bmatrix} 1 & 0 & & \\ 1 & 1 & & \\ 0 & 0 & 0 & \\ & & & 0 \end{bmatrix}$ |                  |

### iterative algorithm - complexity aspects

| i     | 1                                                                    | 2                                                                                | 3                                                                                | 4                          |
|-------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|
| s     | ( <mark>0</mark> , 0, 0, 0)                                          | (1, <mark>0</mark> , 0, 0)                                                       | (1, 1, <mark>0</mark> , 0)                                                       | (1, 1, 1, <mark>0</mark> ) |
| $f_1$ | R                                                                    | XR                                                                               | 0                                                                                | 0                          |
| $f_2$ | R + XR                                                               | XR                                                                               | $X^2R$                                                                           | 0                          |
| $f_3$ | $XR + X^2R$                                                          | $XR + X^2R$                                                                      | $X^2R$                                                                           | X <sup>3</sup> R           |
| $f_4$ | $X^2R + X^3R$                                                        | $X^2R + X^3R$                                                                    | $X^2R + X^3R$                                                                    | X <sup>3</sup> R           |
| Р     | $\begin{bmatrix} 1 & & \\ 0 & 0 & \\ & & 0 \\ & & & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 & & \\ 1 & 1 & & \\ 0 & 0 & 0 & \\ & & & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ |                            |

### iterative algorithm - complexity aspects

| i     | 1                           | 2                                                                                | 3                                                                                | 4                                                                                          | •••    |
|-------|-----------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------|
| S     | ( <mark>0</mark> , 0, 0, 0) | (1, <mark>0</mark> , 0, 0)                                                       | (1, 1, <mark>0</mark> , 0)                                                       | (1, 1, 1, <mark>0</mark> )                                                                 | •••    |
| $f_1$ | R                           | XR                                                                               | 0                                                                                | 0                                                                                          | 0      |
| $f_2$ | $\mathbf{R} + \mathbf{XR}$  | XR                                                                               | $X^2R$                                                                           | 0                                                                                          | 0      |
| $f_3$ | $XR + X^2R$                 | $XR + X^2R$                                                                      | $X^2R$                                                                           | X <sup>3</sup> R                                                                           | 0      |
| $f_4$ | $X^2R + X^3R$               | $X^2R + X^3R$                                                                    | $X^2R + X^3R$                                                                    | X <sup>3</sup> R                                                                           | $X^4R$ |
| Р     |                             | $\begin{bmatrix} 1 & 0 & & \\ 1 & 1 & & \\ 0 & 0 & 0 & \\ & & & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 & & \\ 1 & 1 & 0 & \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ |        |

#### iterative algorithm - complexity aspects



iterative algorithm - complexity aspects

parameters: m = 8, d = 128, s = (0, 0, 0, 0, d, d, d, d)

input  $\mathbf{F}$ : same f<sub>1</sub>, f<sub>2</sub>, f<sub>3</sub>, f<sub>4</sub> / random f<sub>5</sub>, f<sub>6</sub>, f<sub>7</sub>, f<sub>8</sub>



iterative algorithm - complexity aspects

parameters: m = 8, d = 128, s = (0, 0, 0, 0, d, d, d, d)

input  $\mathbf{F}$ : same f<sub>1</sub>, f<sub>2</sub>, f<sub>3</sub>, f<sub>4</sub> / random f<sub>5</sub>, f<sub>6</sub>, f<sub>7</sub>, f<sub>8</sub>



iterative algorithm - complexity aspects

parameters: m = 8, d = 128, s = (0, 0, 0, 0, d, d, d, d)

input  $\mathbf{F}$ : same f<sub>1</sub>, f<sub>2</sub>, f<sub>3</sub>, f<sub>4</sub> / random f<sub>5</sub>, f<sub>6</sub>, f<sub>7</sub>, f<sub>8</sub>



- $\blacktriangleright 1/4$  of the entries have degree  $\approx d$ : size  $\Theta(m^2d)$
- ▶ remark: complexity of iterative algorithm is  $O(m^2d^2)$ → improved to  $O(md^2)$  via normalization
- ▶ opinions on a "reasonable" target cost for fast algorithms?

#### recursion: residual and basis multiplication

### divide and conquer algorithm:

input:  $\mathbf{F}$ ,  $(\alpha_1, \ldots, \alpha_d)$ ,  $\mathbf{s} \mid \text{output: } \mathbf{P}$ 

 $\blacktriangleright$  if d=1, use the base case algorithm to find P and return  $\blacktriangleright$  otherwise:

a. 
$$M_1 \leftarrow (X - \alpha_1) \cdots (X - \alpha_{\lfloor d/2 \rfloor}); M_2 \leftarrow (X - \alpha_{\lfloor d/2 \rfloor + 1}) \cdots (X - \alpha_d)$$

**b.**  $P_1 \leftarrow \mathsf{call}$  the algorithm on  $\mathbf{F}$  rem  $M_1, (\alpha_1, \dots, \alpha_{\lfloor d/2 \rfloor}), s$ 

- $\textbf{c. updated shift: } t \gets \mathsf{rdeg}_s(P_1)$
- **d.** residual:  $\mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$
- e.  $P_2 \leftarrow \mathsf{call}$  the algorithm on G rem  $M_2, (\alpha_{\lfloor d/2 \rfloor + 1}, \ldots, \alpha_d), t$
- **f.** return the product  $P_2P_1$

#### recursion: residual and basis multiplication

### divide and conquer algorithm:

input:  $\mathbf{F}$ ,  $(\alpha_1, \ldots, \alpha_d)$ ,  $\mathbf{s} \mid \text{output: } \mathbf{P}$ 

• if d = 1, use the base case algorithm to find P and return • otherwise:

a. 
$$M_1 \leftarrow (X - \alpha_1) \cdots (X - \alpha_{\lfloor d/2 \rfloor}); M_2 \leftarrow (X - \alpha_{\lfloor d/2 \rfloor + 1}) \cdots (X - \alpha_d)$$

**b.**  $P_1 \leftarrow call the algorithm on F rem M_1, (\alpha_1, \dots, \alpha_{\lfloor d/2 \rfloor}), s$ 

- $\textbf{c. updated shift: } t \gets \mathsf{rdeg}_s(P_1)$
- **d.** residual:  $\mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$
- e.  $P_2 \leftarrow \mathsf{call}$  the algorithm on G rem  $M_2, (\alpha_{|d/2|+1}, \dots, \alpha_d), t$
- **f.** return the product  $\mathbf{P}_2\mathbf{P}_1$

#### correctness:

- correctness of base case
- ▶ then, direct consequence of the "basis multiplication theorem"
- $\blacktriangleright$  about the residual:  $\{\mathbf{p} \mid \mathbf{pP}_1\mathbf{F} = 0 \text{ mod } \mathcal{M}\} = \{\mathbf{p} \mid \mathbf{pG} = 0 \text{ mod } \mathcal{M}_2\}$

#### recursion: residual and basis multiplication

### divide and conquer algorithm:

input:  $\mathbf{F}$ ,  $(\alpha_1, \ldots, \alpha_d)$ ,  $\mathbf{s} \mid \text{output: } \mathbf{P}$ 

 $\blacktriangleright$  if d=1, use the base case algorithm to find P and return  $\blacktriangleright$  otherwise:

a. 
$$M_1 \leftarrow (X - \alpha_1) \cdots (X - \alpha_{\lfloor d/2 \rfloor}); M_2 \leftarrow (X - \alpha_{\lfloor d/2 \rfloor + 1}) \cdots (X - \alpha_d)$$

**b.**  $\mathbf{P}_1 \leftarrow \text{call the algorithm on } \mathbf{F} \text{ rem } M_1, (\alpha_1, \dots, \alpha_{\lfloor d/2 \rfloor}), \mathbf{s}$ 

- $\textbf{c. updated shift: } t \gets \mathsf{rdeg}_s(P_1)$
- **d.** residual:  $\mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$
- e.  $P_2 \leftarrow \mathsf{call}$  the algorithm on G rem  $M_2, (\alpha_{\lfloor d/2 \rfloor + 1}, \ldots, \alpha_d), t$

