polynomial matrices:
approximation and interpolation, quasi-linear GCD

Algorithmes Efficaces en Calcul Formel
Master Parisien de Recherche en Informatique
6 December 2022
- Introduction
- Shifted Reduced Forms
- Fast Algorithms
- Applications
outline

- introduction
 - rational approximation and interpolation
 - the vector case
 - pol. matrices: reminders and motivation
- shifted reduced forms
- fast algorithms
- applications
introduction

 ⇦ earlier in the course ⇦

 ⇦ in this lecture ⇦
addition $f + g$, multiplication $f \cdot g$

division with remainder $f = qg + r$

truncated inverse $f^{-1} \mod X^d$

extended GCD $uf + vg = \gcd(f, g)$

multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$

interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$

Padé approximation $f = \frac{p}{q} \mod X^d$

minpoly of linearly recurrent sequence

in this lecture

earlier in the course
Introduction

Earlier in the Course

- **$O(M(d))$**
 - Addition $f + g$, multiplication $f \times g$
 - Division with remainder $f = qg + r$
 - Truncated inverse $f^{-1} \mod X^d$
 - Extended GCD $uf + vg = \gcd(f, g)$

- **$O(M(d) \log(d))$**
 - Multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
 - Interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
 - Padé approximation $f = \frac{p}{q} \mod X^d$
 - Minpoly of linearly recurrent sequence

In This Lecture
introduction

⇓ earlier in the course ⇓

\[O(M(d)) \]

- addition \(f + g \), multiplication \(f \times g \)
- division with remainder \(f = qg + r \)
- truncated inverse \(f^{-1} \mod X^d \)
- extended GCD \(uf + vg = \gcd(f, g) \)

\[O(M(d) \log(d)) \]

- multipoint eval. \(f \mapsto f(\alpha_1), \ldots, f(\alpha_d) \)
- interpolation \(f(\alpha_1), \ldownarrow \ldots, f(\alpha_d) \mapsto f \)
- Padé approximation \(f = \frac{p}{q} \mod X^d \)
- minpoly of linearly recurrent sequence

⇓ in this lecture ⇓

- Padé approximation, sequence minpoly, extended GCD
- \(O(M(d) \log(d)) \) operations in \(\mathbb{K} \)

matrix versions of these problems

- \(O(m^\omega M(d) \log(d)) \) operations in \(\mathbb{K} \)

or a tiny bit more for matrix-GCD
given power series $p(X)$ and $q(X)$ over \mathbb{K} at precision d, with $q(X)$ invertible,
→ compute $\frac{p(X)}{q(X)} \mod X^d$
given power series $p(X)$ and $q(X)$ over \mathbb{K} at precision d, with $q(X)$ invertible,
→ compute $\frac{p(X)}{q(X)} \mod X^d$
given power series $p(X)$ and $q(X)$ over \mathbb{K} at precision d,
with $q(X)$ invertible,
\rightarrow compute $\frac{p(X)}{q(X)} \mod X^d$

given $M(X) \in \mathbb{K}[X]$ of degree $d > 0$,
given polynomials $p(X)$ and $q(X)$ over \mathbb{K} of degree $< d$,
with $q(X)$ invertible modulo $M(X)$,
\rightarrow compute $\frac{p(X)}{q(X)} \mod M(X)$
given **power series** $p(X)$ and $q(X)$ over \mathbb{K} at precision d, with $q(X)$ invertible,
\rightarrow compute $\frac{p(X)}{q(X)} \mod X^d$

*algo?? $O(??)$
*inv+mul: $O(M(d))$

given $M(X) \in \mathbb{K}[X]$ of degree $d > 0$,
given **polynomials** $p(X)$ and $q(X)$ over \mathbb{K} of degree $< d$, with $q(X)$ invertible modulo $M(X)$,
\rightarrow compute $\frac{p(X)}{q(X)} \mod M(X)$

*algo?? $O(??)$
*xgcd+mul+rem: $O(M(d) \log(d))$
given power series \(p(X) \) and \(q(X) \) over \(\mathbb{K} \) at precision \(d \),
with \(q(X) \) invertible,
\[\rightarrow \text{compute } \frac{p(X)}{q(X)} \mod X^d \]
algo?? \(O(??) \)
inv+mul: \(O(M(d)) \)

given \(M(X) \in \mathbb{K}[X] \) of degree \(d > 0 \),
given polynomials \(p(X) \) and \(q(X) \) over \(\mathbb{K} \) of degree \(< d \),
with \(q(X) \) invertible modulo \(M(X) \),
\[\rightarrow \text{compute } \frac{p(X)}{q(X)} \mod M(X) \]
what does that mean?
algo?? \(O(??) \)
xgcd+mul+rem \(O(M(d) \log(d)) \)

given \(M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X] \),
for pairwise distinct \(\alpha_1, \ldots, \alpha_d \in \mathbb{K} \),
given polynomials \(p(X) \) and \(q(X) \) over \(\mathbb{K} \) of degree \(< d \),
with \(q(X) \) invertible modulo \(M(X) \),
\[\rightarrow \text{compute } \frac{p(X)}{q(X)} \mod M(X) \]
what does that mean?
algo?? \(O(??) \)
Introduction

rational approximation and interpolation

Given power series \(p(X) \) and \(q(X) \) over \(K \) at precision \(d \), with \(q(X) \) invertible,
\[\rightarrow \text{compute } \frac{p(X)}{q(X)} \mod X^d \]

Algorithm? \(O(??) \)

\[\text{inv+mul: } O(M(d)) \]

Given \(M(X) \in K[X] \) of degree \(d > 0 \),
given polynomials \(p(X) \) and \(q(X) \) over \(K \) of degree \(< d \),
with \(q(X) \) invertible modulo \(M(X) \),
\[\rightarrow \text{compute } \frac{p(X)}{q(X)} \mod M(X) \]