**f.** return the product  $\mathbf{P}_2\mathbf{P}_1$ 

#### complexity $O(m^{\omega}M(d)\log(d))$ :

- $\scriptstyle \bullet$  if  $\omega$  = 2, quasi-linear in worst-case output size
- ${\scriptstyle \blacktriangleright}$  most expensive step in the recursion is the product  $P_2P_1$
- $\textbf{\tiny equation } \mathcal{C}(\mathfrak{m}, d) = \mathcal{C}(\mathfrak{m}, \lfloor d/2 \rfloor) + \mathcal{C}(\mathfrak{m}, \lceil d/2 \rceil) + O(\mathfrak{m}^{\omega} \mathsf{M}(d))$

#### recursion: residual and basis multiplication

 $\mathsf{input:} \, \mathsf{deg}(\mathbf{F}) < d$ 

 $\texttt{output:} \; \mathsf{deg}(P) \leqslant d$ 

#### complexity of each step:

- ullet residual  $\mathbf{G} \leftarrow rac{1}{M_1} \mathbf{P}_1 \mathbf{F}$
- $\blacktriangleright {\bf F}$  rem  $M_1$  and  ${\bf G}$  rem  $M_2$
- product  $P_2P_1$
- ► two recursive calls

 $\begin{array}{c} O(\mathfrak{m}^2 \mathsf{M}(d))\\ O(\mathfrak{m}\mathsf{M}(d))\\ O(\mathfrak{m}^{\omega}\mathsf{M}(d))\\ 2\mathfrak{C}(\mathfrak{m}, \lfloor d/2 \rceil) \end{array}$ 

#### recursion: residual and basis multiplication

 $\mathsf{input:} \, \mathsf{deg}(\mathbf{F}) < d$ 

output:  $deg(\mathbf{P}) \leqslant d$ 

#### complexity of each step:

- residual  $\mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$ •  $\mathbf{F}$  rem  $M_1$  and  $\mathbf{G}$  rem  $M_2$
- product  $P_2P_1$
- ► two recursive calls

 $\begin{array}{c} O(\mathfrak{m}^2 \mathsf{M}(d))\\ O(\mathfrak{m} \mathsf{M}(d))\\ O(\mathfrak{m}^{\omega} \mathsf{M}(d))\\ 2 \mathbb{C}(\mathfrak{m}, \lfloor d/2 \rfloor) \end{array}$ 

$$\begin{split} & \mathbb{C}(\mathfrak{m},d) = \mathbb{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathbb{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\varpi}\mathsf{M}(d)) \\ & \text{d base cases, each one costs } \ldots \ref{eq:model} \end{split}$$

#### recursion: residual and basis multiplication

 $\begin{array}{lll} \mathsf{input:} \deg(F) < d & \mathsf{output:} \deg(P) \leqslant d \\ \hline \mathbf{complexity of each step:} \\ \mathsf{\cdot} \mathsf{residual} \ \mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F} & O(\mathfrak{m}^2 \mathsf{M}(d)) \\ \mathsf{\cdot} \ \mathbf{F} \mathsf{rem} \ M_1 \ \mathsf{and} \ \mathbf{G} \mathsf{rem} \ M_2 & O(\mathfrak{m} \mathsf{M}(d)) \\ \mathsf{\cdot} \mathsf{product} \ \mathbf{P}_2 \mathbf{P}_1 & O(\mathfrak{m}^\omega \mathsf{M}(d)) \\ \mathsf{\cdot} \mathsf{two} \ \mathsf{recursive} \ \mathsf{calls} & 2 \mathcal{C}(\mathfrak{m}, \lfloor d/2 \rfloor) \end{array}$ 

$$\begin{split} & \mathfrak{C}(\mathfrak{m},d) = \mathfrak{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathfrak{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\omega}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$

 $\Rightarrow O(m^{\omega}M(d)\log(d))$ 

unrolling:  $\mathfrak{m}^{\omega}\left(\mathsf{M}(d) + 2\mathsf{M}(\frac{d}{2}) + 4\mathsf{M}(\frac{d}{4}) + \dots + \frac{d}{2}\mathsf{M}(2)\right) + d\mathfrak{m}$ 

#### recursion: residual and basis multiplication

output: deg(**P**)  $\approx \left\lceil \frac{d}{m} \right\rceil$ input:  $deg(\mathbf{F}) < d$ output:  $deg(\mathbf{P}) \leq d$ complexity of each step: s = 0 and generic F: • residual  $\mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$  $O(m^2M(d))$  $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{m} \rceil))$ • **F** rem  $M_1$  and **G** rem  $M_2$ O(mM(d))unchanged  $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{\mathfrak{m}} \rceil))$ • product  $\mathbf{P}_2\mathbf{P}_1$  $O(m^{\omega}M(d))$ two recursive calls 2C(m, |d/2])unchanged

partial linearization

$$\begin{split} & \mathcal{C}(\mathfrak{m},d) = \mathcal{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathcal{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\omega}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$

 $\Rightarrow \quad O(m^{\omega}\mathsf{M}(d) \mathsf{log}(d))$ 

#### recursion: residual and basis multiplication

output: deg(**P**)  $\approx \left\lceil \frac{d}{m} \right\rceil$ input:  $deg(\mathbf{F}) < d$ output:  $deg(\mathbf{P}) \leq d$ complexity of each step: s = 0 and generic F: • residual  $\mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$  $O(m^2M(d))$  $O(\mathfrak{m}^{\omega} \mathsf{M}(\lceil \frac{d}{\mathfrak{m}} \rceil))$ **•**  $\mathbf{F}$  rem  $M_1$  and  $\mathbf{G}$  rem  $M_2$ O(mM(d))unchanged  $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{\mathfrak{m}} \rceil))$ • product  $\mathbf{P}_2\mathbf{P}_1$  $O(m^{\omega}M(d))$ two recursive calls 2C(m, |d/2])unchanged partial linearization • base case for  $d \approx m$ , costs  $O(m^{\omega})$ 
$$\begin{split} & \mathbb{C}(\mathfrak{m},d) = \mathbb{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathbb{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\omega}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$

 $\Rightarrow O(\mathfrak{m}^{\omega} \mathsf{M}(d) \log(d)) O(\mathfrak{m}^{\omega} \mathsf{M}(\lceil \frac{d}{\mathfrak{m}} \rceil) \log(\lceil \frac{d}{\mathfrak{m}} \rceil))$ 

#### recursion: residual and basis multiplication

output: deg(**P**)  $\approx \left\lceil \frac{d}{m} \right\rceil$ input:  $deg(\mathbf{F}) < d$ output:  $deg(\mathbf{P}) \leq d$ complexity of each step: s = 0 and generic F: • residual  $\mathbf{G} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$  $O(m^2M(d))$  $O(\mathfrak{m}^{\omega} \mathsf{M}(\lceil \frac{d}{\mathfrak{m}} \rceil))$ **•**  $\mathbf{F}$  rem  $M_1$  and  $\mathbf{G}$  rem  $M_2$ O(mM(d))unchanged  $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{\mathfrak{m}} \rceil))$ • product  $\mathbf{P}_2\mathbf{P}_1$  $O(m^{\omega}M(d))$ two recursive calls 2C(m, |d/2])unchanged partial linearization • base case for  $d \approx m$ , costs  $O(m^{\omega})$ 
$$\begin{split} & \mathbb{C}(\mathfrak{m},d) = \mathbb{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathbb{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\varpi}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$

 $\Rightarrow O(m^{\omega}M(d)\log(d))$ 

 $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{m} \rceil) \log(\lceil \frac{d}{m} \rceil))$ 

| m   | n | d     | PM-BASIS | PM-BASIS with linearization |
|-----|---|-------|----------|-----------------------------|
| 4   | 1 | 65536 | 1.6693   | 1.26891                     |
| 16  | 1 | 16384 | 1.8535   | 0.89652                     |
| 64  | 1 | 2048  | 2.2865   | 0.14362                     |
| 256 | 1 | 1024  | 36.620   | 0.20660                     |