What does that mean?
Algorithm? \(O(??) \)

\[\text{xgcd+mul+rem } O(M(d \log d)) \]

Given \(M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in K[X] \),
for pairwise distinct \(\alpha_1, \ldots, \alpha_d \in K \),
given polynomials \(p(X) \) and \(q(X) \) over \(K \) of degree \(< d \),
with \(q(X) \) invertible modulo \(M(X) \),
\[\rightarrow \text{compute } \frac{p(X)}{q(X)} \mod M(X) \]

What does that mean?
Algorithm? \(O(??) \)

\[\text{eval+div+interp } O(M(d \log d)) \]
rational approximation and interpolation

rational fractions \iff linearly recurrent sequences

reminders from lectures 4 and 5
Application: extension of recurrences

[Shoup, 1991]

Problem: Given \(r, N \in \mathbb{N}\), a linear recurrence with constant coefficients of order \(r\) for \((u_n)_n\) and the first \(r\) terms \(u_0, \ldots, u_{r-1}\), compute \(u_r, \ldots, u_N\)

Naive algorithm: unroll the recurrence \(O(rN) \subseteq O(N^2)\)

Idea: \(\sum_{i \geq 0} u_i x^i\) is rational \(A(x)/B(x)\), with \(B\) given by the input recurrence, and \(\deg(A) < \deg(B)\)

Example (Fibonacci): \(F_{i+2} = F_{i+1} + F_i\) \iff \(\sum_i F_i x^i = \frac{F_0 + (F_1 - F_0)x}{1 - x - x^2}\)

Algorithm:
- Compute \(A\) from \(B\) and \(u_0, \ldots, u_{r-1}\) \(O(M(r))\)
- Expand \(A/B\) modulo \(x^{N+1}\) \(O(M(N))\)
Computing the N-th coefficient of a rational function

Duality lemma (link between C-recursive sequences and rational functions)
Let $A(x) = \sum_{n \geq 0} u_n x^n \in \mathbb{K}[[x]]$ be the generating function of $(u_n)_{n \geq 0}$.
The following assertions are equivalent:

(i) $(u_n)_{n \geq 0}$ is C-recursive, having Γ as characteristic polynomial of degree d;

(ii) $A(x)$ is rational, of the form $A = P / Q$ for some $P \in \mathbb{K}[x]_{<d}$, where $Q := \text{rev}_d(\Gamma) = \Gamma(\frac{1}{x})x^d$.

▷ The denominator of A encodes a recurrence for $(u_n)_{n \geq 0}$; the numerator encodes initial conditions.

▷ Generating function of $(F_n)_{n \geq 0}$ given by $F_0 = a$, $F_1 = b$, $F_{n+2} = F_{n+1} + F_n$ is $(a + (b - a)x) / (1 - x - x^2)$. Here $\Gamma = x^2 - x - 1$ and $P = a + (b - a)x$.

▷ **Corollary:** N-th Taylor coeff. of $\frac{P}{Q} \in \mathbb{K}(x)_d$ in $\sim 3M(d) \log N$ ops. in \mathbb{K}
rational fractions \leftrightarrow linearly recurrent sequences
reminders from lectures 4 and 5

\[
\text{expand } \frac{N}{\text{rev}(P)} \mod X^d
\]

numerator N and charpoly P \quad first d terms of the LRS $(u_n)_{n \in \mathbb{N}}$
Introduction

Rational approximation and interpolation

Rational fractions \longleftrightarrow linearly recurrent sequences
Reminders from lectures 4 and 5

Numerator N and charpoly P \hspace{2cm} First d terms of the LRS $(u_n)_{n \in \mathbb{N}}$

Expand $\frac{N}{\text{rev}(P)} \mod X^d$

Reconstruct from $A(X) \mod X^d \rightsquigarrow$ Padé approximation
Padé approximation:

given power series \(f(X) \) at precision \(d \),
\[\rightarrow \] compute \(p(X), q(X) \) such that \(f = \frac{p}{q} \mod X^d \)
introduction

rational approximation and interpolation

Padé approximation:
given power series \(f(X) \) at precision \(d \),
→ compute \(p(X), q(X) \) such that \(f = \frac{p}{q} \mod X^d \)

opinions on this algorithmic problem?
Padé approximation:

given power series $f(X)$ at precision d,
given degree constraints $d_1, d_2 > 0$,
→ compute polynomials $(p(X), q(X))$ of degrees $< (d_1, d_2)$
and such that $f = \frac{p}{q} \mod X^d$
Padé approximation:

given power series \(f(X) \) at precision \(d \),
given degree constraints \(d_1, d_2 > 0 \),
→ compute polynomials \((p(X), q(X))\) of degrees < \((d_1, d_2)\)
and such that \(f = \frac{p}{q} \mod X^d \)

Cauchy interpolation:

given \(M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X] \),
for pairwise distinct \(\alpha_1, \ldots, \alpha_d \in \mathbb{K} \),
given degree constraints \(d_1, d_2 > 0 \),
→ compute polynomials \((p(X), q(X))\) of degrees < \((d_1, d_2)\)
and such that \(f = \frac{p}{q} \mod M(X) \)
Padé approximation:
given power series $f(X)$ at precision d,
given degree constraints $d_1, d_2 > 0$,
→ compute polynomials $(p(X), q(X))$ of degrees $< (d_1, d_2)$
and such that $f = \frac{p}{q} \mod X^d$

Cauchy interpolation:
given $M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X]$,
for pairwise distinct $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$,
given degree constraints $d_1, d_2 > 0$,
→ compute polynomials $(p(X), q(X))$ of degrees $< (d_1, d_2)$
and such that $f = \frac{p}{q} \mod M(X)$

- degree constraints specified by the context
- usual choices have $d_1 + d_2 \approx d$ and existence of a solution
\[K = \mathbb{F}_7 \]

\[f = 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \]

\[d = 8, \quad d_1 = 3, \quad d_2 = 6 \]

→ look for \((p, q)\) of degree \(< (3, 6)\) such that \(f = \frac{p}{q} \mod X^8\)

\[
\begin{bmatrix}
q & p \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
f \\
1
\end{bmatrix}
= 0 \mod X^8
\]
\[K = \mathbb{F}_7 \]
\[f = 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \]
\[d = 8, \quad d_1 = 3, \quad d_2 = 6 \]
\[\rightarrow \text{look for } (p, q) \text{ of degree } < (3, 6) \text{ such that } f = \frac{p}{q} \mod X^8 \]

\[
\begin{bmatrix}
q & p \\
-1 &
\end{bmatrix}
\begin{bmatrix}
f \\\
-1
\end{bmatrix}
= 0 \mod X^8
\]

\[
\begin{bmatrix}
4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\
4 & 0 & 2 & 0 & 5 & 0 & 2 \\
4 & 0 & 2 & 0 & 5 & 0 \\
4 & 0 & 2 & 0 & 5 \\
4 & 0 & 2 \\
4 & 0 & 2 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
= 0
\]
\[\mathbb{K} = \mathbb{F}_7 \]
\[f = 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \]
\[d = 8, \, d_1 = 3, \, d_2 = 6 \]

→ look for \((p, q)\) of degree \(< (3, 6)\) such that \(f = \frac{p}{q} \mod X^8\)

\[
\begin{bmatrix}
q & p
\end{bmatrix}
\begin{bmatrix}
f \\
-1
\end{bmatrix}
= 0 \mod X^8
\]

\[
\begin{bmatrix}
[q_0 \, q_1 \, q_2 \, q_3 \, q_4 \, 1 \mid p_0 \, p_1 \, p_2]
\end{bmatrix}
= 0
\]
Sur la généralisation des fractions continues algébriques;

PAR M. H. PADÉ,

Docteur ès Sciences mathématiques,
Professeur au lycée de Lille.

[1894, Journal de mathématiques pures et appliquées]

INTRODUCTION.

M. Hermite s’est, dans un travail récemment paru (1), occupé de la généralisation des fractions continues algébriques. La question est de déterminer les polynômes X_1, X_2, \ldots, X_n, de degrés $\mu_1, \mu_2, \ldots, \mu_n$, qui satisfont à l’équation

$$S_1 X_1 + S_2 X_2 + \ldots + S_n X_n = S x^{\mu_1+\mu_2+\ldots+\mu_n+n-1},$$

S_1, S_2, \ldots, S_n étant des séries entières données, et S une série également entière. Ou plutôt, il s’agit d’obtenir un algorithme qui permette le calcul de proche en proche de ces systèmes de n polynômes, et qui soit analogue à l’algorithme par lequel le numérateur et le dénominateur d’une réduite d’une fraction continue se déduisent des numérateurs et dénominateurs des réduites précédentes. D’élégantes considérations.
approximation and interpolation: the vector case

Hermite-Padé approximation

[Hermite 1893, Padé 1894]

input:
- polynomials $f_1, \ldots, f_m \in \mathbb{K}[X]$
- precision $d \in \mathbb{Z}_{>0}$
- degree bounds $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

output:
polynomials $p_1, \ldots, p_m \in \mathbb{K}[X]$ such that
- $p_1 f_1 + \cdots + p_m f_m = 0 \mod X^d$
- $\text{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m)$

(Padé approximation: particular case $m = 2$ and $f_2 = -1$)
M-Padé approximation / vector rational interpolation

[Cauchy 1821, Mahler 1968]

input:
- polynomials $f_1, \ldots, f_m \in K[X]$
- pairwise distinct points $\alpha_1, \ldots, \alpha_d \in K$
- degree bounds $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

output:
- polynomials $p_1, \ldots, p_m \in K[X]$ such that
 - $p_1(\alpha_i)f_1(\alpha_i) + \cdots + p_m(\alpha_i)f_m(\alpha_i) = 0$ for all $1 \leq i \leq d$
 - $\text{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m)$

(rational interpolation: particular case $m = 2$ and $f_2 = -1$)
in this lecture: modular equation and fast algebraic algorithms

input:
- polynomials $f_1, \ldots, f_m \in \mathbb{K}[X]$
- field elements $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$ \rightsquigarrow not necessarily distinct
- degree bounds $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$ \rightsquigarrow general “shift” $s \in \mathbb{Z}^m$

output:
- polynomials $p_1, \ldots, p_m \in \mathbb{K}[X]$ such that
 - $p_1 f_1 + \cdots + p_m f_m = 0 \mod \prod_{1 \leq i \leq d} (X - \alpha_i)$
 - $\text{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m)$ \rightsquigarrow minimal s-row degree

(Hermite-Padé: $\alpha_1 = \cdots = \alpha_d = 0$; interpolation: pairwise distinct points)
application of vector rational interpolation:
given pairwise distinct points \{((\alpha_i, \beta_i), 1 \leq i \leq 8\}
\begin{align*}
&= \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\},
\end{align*}
compute a \textbf{bivariate} polynomial \(p(X, Y) \in \mathbb{K}[X, Y]\)
such that \(p(\alpha_i, \beta_i) = 0\) for \(1 \leq i \leq 8\)

\[
\begin{align*}
M(X) &= (X - 24) \cdots (X - 59) \\
L(X) &= \text{Lagrange interpolant}
\end{align*}
\]
\[\longrightarrow \text{solutions} = \text{ideal} \left\langle M(X), Y - L(X) \right\rangle\]

solutions of smaller \(X\)-degree: \(p(X, Y) = p_0(X) + p_1(X)Y + p_2(X)Y^2\)

\[
p(X, L(X)) = \begin{bmatrix} p_0 & p_1 & p_2 \end{bmatrix} \begin{bmatrix} 1 & \text{L} & \text{L}^2 \end{bmatrix} = 0 \mod M(X)
\]

\begin{itemize}
 \item instance of \textbf{univariate} rational vector interpolation
 \item with a \textbf{structured} input equation (powers of \(L \mod M\))
\end{itemize}
application of vector rational interpolation:
given pairwise distinct points \{(\alpha_i, \beta_i), 1 \leq i \leq 8\} = \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\},
compute a bivariate polynomial \(p(X, Y) \in \mathbb{K}[X, Y]\)
such that \(p(\alpha_i, \beta_i) = 0\) for \(1 \leq i \leq 8\).