#### recursion: residual and basis multiplication

#### state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$  with n > 1
- $\label{eq:constraint} \begin{array}{l} \mbox{-} [Giorgi-Jeannerod-Villard 2003] \text{ achieved } O(\mathfrak{m}^{\omega}\mathsf{M}(d) \log(d)) \\ \text{for } \mathbf{F} \mbox{ mod } X^d, \mbox{ with } \mathfrak{n} \geqslant 1 \mbox{ and } \mathfrak{n} \in O(\mathfrak{m}) \end{array}$
- for s = 0 and generic  $\mathbf{F}$ : O<sup>~</sup>(m<sup> $\omega$ </sup>[ $\frac{nd}{m}$ ]) [Lecerf, ca 2001, unpublished]

#### recursion: residual and basis multiplication

#### state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$  with n > 1
- $\label{eq:constraint} \begin{array}{l} \mbox{-} [Giorgi-Jeannerod-Villard 2003] \text{ achieved } O(\mathfrak{m}^{\omega}\mathsf{M}(d) \log(d)) \\ \text{for } \mathbf{F} \mbox{ mod } X^d, \mbox{ with } \mathfrak{n} \geqslant 1 \mbox{ and } \mathfrak{n} \in O(\mathfrak{m}) \end{array}$
- for s = 0 and generic  $\mathbf{F}$ : O<sup>~</sup>(m<sup> $\omega$ </sup>  $\lceil \frac{nd}{m} \rceil$ ) [Lecerf, ca 2001, unpublished]

► more recently: O<sup>~</sup>(m<sup>ω-1</sup>nd) for F mod X<sup>d</sup>
 [Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
 ~ any s, no genericity assumption, returns the canonical basis "s-Popov"

#### recursion: residual and basis multiplication

#### state of the art:

- ▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$  with n > 1
- $\label{eq:constraint} \begin{array}{l} \mbox{-} [Giorgi-Jeannerod-Villard 2003] \text{ achieved } O(\mathfrak{m}^{\omega}\mathsf{M}(d) \log(d)) \\ \text{for } \mathbf{F} \mbox{ mod } X^d, \mbox{ with } \mathfrak{n} \geqslant 1 \mbox{ and } \mathfrak{n} \in O(\mathfrak{m}) \end{array}$
- for s = 0 and generic  $\mathbf{F}$ : O<sup>~</sup>(m<sup> $\omega$ </sup>  $\lceil \frac{nd}{m} \rceil$ ) [Lecerf, ca 2001, unpublished]

► more recently:  $O^{\sim}(m^{\omega-1}nd)$  for  $\mathbf{F} \mod X^d$ [Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]  $\rightsquigarrow$  any  $\mathbf{s}$ , no genericity assumption, returns the canonical basis "s-Popov"

 ▶ F mod M and general modular matrix equations in similar complexity [Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017] [Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]
 → any s, no genericity assumption, returns the canonical "s-Popov" basis

# outline

#### introduction

shifted reduced forms

fast algorithms

#### rational approximation and interpolation

- the vector case
- ► pol. matrices: reminders and motivation
- ▶ reducedness: examples and properties
- shifted forms and degree constraints
- stability under multiplication
- iterative algorithm and output size
- ▶ base case: modulus of degree 1
- ▶ recursion: residual and basis multiplication

#### applications

# outline

### introduction

#### shifted reduced forms

fast algorithms

#### applications

- rational approximation and interpolation
- the vector case
- ► pol. matrices: reminders and motivation
- ▶ reducedness: examples and properties
- shifted forms and degree constraints
- stability under multiplication
- iterative algorithm and output size
- ▶ base case: modulus of degree 1
- ▶ recursion: residual and basis multiplication
- minimal kernel bases and linear systems
- $\scriptstyle \bullet \ensuremath{\mathsf{fast}}$  gcd and extended gcd
- ► perspectives

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

 ${\scriptstyle \blacktriangleright}\, \mathfrak{K}(\mathbf{F})$  is a  $\mathbb{K}[X]\text{-module}$ 

 ${\scriptstyle \bullet}$  it has rank m-r, where r is the rank of  ${\bf F}$ 

 $\Rightarrow \mathsf{basis}\ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r)\times\mathfrak{m}}$ 

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{ \mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0} \}$$

 ${\scriptstyle \blacktriangleright}\, \mathfrak{K}(\mathbf{F})$  is a  $\mathbb{K}[X]\text{-module}$ 

• it has rank m - r, where r is the rank of F

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

kernel basis for a constant matrix?

input matrix  ${\bf F}$ 

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module

• it has rank m - r, where r is the rank of  ${f F}$ 

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

| kernel basis | , for a constant matrix? $ ightarrow$ | usual nullspace      |
|--------------|---------------------------------------|----------------------|
|              |                                       | input matrix ${f F}$ |
| kernel basis | K                                     | <sub>[</sub> 5 6     |
| 5610         | o]                                    | 6 1                  |
| 0 5 0 1      | 0                                     | 2 6                  |
| 0 0 3 2      | 1                                     | 5 2                  |
| L            | 2                                     | 5 6                  |

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module

• it has rank m - r, where r is the rank of  $\mathbf{F}$ 

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

kernel basis of the following matrix over  $\mathbb{F}_2$ ?

input matrix  $\mathbf{F}$ 

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ X^2 & X^2 + X + 1 & X^2 + X \\ X^2 + 1 & X^2 & X^2 + X + 1 \\ X^2 & X^2 + X & X^2 \end{bmatrix}$$

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module

• it has rank m - r, where r is the rank of  $\mathbf{F}$ 

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

#### kernel basis of the following matrix over $\mathbb{F}_2$ ?

 $\begin{bmatrix} X^2 & X^2 + X + 1 & X^2 + X & 1 & 0 & 0 \\ X^2 + 1 & X^2 & X^2 + X + 1 & 0 & 1 & 0 \\ X^2 & X^2 + X & X^2 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ X^2 & X^2 + X + 1 & X^2 + X \\ X^2 + 1 & X^2 & X^2 + X + 1 \\ X^2 & X^2 + X & X^2 \end{bmatrix}$ 

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module

• it has rank m - r, where r is the rank of F

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

kernel basis of the following block matrix with G nonsingular?

input matrix 
$$\mathbf{F}$$
  
 $\begin{bmatrix} \mathbf{G} \\ \mathbf{H} \end{bmatrix} \in \mathbb{K}[X]^{(n+m) \times n}$ 

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module

• it has rank m - r, where r is the rank of  $\mathbf{F}$ 

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

kernel basis of the following block matrix with G nonsingular?

$$\begin{array}{ll} \mbox{kernel basis } K & \mbox{input matrix } F \\ \mbox{... is left multiple of } \begin{bmatrix} -HG^{-1} & I_m \end{bmatrix} & \begin{bmatrix} G \\ H \end{bmatrix} \in \ensuremath{\mathbb{K}}[X]^{(n+m)\times n} \\ \mbox{... det}(G) \begin{bmatrix} -HG^{-1} & I_m \end{bmatrix} \mbox{ is left multiple of it } \end{array}$$

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module

• it has rank m - r, where r is the rank of F

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

kernel basis of the following 4  $\times$  1 vector with R  $\,\in\, \mathbb{K}[X]\,\setminus\,\{0\}?$ 

input matrix  $\mathbf{F}$  $\begin{bmatrix} \mathbf{R} \\ \mathbf{R} + X\mathbf{R} \\ X\mathbf{R} + X^{2}\mathbf{R} \\ X^{2}\mathbf{R} + X^{3}\mathbf{R} \end{bmatrix}$ 

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module

 $\bullet$  it has rank m - r, where r is the rank of  ${f F}$ 

$$\Rightarrow \mathsf{basis} \ \mathbf{K} \in \mathbb{K}[X]^{(\mathfrak{m}-r) imes \mathfrak{m}}$$

kernel basis of the following 4  $\times$  1 vector with R  $\in \mathbb{K}[X] \setminus \{0\}$ ?

$$\begin{bmatrix} \text{kernel basis } \mathbf{K} \\ 1 + X & -1 \\ 0 & X & -1 \\ 0 & 0 & X & -1 \end{bmatrix}$$

input matrix  $\mathbf{F}$  $\begin{bmatrix} \mathbf{R} \\ \mathbf{R} + X\mathbf{R} \\ X\mathbf{R} + X^{2}\mathbf{R} \\ X^{2}\mathbf{R} + X^{3}\mathbf{R} \end{bmatrix}$ 

minimal kernel bases and linear systems

for  $\mathbf{F} \in \mathbb{K}[X]^{m \times n},$  its left kernel is

$$\mathcal{K}(\mathbf{F}) = \{\mathbf{p} \in \mathbb{K}[X]^{1 \times m} \mid \mathbf{pF} = \mathbf{0}\}$$

•  $\mathcal{K}(\mathbf{F})$  is a  $\mathbb{K}[X]$ -module • it has rank m - r, where r is the rank of  $\mathbf{F}$   $\Rightarrow$  basis  $\mathbf{K} \in \mathbb{K}[X]^{(m-r) \times m}$ 

 $\begin{array}{l} \text{inclusion } \mathcal{K}(\mathbf{F}) \ \subset \ \mathfrak{I}(M,\mathbf{F}) \ = \ \{\mathbf{p} \in \ \mathbb{K}[X]^{1 \times \mathfrak{m}} \ | \ \mathbf{pF} \ = \ \mathbf{0} \ \text{mod} \ M \} \\ \Rightarrow \ \text{recover kernel via interpolation with suitable choices of } M \end{array}$
## minimal kernel bases and linear systems

#### input:

- ${\scriptstyle \bullet} \mbox{ matrix } {\bf F} \in \mathbb{K}[X]^{m \times n}$
- ${\scriptstyle\blacktriangleright}\,\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(\mathbf{F})$  of degree  $\leqslant\delta$

## algorithm via interpolation at sufficiently many points

$$\begin{array}{l} \bullet \ d \leftarrow \delta + deg(\mathbf{F}) + 1 \\ \bullet \ \boldsymbol{\alpha} \leftarrow \text{choose some } (\alpha_1, \ldots, \alpha_d) \text{ in } \mathbb{K}^d \quad (\text{not necessarily distinct}) \\ \bullet \ \mathbf{P} \in \mathbb{K}[X]^{m \times m} \leftarrow \text{reduced basis of } \mathcal{I}(\boldsymbol{\alpha}, \mathbf{F}) \\ \bullet \ \mathbf{K} \in \mathbb{K}[X]^{k \times m} \leftarrow \text{rows of } \mathbf{P} \text{ which have degree} \leqslant \delta \end{array}$$

## minimal kernel bases and linear systems

#### input:

- ${\scriptstyle \bullet} \mbox{ matrix } {\bf F} \in \mathbb{K}[X]^{m \times n}$
- ${\scriptstyle\blacktriangleright}\,\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(\mathbf{F})$  of degree  $\leqslant\delta$

## algorithm via interpolation at sufficiently many points

$$\begin{array}{l} \bullet \ d \leftarrow \delta + deg(\mathbf{F}) + 1 \\ \bullet \ \pmb{\alpha} \leftarrow \text{choose some } (\alpha_1, \ldots, \alpha_d) \text{ in } \mathbb{K}^d \quad (\text{not necessarily distinct}) \\ \bullet \ \mathbf{P} \in \mathbb{K}[X]^{m \times m} \leftarrow \text{reduced basis of } \mathcal{I}(\pmb{\alpha}, \mathbf{F}) \\ \bullet \ \mathbf{K} \in \mathbb{K}[X]^{k \times m} \leftarrow \text{rows of } \mathbf{P} \text{ which have degree} \leqslant \delta \end{array}$$

 $\begin{array}{l} \Rightarrow \mathbf{K} \text{ is a reduced basis of } \mathcal{K}(\mathbf{F}) \\ \Rightarrow \text{ complexity } O(\mathfrak{m}^{\omega}\mathsf{M}(\lceil \frac{\mathtt{nd}}{\mathfrak{m}}\rceil) \log(\lceil \frac{\mathtt{nd}}{\mathfrak{m}}\rceil)) \end{array}$ 

## minimal kernel bases and linear systems

#### input:

- ${\scriptstyle \bullet} \mbox{ matrix } {\bf F} \in \mathbb{K}[X]^{m \times n}$
- ${\scriptstyle\blacktriangleright}\,\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(\mathbf{F})$  of degree  $\leqslant\delta$

## algorithm via interpolation at sufficiently many points

$$\begin{array}{l} \bullet \ d \leftarrow \delta + deg(\mathbf{F}) + 1 \\ \bullet \ \pmb{\alpha} \leftarrow \text{choose some } (\alpha_1, \ldots, \alpha_d) \text{ in } \mathbb{K}^d \quad (\text{not necessarily distinct}) \\ \bullet \ \mathbf{P} \in \mathbb{K}[X]^{m \times m} \leftarrow \text{reduced basis of } \mathcal{I}(\pmb{\alpha}, \mathbf{F}) \\ \bullet \ \mathbf{K} \in \mathbb{K}[X]^{k \times m} \leftarrow \text{rows of } \mathbf{P} \text{ which have degree} \leqslant \delta \end{array}$$

 $\Rightarrow \mathbf{K} \text{ is a reduced basis of } \mathcal{K}(\mathbf{F}) \\ \Rightarrow \text{ complexity } O(\mathfrak{m}^{\omega}\mathsf{M}(\lceil \frac{nd}{\mathfrak{m}} \rceil) \log(\lceil \frac{nd}{\mathfrak{m}} \rceil))$ 

how to find the degree bound  $\delta$ ?

#### minimal kernel bases and linear systems

knowing  $\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(F)$  of degree  $\leqslant\delta$ 

- $\textbf{ take } d \leftarrow \delta + \mathsf{deg}(\mathbf{F}) + 1 \text{ and some } \pmb{\alpha} \leftarrow (\alpha_1, \ldots, \alpha_d) \text{ in } \mathbb{K}^d$
- $\mathbf{P} \in \mathbb{K}[X]^{m imes m}$  reduced basis of  $\mathfrak{I}(\boldsymbol{\alpha}, \mathbf{F})$
- ${\scriptstyle \blacktriangleright} K \in \mathbb{K}[X]^{k \times m}$  rows of P which have degree  $\leqslant \delta$

 $\Rightarrow$  **K** is a reduced basis of  $\mathcal{K}(\mathbf{F})$ 

#### minimal kernel bases and linear systems

knowing  $\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(F)$  of degree  $\leqslant\delta$ 

- $\textbf{ take } d \leftarrow \delta + \mathsf{deg}(\mathbf{F}) + 1 \text{ and some } \pmb{\alpha} \leftarrow (\alpha_1, \ldots, \alpha_d) \text{ in } \mathbb{K}^d$
- $\mathbf{P} \in \mathbb{K}[X]^{m \times m}$  reduced basis of  $\mathfrak{I}(\boldsymbol{\alpha}, \mathbf{F})$
- ${\scriptstyle \blacktriangleright}\, K \in \mathbb{K}[X]^{k \times \mathfrak{m}}$  rows of P which have degree  $\leqslant \delta$

## $\Rightarrow$ K is a reduced basis of $\mathcal{K}(F)$

#### proof:

 $\Rightarrow$  K is reduced by construction

. K satisfies 
$$KF=0 \mbox{ mod } (X-\alpha_1) \cdots (X-\alpha_d)$$

- . and  $\mathsf{deg}(K) \leqslant \delta,$  hence  $\mathsf{deg}(KF) \leqslant \delta + \mathsf{deg}(F) < d$
- $\Rightarrow KF=0,$  i.e. the rows of K are in  $\mathcal{K}(F)$

. let 
$$\mathbf{B} \in \mathbb{K}[X]^{(m-r) \times m}$$
 be a basis of  $\mathcal{K}(\mathbf{F})$  of degree  $\leqslant \delta$ 

- . then  $\mathbf{B}=\mathbf{U}\mathbf{P}$  for some  $\mathbf{U}$
- . by the predictable degree property, in fact  $\mathbf{B}=\mathbf{V}\mathbf{K}$
- $\Rightarrow$  any vector in  $\mathcal{K}(F)$  is generated by K

#### minimal kernel bases and linear systems

knowing  $\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(F)$  of degree  $\leqslant\delta$ 

how to find the degree bound  $\delta$ ?

a specific bound may be known from the context e.g. gcd, "row bases"

→ a general bound is  $\delta = n \operatorname{deg}(\mathbf{F})$ → yields complexity O<sup>~</sup>(m<sup>ω</sup> [ $\frac{n^2 \operatorname{deg}(\mathbf{F})}{m}$ ]) how far from "optimal"?