add degree constraints: seek \(p(X, Y)\) of the form
\[
p_{00} + p_{01}X + p_{02}X^2 + p_{03}X^3 + p_{04}X^4 + (p_{10} + p_{11}X + p_{12}X^2)Y + p_{20}Y^2:
\]

\[
\begin{bmatrix}
P_{00} & P_{01} & P_{02} & P_{03} & P_{04} & P_{10} & P_{11} & P_{12} & P_{20}
\end{bmatrix}
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_8 \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_8^2 \\
\alpha_1^3 & \alpha_2^3 & \cdots & \alpha_8^3 \\
\alpha_1^4 & \alpha_2^4 & \cdots & \alpha_8^4 \\
\beta_1 & \beta_2 & \cdots & \beta_8 \\
\alpha_1\beta_1 & \alpha_2\beta_2 & \cdots & \alpha_8\beta_8 \\
\alpha_1^2\beta_1 & \alpha_2^2\beta_2 & \cdots & \alpha_8^2\beta_8 \\
\beta_1^2 & \beta_2^2 & \cdots & \beta_8^2
\end{bmatrix}
= 0
\]

- \(\mathbb{K}\)-linear system
- two levels of structure

\(p(X, Y) = (2X^4 + 56X^3 + 42X^2 + 48X + 15) + (72X^2 + 12X + 30)Y + Y^2\)
polyonomial matrices: reminder and motivation

why polynomial matrices here?
omitting degree constraints, the set of solutions is
\[S = \{ (p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M \} \]

recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

why polynomial matrices here?

S is a free \(\mathbb{K}[X] \)-module of rank \(m \), meaning:

▶ stable under \(\mathbb{K}[X] \)-linear combinations
▶ admits a basis consisting of \(m \) elements
▶ basis = \(\mathbb{K}[X] \)-linear independence + generates all solutions
▶ \(S \subset \mathbb{K}[X]^m \Rightarrow S \) has rank \(\leq m \)
▶ \(M(X) \) \(\mathbb{K}[X]^m \subset S \Rightarrow S \) has rank \(\geq m \)

remark: solutions are not considered modulo \(M \) e.g. \((M, 0, \ldots, 0)\) is in \(S \) and may appear in a basis
omitting degree constraints, the set of solutions is
\[S = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M\} \]

recall \(M(X) = \prod_{1 \leq i \leq d}(X - \alpha_i) \)

\(S \) is a “free \(\mathbb{K}[X] \)-module of rank \(m \)”, meaning:
- stable under \(\mathbb{K}[X] \)-linear combinations
- admits a basis consisting of \(m \) elements
- basis = \(\mathbb{K}[X] \)-linear independence + generates all solutions
introduction

polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is

\[S = \{(p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M\} \]

\[\text{recall } M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \]

\(S \) is a “free \(K[X] \)-module of rank \(m \)”, meaning:

- stable under \(K[X] \)-linear combinations
- admits a basis consisting of \(m \) elements
- basis = \(K[X] \)-linear independence + generates all solutions

\[\begin{align*}
\text{\(S \subset K[X]^m \Rightarrow S \) has rank} & \leq m \\
\text{\(M(X)K[X]^m \subset S \Rightarrow S \) has rank} & \geq m
\end{align*} \]

remark: solutions are not considered modulo \(M \)

e.g. \((M, 0, \ldots, 0) \) is in \(S \) and may appear in a basis
omitting degree constraints, the set of solutions is
\[S = \{ (p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M \} \]

recalling \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

basis of solutions:
- square nonsingular matrix \(P \) in \(\mathbb{K}[X]^{m \times m} \)
- each row of \(P \) is a solution
- any solution is a \(\mathbb{K}[X] \)-combination \(uP, u \in \mathbb{K}[X]^{1 \times m} \)

i.e. \(S \) is the \(\mathbb{K}[X] \)-row space of \(P \)
omitting degree constraints, the set of solutions is
\[S = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M\} \]

recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

why polynomial matrices here?

basis of solutions:

- square nonsingular matrix \(P \) in \(\mathbb{K}[X]^{m \times m} \)
- each row of \(P \) is a solution
- any solution is a \(\mathbb{K}[X] \)-combination \(uP, u \in \mathbb{K}[X]^{1 \times m} \)

\[\text{i.e. } S \text{ is the } \mathbb{K}[X]-\text{row space of } P \]

prove: \(\det(P) \) is a divisor of \(M(X)^m \)
omitting degree constraints, the set of solutions is
\[S = \{(p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \pmod{M}\} \]

recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

basis of solutions:
- square nonsingular matrix \(P \) in \(K[X]^{m \times m} \)
- each row of \(P \) is a solution
- any solution is a \(K[X] \)-combination \(uP \), \(u \in K[X]^{1 \times m} \)

i.e. \(S \) is the \(K[X] \)-row space of \(P \)

prove: \(\det(P) \) is a divisor of \(M(X)^m \)

prove: any other basis is \(UP \) for \(U \in K[X]^{m \times m} \) with \(\det(U) \in K \setminus \{0\} \)
omitting degree constraints, the set of solutions is

\[S = \{ (p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \, \text{mod} \, M \} \]

recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

basis of solutions:
- square nonsingular matrix \(P \) in \(K[X]^{m \times m} \)
- each row of \(P \) is a solution
- any solution is a \(K[X] \)-combination \(uP, u \in K[X]^{1 \times m} \)

i.e. \(S \) is the \(K[X] \)-row space of \(P \)

computing a **basis** of \(S \) with "minimal degrees"
- has many more applications than a single small-degree solution
- is in most cases the fastest known strategy anyway(!)