#### minimal kernel bases and linear systems

knowing  $\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(F)$  of degree  $\leqslant\delta$ 

how to find the degree bound  $\delta$ ?

a specific bound may be known from the context e.g. gcd, "row bases"

• a general bound is  $\delta = n \operatorname{deg}(\mathbf{F})$ • yields complexity  $O^{\sim}(m^{\omega} \lceil \frac{n^2 \operatorname{deg}(\mathbf{F})}{m} \rceil)$  how far from "optimal"?

proof:

complexity  $O^{\text{-}}(\mathfrak{m}^{\omega}\lceil \frac{n\,d}{\mathfrak{m}}\rceil)$  with  $d=\delta+\text{deg}(\mathbf{F})+1=(n+1)\,\text{deg}(\mathbf{F})+1$ 

## minimal kernel bases and linear systems

knowing  $\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(F)$  of degree  $\leqslant\delta$ 

how to find the degree bound  $\delta$ ?

a specific bound may be known from the context e.g. gcd, "row bases"

→ a general bound is  $\delta = n \operatorname{deg}(\mathbf{F})$ → yields complexity O<sup>~</sup>(m<sup>ω</sup> [ $\frac{n^2 \operatorname{deg}(\mathbf{F})}{m}$ ]) → how far from "optimal"?

#### proof:

up to row and column permutation,  $\mathbf{F} = [\begin{smallmatrix} \mathbf{G} & * \\ \mathbf{H} & * \end{smallmatrix}]$  with  $\mathbf{G} \in \mathbb{K}[X]^{r \times r}$  nonsingular then,  $\mathcal{K}(\mathbf{F}) = \mathcal{K}([\begin{smallmatrix} \mathbf{G} \\ \mathbf{H} \end{smallmatrix}])$ 

 $\begin{array}{ll} \text{the matrix } [-H(\text{det}(G)G^{-1}) & \text{det}(G)I_{m-r}] \text{ has polynomial entries,} \\ \text{it has rank } m-r \text{ and its rows are in } \mathcal{K}(F), \\ \text{it has degree} \leqslant \max(\text{deg det}(G), \text{deg}(H) + (r-1) \text{deg}(G)) \leqslant r \text{deg}(F) \\ \end{array}$ 

by degree minimality of reduced matrices, any reduced basis of  $\mathcal{K}(F)$  must have degree  $\leqslant r\,\text{deg}(F)$ 

#### minimal kernel bases and linear systems

knowing  $\delta\in\mathbb{Z}_{>0}$  such that there exists a basis of  $\mathcal{K}(F)$  of degree  $\leqslant\delta$ 

how to find the degree bound  $\delta$ ?

a specific bound may be known from the context e.g. gcd, "row bases"

→ a general bound is  $\delta = n \operatorname{deg}(\mathbf{F})$ → yields complexity O<sup>~</sup>(m<sup>ω</sup> [ $\frac{n^2 \operatorname{deg}(\mathbf{F})}{m}$ ]) how far from "optimal"?

rules of thumb, generically:
 "quantity of information is preserved"

 +
 "degrees in reduced basis are uniform"

 $\begin{array}{l} \rightsquigarrow \quad (\mathfrak{m}-r)\mathfrak{m}\operatorname{\mathsf{deg}}(\mathbf{K})\approx \mathfrak{m}\mathfrak{n}\operatorname{\mathsf{deg}}(\mathbf{F}) \\ \Leftrightarrow \operatorname{\mathsf{deg}}(\mathbf{K})\approx \frac{\mathfrak{n}}{\mathfrak{m}-r}\operatorname{\mathsf{deg}}(\mathbf{F}), \text{ which is } \leqslant \frac{\mathfrak{n}}{\mathfrak{m}-\mathfrak{n}}\operatorname{\mathsf{deg}}(\mathbf{F}) \end{array}$ 

example: if **F** is  $m \times \frac{m}{2}$ , generically deg(**K**) = deg(**F**)  $\Rightarrow d = 2 \text{deg}(\mathbf{F}) + 1$  and complexity  $O^{\sim}(m^{\omega} \text{deg}(\mathbf{F}))$  how far from optimal?

## minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

• complexity  $O^{\sim}(m^{\omega} \lceil \frac{n \deg(F)}{m} \rceil)$  without assumption

-computes s-reduced basis of  $\mathcal{K}(\mathbf{F})$  for  $s=\mathsf{rdeg}(\mathbf{F})$ 

n large: divide and conquer on n, via residual + basis multiplication
 partial linearization for multiplying matrices with weakly unbalanced degrees
 n small: use fast approximation/interpolation algorithms
 well-chosen d yields at least half the kernel efficiently

## minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

- complexity  $O^{\sim}(m^{\omega} \lceil \frac{n \deg(F)}{m} \rceil)$  without assumption
- -computes s-reduced basis of  $\mathcal{K}(\mathbf{F})$  for  $s=\mathsf{rdeg}(\mathbf{F})$

n large: divide and conquer on n, via residual + basis multiplication
 partial linearization for multiplying matrices with weakly unbalanced degrees
 n small: use fast approximation/interpolation algorithms
 well-chosen d yields at least half the kernel efficiently

$$\begin{array}{l} \text{if } n > \frac{m}{2} \text{:} \\ \mathbf{K}_1 \leftarrow \text{ recursive call on first } \frac{n}{2} \text{ columns of } \mathbf{F} \text{, and shift } \mathbf{s} \\ \mathbf{G} \leftarrow \text{ multiply } \mathbf{K}_1 \cdot \mathbf{F}_{*, \frac{n}{2} \dots n} \qquad (\text{last } \frac{n}{2} \text{ columns of } \mathbf{F}) \\ \mathbf{K}_2 \leftarrow \text{ recursive call on } \mathbf{G} \text{, and shift } \mathbf{t} = \text{rdeg}_s(\mathbf{K}_1) \\ \text{ return } \mathbf{K}_2 \mathbf{K}_1 \end{array}$$

## minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

• complexity  $O^{\sim}(m^{\omega} \lfloor \frac{n \deg(F)}{m} \rfloor)$  without assumption

-computes s-reduced basis of  $\mathcal{K}(\mathbf{F})$  for  $s=\mathsf{rdeg}(\mathbf{F})$ 

n large: divide and conquer on n, via residual + basis multiplication
 partial linearization for multiplying matrices with weakly unbalanced degrees
 n small: use fast approximation/interpolation algorithms
 well-chosen d yields at least half the kernel efficiently

$$\begin{split} & \text{if } n \leqslant \frac{m}{2} \text{:} \\ & \delta \leftarrow \text{ degree of kernel basis expected generically} \\ & d \leftarrow \delta + \text{deg}(\mathbf{F}) + 1 \text{ and take some } \boldsymbol{\alpha} \leftarrow (\alpha_1, \ldots, \alpha_d) \text{ in } \mathbb{K}^d \\ & \mathbf{P} \in \mathbb{K}[X]^{m \times m} \leftarrow \text{s-reduced basis of } \mathfrak{I}(\boldsymbol{\alpha}, \mathbf{F}) \\ & \mathbf{K}_1, \mathbf{Q} \leftarrow \text{rows of } \mathbf{P} \text{ which are in } \mathcal{K}(\mathbf{F}) \ / \text{ which are not in } \mathcal{K}(\mathbf{F}) \\ & \mathbf{K}_2 \leftarrow \text{recursive call on } \frac{1}{(X - \alpha_1) \cdots (X - \alpha_d)} \mathbf{Q} \mathbf{F}, \text{ return } [\frac{K_1}{K_2}] \end{split}$$

#### minimal kernel bases and linear systems

## linear system solving: given $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ nonsingular and $\mathbf{v} \in \mathbb{K}[X]^{1 \times m}$ find $\mathbf{u} \in \mathbb{K}[X]^{1 \times m}$ and $g \in \mathbb{K}[X]$ such that $\mathbf{u}\mathbf{A} = g\mathbf{v}$ and g has minimal degree.

- . the equation has a solution:  $\mathbf{u} = g \mathbf{v} \mathbf{A}^{-1}$  with  $g = \mathsf{det}(\mathbf{A})$
- . but there is often no polynomial solution with  $g = \mathbf{1}$
- . target complexity? (recall that  $\mathsf{det}(A)A^{-1}$  can have degree  $\approx m\,\mathsf{deg}(A))$
- . propose an algorithm based on a kernel computation

## minimal kernel bases and linear systems

## linear system solving: given $\mathbf{A} \in \mathbb{K}[X]^{m \times m}$ nonsingular and $\mathbf{v} \in \mathbb{K}[X]^{1 \times m}$ find $\mathbf{u} \in \mathbb{K}[X]^{1 \times m}$ and $q \in \mathbb{K}[X]$ such that $\mathbf{u}\mathbf{A} = \mathbf{q}\mathbf{v}$ and $\mathbf{q}$ has minimal degree.

- . the equation has a solution:  $\mathbf{u} = q\mathbf{v}\mathbf{A}^{-1}$  with  $q = det(\mathbf{A})$
- . but there is often no polynomial solution with q = 1
- . target complexity? (recall that  $\mathsf{det}(A)A^{-1}$  can have degree  $\approx \mathsf{m}\,\mathsf{deg}(A))$
- . propose an algorithm based on a kernel computation

 $\text{compute } [\mathbf{u} \quad g] \in \mathbb{K}[X]^{1 \times (m+1)} \text{ kernel basis of } \mathbf{F} = \begin{bmatrix} \mathbf{A} \\ -\mathbf{v} \end{bmatrix} \in \mathbb{K}[X]^{(m+1) \times m}$ 

- using the shift  $\mathbf{s} = (\mathsf{rdeg}(\mathbf{A}), \mathsf{deg}(\mathbf{v}))$
- ► complexity  $O^{\sim}(m^{\omega} \max(\deg(\mathbf{A}), \deg(\mathbf{v})))$  in fact:  $\max(\deg(\mathbf{A}), \frac{\deg(\mathbf{v})}{m})$
- minimality of deg(q) follows from *basis* of  $\mathcal{K}(\mathbf{F})$

fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: h=gcd(f,g)



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: (u, v, h) where h = gcd(f, g) = uf + vg

fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: h=gcd(f,g)



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: (u, v, h) where h = gcd(f, g) = uf + vg

#### some notation:

earlier in the course: **claim:** gcd and xgcd are solved in  $O(M(d) \log(d))$ 

where d = max(m, n)

fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: h=gcd(f,g)

## some notation:

. polynomials  $\bar{f}=f/h$  and  $\bar{g}=g/h$  , m=deg(f) and n=deg(g) , we assume m,n>0

 $\textbf{result: gcd is solved in } O(\mathsf{M}(\mathsf{max}(m,n)) \mathsf{log}(\mathsf{max}(m,n)))$ 

fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: h=gcd(f,g)

### some notation:

. polynomials 
$$\overline{f} = f/h$$
 and  $\overline{g} = g/h$   $\overline{f}$  and  $\overline{g}$  are coprime  
.  $m = \text{deg}(f)$  and  $n = \text{deg}(g)$  we assume  $m, n > 0$ 

**result:** gcd is solved in  $O(M(max(m, n)) \log(max(m, n)))$ 

**lemma:**  $[-\overline{g} \ \overline{f}]$  is a basis of the left kernel of  $\begin{bmatrix} f \\ g \end{bmatrix}$ 

#### proof:

this kernel has rank 1 (f and g are nonzero) let  $[a\ b]$  be a basis of it; all other bases are  $[ca\ cb]$  for some  $c\in\mathbb{K}\setminus\{0\}$  since  $[-\bar{g}\ \bar{f}][\frac{f}{g}]=-\frac{g}{h}f+\frac{f}{h}g=0$ , we get  $[-\bar{g}\ \bar{f}]=[\lambda a\ \lambda b]$  for some  $\lambda\in\mathbb{K}[X]\setminus\{0\}$  then  $\lambda$  divides  $\bar{f}$  and  $\bar{g}$ , so  $\lambda$  is a nonzero constant

fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: h=gcd(f,g)

## some notation:

. polynomials  $\bar{f}=f/h$  and  $\bar{g}=g/h$   $\bar{f} \text{ and } \bar{g} \text{ are coprime}$ . m=deg(f) and n=deg(g) we assume m,n>0

**result:** gcd is solved in  $O(M(max(m, n)) \log(max(m, n)))$ 

**lemma:**  $[-\overline{g} \ \overline{f}]$  is a basis of the left kernel of  $\begin{bmatrix} f \\ g \end{bmatrix}$ 

## algorithm: kernel basis via interpolation at sufficiently many points

$$\label{eq:product} \begin{array}{l} \mbox{ the input matrix } \mathbf{F} = \left[\begin{smallmatrix} t \\ g \end{smallmatrix}\right] \mbox{ has degree max}(m,n) \\ \mbox{ the sought kernel basis has degree at most } \delta = \max(m,n) \\ \mbox{ the sought kernel basis has degree at most } \delta = \max(m,n) \\ \mbox{ l. pick } \delta + \deg(\mathbf{F}) + 1 = 2\delta + 1 \mbox{ points } \pmb{\alpha} \in \mathbb{K}^{2\delta+1} \quad O(1) \\ \mbox{ 2. find } [-\bar{g}\ \bar{f}] \mbox{ via a reduced basis of } \mathbb{J}(\pmb{\alpha}, [\begin{smallmatrix} f \\ g \end{smallmatrix}]) \quad O(\mathsf{M}(\delta)\log(\delta)) \\ \mbox{ 3. deduce } h = g/\bar{g} \quad O(\mathsf{M}(\delta)) \end{array}$$

#### fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output:  $(u,\nu,h)$  where  $h=\text{gcd}(f,g)=uf+\nu g$ 

## fast gcd and extended gcd



```
input: f and g univariate polynomials in \mathbb{K}[X] output: (u, \nu, h) where h = \mathsf{gcd}(f, g) = uf + \nu g
```

#### some notation:

# $\begin{array}{l} \mbox{lemma:}\\ .\mbox{ there exists a unique }(u,\nu)\mbox{ in }\mathbb{K}[X]^2\mbox{ such that}\\ \left\{ \begin{array}{l} uf+\nu g=h,\\ deg(u)< n-\ell \mbox{ and } deg(\nu)< m-\ell. \end{array} \right.\\ .\mbox{ for this }(u,\nu)\in\mathbb{K}[X]^2\mbox{ one has } \left[ \begin{matrix} u & \nu\\ -\bar{g} & \bar{f} \end{matrix} \right] \left[ \begin{matrix} f\\ g \end{matrix} \right] = \left[ \begin{matrix} h\\ 0 \end{matrix} \right],\\ \mbox{ and the leftmost matrix in this identity is unimodular} \end{array}$

#### fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: (u, v, h) where h = gcd(f, g) = uf + vg

$$\begin{array}{l} \mbox{theorem:} \\ \mbox{. defining } R = \begin{bmatrix} \mathsf{rev}(\mathfrak{u}, \mathfrak{n} - \ell - 1) & \mathsf{rev}(\mathfrak{v}, \mathfrak{m} - \ell - 1) \\ -\,\mathsf{rev}(\bar{\mathfrak{g}}, \mathfrak{n} - \ell) & \mathsf{rev}(\bar{\mathfrak{f}}, \mathfrak{m} - \ell) \end{bmatrix} \in \mathbb{K}[X]^{2 \times 2}, \\ \mbox{one has:} & R \begin{bmatrix} \mathsf{rev}(\mathfrak{f}, \mathfrak{m}) \\ \mathsf{rev}(\mathfrak{g}, \mathfrak{n}) \end{bmatrix} = \begin{bmatrix} x^{\mathfrak{m} + \mathfrak{n} - 2\ell - 1} \, \mathsf{rev}(\mathfrak{h}, \ell) \\ 0 \end{bmatrix} \\ \mbox{. the matrix } R \mbox{ is a } (-\mathfrak{n}, -\mathfrak{m}) \mbox{-reduced basis of } \mathfrak{I}(\mathbf{0}, [\frac{\mathsf{rev}(\mathfrak{f}, \mathfrak{m})}{\mathsf{rev}(\mathfrak{g}, \mathfrak{n})}]) \\ & = \left\{ [\mathfrak{p} \ \mathfrak{q}] \in \mathbb{K}[X]^{1 \times 2} \ \Big| \ [\mathfrak{p} \ \mathfrak{q}] \begin{bmatrix} \mathsf{rev}(\mathfrak{f}, \mathfrak{m}) \\ \mathsf{rev}(\mathfrak{g}, \mathfrak{n}) \end{bmatrix} = 0 \ \mathsf{mod} \ x^{\mathfrak{m} + \mathfrak{n} - 2\ell - 1} \right\} \end{array}$$