\(\leadsto \) degree minimality ensured via **shifted reduced forms**
Introduction

Polynomial Matrices: Reminder and Motivation

A = \[
\begin{bmatrix}
3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\
5 & 5X^2 + 3X + 1 & 5X + 3 \\
3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1
\end{bmatrix}\] ∈ \(\mathbb{K}[X]^{3×3}\)

3 × 3 matrix of degree 3
with entries in \(\mathbb{K}[X] = \mathbb{F}_7[X]\)

operations in \(\mathbb{K}[X]_{d}^{m×m}\):

- combination of matrix and polynomial computations
- addition in \(O(m^2d)\), naive multiplication in \(O(m^3d^2)\)
- some tools shared with \(\mathbb{K}\)-matrices, others specific to \(\mathbb{K}[X]\)-matrices

[Cantor-Kaltofen’91]

multiplication in \(O(m^\omega d \log(d) + m^2d \log(d) \log \log(d))\)

\(∈ O(m^\omega M(d)) ⊂ O^\sim (m^\omega d)\)
introduction

polynomial matrices: reminder and motivation

\[A = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \\ 3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1 \end{bmatrix} \in \mathbb{K}[X]^{3 \times 3} \]

3 × 3 matrix of degree 3 with entries in \(\mathbb{K}[X] = \mathbb{F}_7[X] \)

operations in \(\mathbb{K}[X]^{m \times m}_{<d} \):

- combination of matrix and polynomial computations
- addition in \(O(m^2d) \), naive multiplication in \(O(m^3d^2) \)
- some tools shared with \(\mathbb{K} \)-matrices, others specific to \(\mathbb{K}[X] \)-matrices

[Cantor-Kaltofen’91]

multiplication in \(O(m^\omega d \log(d) + m^2d \log(d) \log \log(d)) \)

\(\in O(m^\omega M(d)) \subset O^\sim(m^\omega d) \)

- Newton truncated inversion, matrix-QuoRem → fast \(O^\sim(m^\omega d) \)
- inversion and determinant via evaluation-interpolation → medium \(O^\sim(m^{\omega+1}d) \)
- vector rational approximation & interpolation → ???
introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication

matrix \(m \times m \) of degree \(d \)

of “average” degree \(\frac{D}{m} \)

\[\rightarrow O^\sim(m^{\omega d}) \]
\[\rightarrow O^\sim(m^{\omega \frac{D}{m}}) \]

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion \(O^\sim(m^3 d) \)

univariate specific operations

- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to normal forms

- triangularization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form
reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d \newline
of “average” degree $\frac{D}{m}$ → $O^\sim(m^{\omega}d)$ \newline
\newline
classical matrix operations
▶ multiplication
▶ kernel, system solving
▶ rank, determinant
▶ inversion $O^\sim(m^{3}d)$

univariate specific operations
▶ truncated inverse, QuoRem
▶ Hermite-Padé approximation
▶ vector rational interpolation
▶ syzygies / modular equations

transformation to normal forms
▶ triangularization: Hermite form
▶ row reduction: Popov form
▶ diagonalization: Smith form
reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d
of “average” degree $\frac{D}{m}$

$\rightarrow O^\sim(m^\omega d)$
$\rightarrow O^\sim(m^\omega \frac{D}{m})$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $O^\sim(m^3 d)$

univariate specific operations

- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to normal forms

- triangularization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form
introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix \(m \times m \) of degree \(d \) of “average” degree \(\frac{D}{m} \)

\[
\rightarrow \quad O^\sim(m^\omega d)
\]
\[
\rightarrow \quad O^\sim(m^\omega \frac{D}{m})
\]

classical matrix operations
- multiplication
- kernel, system solving
- rank, determinant
- inversion \(O^\sim(m^3 d) \)

univariate specific operations
- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to normal forms
- triangularization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form
outline

- introduction
 - rational approximation and interpolation
 - the vector case
 - pol. matrices: reminders and motivation
- shifted reduced forms
- fast algorithms
- applications
shifted reduced forms

reducedness: examples and properties

notation:

let $A \in \mathbb{K}[X]^{m \times n}$ with no zero row,
define $d = (d_1, \ldots, d_m) = \text{rdeg}(A)$

and $X^d = \begin{bmatrix} X^{d_1} & \cdots & \cdots & \cdots & \cdots & X^{d_m} \end{bmatrix} \in \mathbb{K}[X]^{m \times m}$

definition: (row-wise) leading matrix

the leading matrix of A is the unique matrix $\text{Im}(A) \in \mathbb{K}^{m \times n}$
such that $A = X^d \text{Im}(A) + R$ with $\text{rdeg}(R) < d$ entry-wise

equivalently, $X^{-d}A = \text{Im}(A) + \text{terms of strictly negative degree}$
shifted reduced forms

reducedness: examples and properties

notation:
let \(A \in \mathbb{K}[X]^{m \times n} \) with no zero row,
define \(d = (d_1, \ldots, d_m) = rdeg(A) \)
and \(\chi^d = \begin{bmatrix} \chi^{d_1} & & \\ & \ddots & \\ & & \chi^{d_m} \end{bmatrix} \in \mathbb{K}[X]^{m \times m} \)

definition: (row-wise) leading matrix
the leading matrix of \(A \) is the unique matrix \(\text{lm}(A) \in \mathbb{K}^{m \times n} \) such that
\[
A = \chi^d \text{lm}(A) + R \text{ with } rdeg(R) < d \text{ entry-wise}
\]
equivalently, \(\chi^{-d}A = \text{lm}(A) + \text{terms of strictly negative degree} \)

definition: (row-wise) reduced matrix
\(A \in \mathbb{K}[X]^{m \times n} \) is said to be reduced if \(\text{lm}(A) \) has full row rank
shifted reduced forms

reducedness: examples and properties

consider the following matrices, with $\mathbb{K} = \mathbb{F}_7$:

$$A_1 = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 3X + 1 & 4X + 3 & 5X + 5 \\ 0 & 4X^2 + 6X & 5 \\ 4X^2 + 5X + 2 & 5 & 6X^2 + 1 \end{bmatrix}$$