#### fast gcd and extended gcd



```
input: f and g univariate polynomials in \mathbb{K}[X] output: (u, v, h) where h = gcd(f, g) = uf + vg
```

$$\begin{array}{ll} \mbox{. polynomials $\bar{f}=f/h$ and $\bar{g}=g/h$} & $\bar{f}$ and $\bar{g}$ are coprime} \\ \mbox{. } m=deg(f), $n=deg(g)$, $\ell=deg(h)$} & $m,n>0$, $\ell\leqslant\min(m,n)$} \\ \rightsquigarrow deg(\bar{f})=m-\ell$ and $deg(\bar{g})=n-\ell$} \end{array}$$

$$\begin{array}{l} \textbf{theorem:}\\ . \text{ defining } R = \begin{bmatrix} \mathsf{rev}(\mathfrak{u}, \mathfrak{n} - \ell - 1) & \mathsf{rev}(\mathfrak{v}, \mathfrak{m} - \ell - 1) \\ -\mathsf{rev}(\bar{\mathfrak{g}}, \mathfrak{n} - \ell) & \mathsf{rev}(\bar{\mathfrak{f}}, \mathfrak{m} - \ell) \end{bmatrix} \in \mathbb{K}[X]^{2 \times 2},\\ \text{one has:} \qquad R \begin{bmatrix} \mathsf{rev}(f, \mathfrak{m}) \\ \mathsf{rev}(g, \mathfrak{n}) \end{bmatrix} = \begin{bmatrix} x^{\mathfrak{m} + \mathfrak{n} - 2\ell - 1} \mathsf{rev}(\mathfrak{h}, \ell) \\ 0 \end{bmatrix} \\ . \text{ the matrix } R \text{ is a } (-\mathfrak{n}, -\mathfrak{m})\text{-reduced basis of } \mathfrak{I}(\mathbf{0}, [\overset{\mathsf{rev}(f, \mathfrak{m})}{\mathsf{rev}(g, \mathfrak{n})}]) \\ = \left\{ [\mathfrak{p} \ q] \in \mathbb{K}[X]^{1 \times 2} \ \left| [\mathfrak{p} \ q] \begin{bmatrix} \mathsf{rev}(f, \mathfrak{m}) \\ \mathsf{rev}(g, \mathfrak{n}) \end{bmatrix} = 0 \mod x^{\mathfrak{m} + \mathfrak{n} - 2\ell - 1} \right\} \end{array} \right\}$$

#### fast gcd and extended gcd



input: f and g univariate polynomials in  $\mathbb{K}[X]$  output: (u, v, h) where h = gcd(f, g) = uf + vg

$$\begin{array}{ll} \mbox{. polynomials $\bar{f}=f/h$ and $\bar{g}=g/h$} & $\bar{f}$ and $\bar{g}$ are coprime} \\ \mbox{. } m=deg(f), $n=deg(g)$, $\ell=deg(h)$} & $m,n>0$, $\ell\leqslant\min(m,n)$} \\ \rightsquigarrow deg(\bar{f})=m-\ell$ and $deg(\bar{g})=n-\ell$} \end{array}$$

$$\begin{array}{l} \mbox{corollary: xgcd in } O(\mathsf{M}(d) \mbox{log}(d)) \\ \mbox{for any } d \geqslant n+m-2\ell-1 & e.g. \ d=n+m+1 \\ \mbox{let } e=d-(n+m-2\ell-1) & hence \ e=2\ell \\ \mbox{then } \begin{bmatrix} x^e & 0 \\ 0 & 1 \end{bmatrix} R = \begin{bmatrix} x^e \ rev(u,n-\ell-1) & x^e \ rev(v,m-\ell-1) \\ -rev(\bar{g},n-\ell) & rev(\bar{f},m-\ell) \end{bmatrix} \\ \mbox{is } a \ (-n,-m) \mbox{-reduced basis of} \\ = \left\{ \begin{bmatrix} p & q \end{bmatrix} \in \mathbb{K}[X]^{1\times 2} \ \left| \begin{bmatrix} p & q \end{bmatrix} \begin{bmatrix} rev(f,m) \\ rev(g,n) \end{bmatrix} = 0 \ \text{mod } x^d \right\} \end{array} \right\}$$

#### perspectives — row bases

a row basis of a matrix  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$ is a basis of its  $\mathbb{K}[X]$ -row space  $\{\mathbf{pF} \mid \mathbf{p} \in \mathbb{K}[X]^{1 \times m}\}$ 

 $\rightsquigarrow$  represented as  $\mathbf{R} \in \mathbb{K}[X]^{r \times n}$ , where r is the rank of  $\mathbf{F}$   $\rightsquigarrow$   $\mathbf{F} = \mathbf{U}\mathbf{R}$  for some  $\mathbf{U} \in \mathbb{K}[X]^{m \times r}$ 

#### perspectives — row bases

a row basis of a matrix  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$ is a basis of its  $\mathbb{K}[X]$ -row space  $\{\mathbf{pF} \mid \mathbf{p} \in \mathbb{K}[X]^{1 \times m}\}$ 

 $\rightsquigarrow$  represented as  $\mathbf{R} \in \mathbb{K}[X]^{r \times n}$ , where r is the rank of  $\mathbf{F}$   $\rightsquigarrow$   $\mathbf{F} = \mathbf{U}\mathbf{R}$  for some  $\mathbf{U} \in \mathbb{K}[X]^{m \times r}$ 

#### examples:

row basis for F ∈ K[X]<sup>m×m</sup> nonsingular?
row basis of [f]
for f, g coprime polynomials?
K ∈ K[X]<sup>(m-r)×m</sup> a left kernel basis of F ∈ K[X]<sup>m×n</sup> row basis of K? column basis of K?

#### perspectives — row bases

a row basis of a matrix  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$ is a basis of its  $\mathbb{K}[X]$ -row space  $\{\mathbf{pF} \mid \mathbf{p} \in \mathbb{K}[X]^{1 \times m}\}$ 

 $\rightsquigarrow$  represented as  $\mathbf{R} \in \mathbb{K}[X]^{r \times n}$ , where r is the rank of  $\mathbf{F}$   $\rightsquigarrow$   $\mathbf{F} = \mathbf{U}\mathbf{R}$  for some  $\mathbf{U} \in \mathbb{K}[X]^{m \times r}$ 

#### examples:

$$\begin{array}{ll} \bullet \text{ row basis for } \mathbf{F} \in \mathbb{K}[X]^{m \times m} \text{ nonsingular}? & \mathbf{R} = \mathbf{F} \\ \bullet \text{ row basis of } \begin{bmatrix} f \\ g \end{bmatrix} \text{ for } f,g \text{ coprime polynomials}? \\ \bullet \mathbf{K} \in \mathbb{K}[X]^{(m-r) \times m} \text{ a left kernel basis of } \mathbf{F} \in \mathbb{K}[X]^{m \times n} \\ \text{ row basis of } \mathbf{K}? \text{ column basis of } \mathbf{K}? \end{array}$$

#### perspectives — row bases

a row basis of a matrix  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$ is a basis of its  $\mathbb{K}[X]$ -row space  $\{\mathbf{pF} \mid \mathbf{p} \in \mathbb{K}[X]^{1 \times m}\}$ 

 $\rightsquigarrow$  represented as  $\mathbf{R} \in \mathbb{K}[X]^{r \times n}$ , where r is the rank of  $\mathbf{F}$   $\rightsquigarrow$   $\mathbf{F} = \mathbf{U}\mathbf{R}$  for some  $\mathbf{U} \in \mathbb{K}[X]^{m \times r}$ 

#### examples:

$$\begin{array}{ll} \bullet \text{ row basis for } \mathbf{F} \in \mathbb{K}[X]^{m \times m} \text{ nonsingular}? & \mathbf{R} = \mathbf{F} \\ \bullet \text{ row basis of } \begin{bmatrix} f \\ g \end{bmatrix} \text{ for f, g coprime polynomials}? & \mathbf{R} = [1] \\ \bullet \mathbf{K} \in \mathbb{K}[X]^{(m-r) \times m} \text{ a left kernel basis of } \mathbf{F} \in \mathbb{K}[X]^{m \times n} \\ \text{ row basis of } \mathbf{K}? \text{ column basis of } \mathbf{K}? \end{array}$$

#### perspectives — row bases

a row basis of a matrix  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$ is a basis of its  $\mathbb{K}[X]$ -row space  $\{\mathbf{pF} \mid \mathbf{p} \in \mathbb{K}[X]^{1 \times m}\}$ 

 $\rightsquigarrow$  represented as  $\mathbf{R} \in \mathbb{K}[X]^{r \times n}$ , where r is the rank of  $\mathbf{F}$   $\rightsquigarrow$   $\mathbf{F} = \mathbf{U}\mathbf{R}$  for some  $\mathbf{U} \in \mathbb{K}[X]^{m \times r}$ 

#### examples:

$$\begin{array}{ll} \bullet \text{ row basis for } \mathbf{F} \in \mathbb{K}[X]^{m \times m} \text{ nonsingular}? & \mathbf{R} = \mathbf{F} \\ \bullet \text{ row basis of } \begin{bmatrix} f \\ g \end{bmatrix} \text{ for } f,g \text{ coprime polynomials}? & \mathbf{R} = [1] \\ \bullet \mathbf{K} \in \mathbb{K}[X]^{(m-r) \times m} \text{ a left kernel basis of } \mathbf{F} \in \mathbb{K}[X]^{m \times n} \\ \text{ row basis of } \mathbf{K}? \text{ column basis of } \mathbf{K}? & \mathbf{R} = \mathbf{K} \text{ and } \mathbf{C} = \mathbf{I}_{m-r} \end{array}$$

K has full rank so C is  $(m-r)\times(m-r)$  nonsingular and by definition  $K=C\bar{K}$  for some  $\bar{K}$  so  $KF=0\Rightarrow\bar{K}F=0$ , hence  $\bar{K}=VK$  from K=CVK, with K having full row rank, we deduce  $CV=I_{m-r}$ 

#### perspectives — row bases

a row basis of a matrix  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$ is a basis of its  $\mathbb{K}[X]$ -row space  $\{\mathbf{pF} \mid \mathbf{p} \in \mathbb{K}[X]^{1 \times m}\}$ 

 $\rightsquigarrow$  represented as  $\mathbf{R} \in \mathbb{K}[X]^{r \times n}$ , where r is the rank of  $\mathbf{F}$   $\rightsquigarrow$   $\mathbf{F} = \mathbf{U}\mathbf{R}$  for some  $\mathbf{U} \in \mathbb{K}[X]^{m \times r}$ 

#### applications:

- $\blacktriangleright$  compute an s-reduced basis of the row space
- verify that a matrix is a kernel basis
- triangularization: Hermite normal form and determinant

#### perspectives — row bases

a row basis of a matrix  $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$ is a basis of its  $\mathbb{K}[X]$ -row space  $\{\mathbf{pF} \mid \mathbf{p} \in \mathbb{K}[X]^{1 \times m}\}$ 

 $\rightsquigarrow$  represented as  $\mathbf{R} \in \mathbb{K}[X]^{r \times n}$ , where r is the rank of  $\mathbf{F}$   $\rightsquigarrow$   $\mathbf{F} = \mathbf{U}\mathbf{R}$  for some  $\mathbf{U} \in \mathbb{K}[X]^{m \times r}$ 

#### applications:

- $\scriptstyle \bullet$  compute an s-reduced basis of the row space
- verify that a matrix is a kernel basis
- triangularization: Hermite normal form and determinant

## algorithm:

- ${\scriptstyle \blacktriangleright } K \leftarrow$  left kernel basis for F
- ${\scriptstyle \blacktriangleright }\, {\bf R} \leftarrow$  matrix such that  ${\bf F} = {\bf G} {\bf R}$

complexity  $O(mn^{\omega-1} \operatorname{deg}(\mathbf{F}))$ , assuming  $m \ge n$  [Zhou-Labahn, 2013]

#### perspectives — triangularization

#### perspectives — triangularization



Hermite normal form and determinant in  $O^{\sim}(m^{\omega} \operatorname{deg}(\mathbf{A}))$ 

[Zhou, 2012] [Labahn-Neiger-Zhou, 2017]

## perspectives — block Wiedemann techniques

given a sparse matrix  $\mathbf{A} \in \mathbb{K}^{n \times n}$ :

- ${\scriptstyle \blacktriangleright}$  solve a linear system  $\mathbf{A}\mathbf{u}=\mathbf{v}$
- compute the minimal polynomial of A
- . sparse means that  ${\bf A}$  has a large proportion of zero entries
- . goal: exploit sparsity to do better than exponent  $\boldsymbol{\omega}$

[Wiedemann 1986, Coppersmith 1994, Kaltofen 1995, Villard 1997] block Wiedemann approach, for block dimension m: 1. choose random blocking matrices  $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{n \times m}$ 2. compute linearly recurrent sequence of matrices in  $\mathbb{K}^{m \times m}$  $\mathbf{U}^{\mathsf{T}}\mathbf{V}, \mathbf{U}^{\mathsf{T}}\mathbf{A}\mathbf{V}, \dots, \mathbf{U}^{\mathsf{T}}\mathbf{A}^{\mathsf{k}}\mathbf{V}, \dots$ 

3. find polynomial matrix generator  $\textbf{P} \in \mathbb{K}[X]^{m \times m}$  of this sequence

#### perspectives — block Wiedemann techniques

given a sparse matrix  $\mathbf{A} \in \mathbb{K}^{n \times n}$ :

- ${\scriptstyle \blacktriangleright}$  solve a linear system  $\mathbf{A}\mathbf{u}=\mathbf{v}$
- ${\scriptstyle \bullet}$  compute the minimal polynomial of  ${\bf A}$
- . sparse means that  ${\bf A}$  has a large proportion of zero entries
- . goal: exploit sparsity to do better than exponent  $\boldsymbol{\omega}$

[Wiedemann 1986, Coppersmith 1994, Kaltofen 1995, Villard 1997] block Wiedemann approach, for block dimension m: 1. choose random blocking matrices  $\mathbf{U}, \mathbf{V} \in \mathbb{K}^{n \times m}$ 2. compute linearly recurrent sequence of matrices in  $\mathbb{K}^{m \times m}$  $\mathbf{U}^{\mathsf{T}}\mathbf{V}, \mathbf{U}^{\mathsf{T}}\mathbf{A}\mathbf{V}, \dots, \mathbf{U}^{\mathsf{T}}\mathbf{A}^{\mathsf{k}}\mathbf{V}, \dots$ 

3. find polynomial matrix generator  $P \in \mathbb{K}[X]^{m \times m}$  of this sequence

- ${\scriptstyle \bullet}$  generically,  $d=2\frac{n}{m}-1$  terms of the sequence are sufficient
- ▶ step 3 is matrix-Padé approx., in  $O^{\sim}(\mathfrak{m}^{\omega} d) = O^{\sim}(\mathfrak{m}^{\omega-1}\mathfrak{n})$
- $\blacktriangleright$  often, m is taken as the number of threads available for parallel computation of the matrix sequence

## summary

## introduction

### shifted reduced forms

fast algorithms

#### applications

- rational approximation and interpolation
- the vector case
- ► pol. matrices: reminders and motivation
- ▶ reducedness: examples and properties
- shifted forms and degree constraints
- stability under multiplication
- iterative algorithm and output size
- ▶ base case: modulus of degree 1
- ▶ recursion: residual and basis multiplication
- minimal kernel bases and linear systems
- ▶ fast gcd and extended gcd
- ► perspectives