$A_3 = \text{transpose of } A_1$

$A_4 = \text{transpose of } A_2$

answer the following, for $i \in \{1, 2, 3, 4\}$:
1. what is $\text{rdeg}(A_i)$?
2. what is $\text{Im}(A_i)$?
3. is A_i reduced?
let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$, the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)
let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$, the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)

(ii) for any vector $u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m}$ with 1 at index i, $r\text{deg}(uA) \geq r\text{deg}(A_{i,*})$
let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$, the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)

(ii) for any vector $u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m}$ with 1 at index i, $\text{rdeg}(uA) \geq \text{rdeg}(A_{i,*})$

(iii) predictable degree: for any vector $u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$, $\text{rdeg}(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}(A_{i,*}))$

(v) degree minimality: $\text{rdeg}(A) \preceq \text{rdeg}(UA)$ holds for any nonsingular matrix $U \in \mathbb{K}[X]^{m \times m}$, where \preceq sorts the tuples in nondecreasing order and then uses lexicographic comparison.

(vi) predictable determinantal degree: $\deg \det(A) = |\text{rdeg}(A)|$ (only when $m = n$)
polynomial matrices in reduced form

reducedness: examples and properties

let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$, the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)

(ii) for any vector $u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m}$ with 1 at index i, $r\deg(uA) \geq r\deg(A_{i,*})$

(iii) predictable degree: for any vector $u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$, $r\deg(uA) = \max_{1 \leq i \leq m}(\deg(u_i) + r\deg(A_{i,*}))$

(iv) degree minimality: $r\deg(A) \preceq r\deg(UA)$ holds for any nonsingular matrix $U \in \mathbb{K}[X]^{m \times m}$, where \preceq sorts the tuples in nondecreasing order and then uses lexicographic comparison
polynomial matrices in reduced form

reducedness: examples and properties

let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$, the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)

(ii) for any vector $u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m}$ with 1 at index i, $r\text{deg}(uA) \geq r\text{deg}(A_{i,*})$

(iii) predictable degree: for any vector $u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$, $r\text{deg}(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + r\text{deg}(A_{i,*}))$

(iv) degree minimality: $r\text{deg}(A) \preceq r\text{deg}(UA)$ holds for any nonsingular matrix $U \in \mathbb{K}[X]^{m \times m}$, where \preceq sorts the tuples in nondecreasing order and then uses lexicographic comparison

(v) predictable determinantal degree: $\deg \det(A) = |r\text{deg}(A)|$ (only when $m = n$)
shifted reduced forms

reducedness: examples and properties

recall the matrix, with $\mathbb{K} = \mathbb{F}_7$,
$$A = \begin{bmatrix}
3X + 1 & 4X + 3 & 5X + 5 \\
0 & 4X^2 + 6X & 5 \\
4X^2 + 5X + 2 & 5 & 6X^2 + 1
\end{bmatrix}$$

1. what is $\deg \det(A)$?

2. what is $rdeg([4X^2 + 1 \ 2X \ 4X + 5] A)$?

3. is it possible to find a matrix
$$P = \begin{bmatrix}
p_{00} & p_{01} & p_{02} \\
p_{10} & p_{11} & p_{12}
\end{bmatrix}$$
whose rank is 2, whose degree is 1, and which is a left-multiple of A?
shifted reduced forms

reducedness: examples and properties

recall the matrix, with $K = \mathbb{F}_7$,

$$A = \begin{bmatrix}
3X + 1 & 4X + 3 & 5X + 5 \\
0 & 4X^2 + 6X & 5 \\
4X^2 + 5X + 2 & 5 & 6X^2 + 1
\end{bmatrix}$$

1. what is $\text{deg det}(A)$?

2. what is $\text{rdeg}([4X^2 + 1 \ 2X \ 4X + 5] A)$?

3. is it possible to find a matrix

$$P = \begin{bmatrix}
p_{00} & p_{01} & p_{02} \\
p_{10} & p_{11} & p_{12}
\end{bmatrix}$$

whose rank is 2, whose degree is 1, and which is a left-multiple of A?

find a row vector u of degree 1 such that uA has degree 2, where

$$A = \begin{bmatrix}
3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\
5 & 5X^2 + 3X + 1 & 5X + 3
\end{bmatrix}$$
keeping our problem in mind:

- **input:** f_i's and α_i's and degree constraints $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$
- **output:** a solution p satisfying the constraints $cdeg(p) < (d_1, \ldots, d_m)$

obstacle:
computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis $P \in K[X]^{m \times m}$ of solutions

- think of particular constraints (d_1, \ldots, d_m) that can be handled via P
- give constraints (d_1, \ldots, d_m) for which P is “typically” not satisfactory
shifted reduced forms

shifted forms and degree constraints

keeping our problem in mind:

- input: f_i's and α_i's and degree constraints $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$
- output: a solution p satisfying the constraints $\text{cdeg}(p) < (d_1, \ldots, d_m)$

obstacle:
computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis $P \in K[X]^{m \times m}$ of solutions

- think of particular constraints (d_1, \ldots, d_m) that can be handled via P
- give constraints (d_1, \ldots, d_m) for which P is “typically” not satisfactory

solution: compute P in shifted reduced form
shifted reduced forms

shifted forms and degree constraints

\[A = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \\ 3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1 \end{bmatrix} \]

using elementary row operations, transform \(A \) into...

Hermite form

\[H = \begin{bmatrix} X^6 + 6X^4 + X^3 + X + 4 & 0 & 0 \\ 5X^5 + 5X^4 + 6X^3 + 2X^2 + 6X + 3 & X & 0 \\ 3X^4 + 5X^3 + 4X^2 + 6X + 1 & 5 & 1 \end{bmatrix} \]

Popov form

\[P = \begin{bmatrix} X^3 + 5X^2 + 4X + 1 & 2X + 4 & 3X + 5 \\ 1 & X^2 + 2X + 3 & X + 2 \\ 3X + 2 & 4X & X^2 \end{bmatrix} \]
shifted reduced forms

shifted forms and degree constraints

nonsingular \(A \in \mathbb{K}[X]^{m \times m} \)

elementary row transformations

Hermite form \([\text{Hermite, 1851}]\)

▷ triangular
▷ column normalized

\[
\begin{bmatrix}
16 & 0 \\
15 & 0 \\
15 & 0 \\
\end{bmatrix}
\quad \begin{bmatrix}
4 & 3 & 7 \\
3 & 1 & 5 & 3 \\
3 & 6 & 1 & 2 \\
\end{bmatrix}
\]
shifted reduced forms

shifted forms and degree constraints

nonsingular $A \in \mathbb{K}[X]^{m \times m}$

elementary row transformations

Hermite form [Hermite, 1851]
- triangular
- column normalized

<table>
<thead>
<tr>
<th>16</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Popov form [Popov, 1972]
- row reduced/distinct pivots
- column normalized

<table>
<thead>
<tr>
<th>4</th>
<th>3</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>0</th>
<th>1</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
shifted reduced forms

shifted forms and degree constraints

nonsingular $A \in K[X]^{m \times m}$

elementary row transformations

Hermite form [Hermite, 1851]

- triangular
- column normalized

Popov form [Popov, 1972]

- row reduced/distinct pivots
- column normalized

$\begin{bmatrix}
16 & 0 \\
15 & 0 \\
15 & 0 \\
\end{bmatrix}$

$\begin{bmatrix}
4 & 7 \\
3 & 3 \\
1 & 2 \\
\end{bmatrix}$

$\begin{bmatrix}
4 & 3 & 3 & 3 \\
3 & 4 & 3 & 3 \\
3 & 3 & 4 & 3 \\
3 & 3 & 3 & 4 \\
\end{bmatrix}$

$\begin{bmatrix}
7 & 0 & 1 & 5 \\
0 & 1 & 0 \\
0 & 2 \\
6 & 0 & 1 & 6 \\
\end{bmatrix}$

$\begin{bmatrix}
15 \\
16 \\
15 \\
15 \\
\end{bmatrix}$

$\begin{bmatrix}
3 \\
1 \\
3 \\
3 \\
\end{bmatrix}$

$\begin{bmatrix}
3 \\
5 \\
6 \\
1 \\
2 \\
6 \\
0 \\
1 \\
6 \\
\end{bmatrix}$

$\begin{bmatrix}
\leq \text{pot} \\
\end{bmatrix}$

$\leq \text{reduced Gröbner basis}$

$K[X]$-module $S \subset K[X]^{1 \times m}$ of rank m
shifted reduced forms

shifted forms and degree constraints

nonsingular \(\mathbf{A} \in \mathbb{K}[X]^{m \times m} \)

elementary row transformations

Hermite form [Hermite, 1851]
- triangular
- column normalized

\[
\begin{bmatrix}
16 & 0 \\
15 & 0 \\
15 & 0 \\
\end{bmatrix}
\begin{bmatrix}
4 & 7 \\
3 & 3 \\
1 & 5 \\
3 & 6 \\
\end{bmatrix}
\]

Popov form [Popov, 1972]
- row reduced/distinct pivots
- column normalized

\[
\begin{bmatrix}
4 & 3 & 3 & 3 \\
3 & 4 & 3 & 3 \\
3 & 3 & 4 & 3 \\
3 & 3 & 3 & 4 \\
\end{bmatrix}
\begin{bmatrix}
7 & 0 & 1 & 5 \\
0 & 1 & 0 & 0 \\
2 & & & \ \\
6 & 0 & 1 & 6 \\
\end{bmatrix}
\]

Invariant: \(D = \deg(\det(\mathbf{A})) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6 \)
- **average** column degree is \(\frac{D}{m} \)
- **size** of object is \(mD + m^2 = m^2(\frac{D}{m} + 1) \)
shifted reduced forms

shifted forms and degree constraints

nonsingular \(A \in \mathbb{K}[X]^{m \times m} \)

elementary row transformations

Hermite form [Hermite, 1851]
- triangular
- column normalized

\[
\begin{bmatrix}
16 & 0 \\
15 & 0 \\
15 & 0
\end{bmatrix}
\quad \begin{bmatrix}
4 & 7 \\
3 & 7 \\
3 & 6
\end{bmatrix}
\]

Popov form [Popov, 1972]
- row reduced/distinct pivots
- column normalized

\[
\begin{bmatrix}
4 & 3 & 3 & 3 \\
3 & 4 & 3 & 3 \\
3 & 3 & 4 & 3 \\
3 & 3 & 3 & 4
\end{bmatrix}
\quad \begin{bmatrix}
7 & 0 & 1 & 5 \\
0 & 1 & 0 \\
2 \\
6 & 0 & 1 & 6
\end{bmatrix}
\]

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:

arbitrary degree constraints + **no** column column normalization

\(\approx \) minimal, non-reduced, \(\prec \)-Gröbner basis
shifted reduced forms

shift: integer tuple \(s = (s_1, \ldots, s_m) \) acting as column weights

→ connects Popov and Hermite forms

<table>
<thead>
<tr>
<th>(s)</th>
<th>(\begin{bmatrix} 4 & 3 & 3 & 3 \ 3 & 4 & 3 & 3 \ 3 & 3 & 4 & 3 \ 3 & 3 & 3 & 4 \end{bmatrix})</th>
<th>(\begin{bmatrix} 7 & 0 & 1 & 5 \ 0 & 1 & 0 & 0 \ 2 & 2 & 2 & 2 \ 6 & 0 & 1 & 6 \end{bmatrix})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s = (0, 0, 0, 0))</td>
<td>Popov</td>
<td>s-Popov</td>
</tr>
<tr>
<td>(s = (0, 2, 4, 6))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s = (0, D, 2D, 3D))</td>
<td>Hermite</td>
<td></td>
</tr>
</tbody>
</table>

- normal form, average column degree \(D/m \)
- shifted reduced form: same without normalization
- shifts arise naturally in algorithms (approximants, kernel, ...)
shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum **shifted** degree in each of its rows

For \(A = (a_{i,j}) \in K[X]^{m \times n} \), and \(s = (s_1, \ldots, s_n) \in \mathbb{Z}^n \),

\[
\text{rdeg}_s(A) = (\text{rdeg}_s(A_{1,*}), \ldots, \text{rdeg}_s(A_{m,*}))
\]

\[
= \left(\max_{1 \leq j \leq n} (\deg(A_{1,j}) + s_j), \ldots, \max_{1 \leq j \leq n} (\deg(A_{m,j}) + s_j) \right) \in \mathbb{Z}^m
\]

Example: for the matrix \(A = \begin{bmatrix}
3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\
5 & 5X^2 + 3X + 1 & 5X + 3
\end{bmatrix} \),
describe \(\text{rdeg}_{(0,0,0)}(A) \), \(\text{rdeg}_{(0,1,2)}(A) \), and \(\text{rdeg}_{(-1,-3,-2)}(A) \)
shifted reduced forms

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for $A = (a_{i,j}) \in \mathbb{K}[X]^{m \times n}$, and $s = (s_1, \ldots, s_n) \in \mathbb{Z}^n$,

$$rdeg_s(A) = (rdeg_s(A_{1,*}), \ldots, rdeg_s(A_{m,*}))$$

$$= \left(\max_{1 \leq j \leq n} (\deg(A_{1,j}) + s_j), \ldots, \max_{1 \leq j \leq n} (\deg(A_{m,j}) + s_j) \right) \in \mathbb{Z}^m$$

example: for the matrix $A = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix}$,

describe $rdeg_{(0,0,0)}(A)$, $rdeg_{(0,1,2)}(A)$, and $rdeg_{(-1,-3,-2)}(A)$

- $rdeg_s(A) = rdeg(AX^s)$
- $rdeg_s(A)$ only depends on s and the degrees in A
- $rdeg_{s+(c,\ldots,c)}(A) = rdeg_s(A) + c$
shifted reduced forms

shifted forms and degree constraints

notation:
let \(A \in \mathbb{K}[X]^{m \times n} \) with no zero row, and \(s \in \mathbb{Z}^n \),
define \(d = (d_1, \ldots, d_m) = \text{rdeg}_s(A) \)
and \(X^d = \begin{bmatrix} X^{d_1} \\ \vdots \\ X^{d_m} \end{bmatrix} \in \mathbb{K}[X, X^{-1}]^{m \times m} \)

definition: s-leading matrix / s-reduced matrix
assuming \(s \geq 0 \),
- the s-leading matrix of \(A \) is \(\text{lm}_s(A) = \text{lm}(AX^s) \in \mathbb{K}^{m \times n} \)
- \(A \in \mathbb{K}[X]^{m \times n} \) is s-reduced if \(\text{lm}_s(A) \) has full row rank
shifted reduced forms

shifted forms and degree constraints

notation:

let $A \in \mathbb{K}[X]^{m \times n}$ with no zero row, and $s \in \mathbb{Z}^n$,

define $d = (d_1, \ldots, d_m) = \text{rdeg}_s(A)$

and $X^d = \begin{bmatrix} X^{d_1} & \cdots & \cdot & \cdots & X^{d_m} \end{bmatrix} \in \mathbb{K}[X, X^{-1}]^{m \times m}$

definition: s-leading matrix / s-reduced matrix

assuming $s \geq 0$,

- the s-leading matrix of A is $\text{lm}_s(A) = \text{lm}(AX^s) \in \mathbb{K}^{m \times n}$
- $A \in \mathbb{K}[X]^{m \times n}$ is s-reduced if $\text{lm}_s(A)$ has full row rank

- these notions are invariant under $s \rightarrow s + (c, \ldots, c)$
- they coincide with the non-shifted case when $s = (0, \ldots, 0)$
- $X^{-d}AX^s = \text{lm}_s(A) + \text{terms of strictly negative degree}$
exercise: for each of the matrices below, and each shift s,
1. give the s-leading matrix
2. deduce whether the matrix is s-reduced

$$A = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \\ 3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1 \end{bmatrix}$$

$$H = \begin{bmatrix} X^6 + 6X^4 + X^3 + X + 4 & 0 & 0 \\ 5X^5 + 5X^4 + 6X^3 + 2X^2 + 6X + 3 & X & 0 \\ 3X^4 + 5X^3 + 4X^2 + 6X + 1 & 5 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} X^3 + 5X^2 + 4X + 1 & 2X + 4 & 3X + 5 \\ 1 & X^2 + 2X + 3 & X + 2 \\ 3X + 2 & 4X & X^2 \end{bmatrix}$$

$s = (0, 0, 0), \ s = (0, 5, 6), \ s = (-3, -2, -2)$
the characterizations generalize to the s-shifted case, using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced $\iff AX^s$ is reduced)

for example recall the predictable degree property:

A is reduced if and only if for any $u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$,

$$rdeg(uA) = \max_{1 \leq i \leq m}(\deg(u_i) + rdeg(A_{i,*}))$$
the characterizations generalize to the s-shifted case, using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced $\iff AX^s$ is reduced)

for example recall the predictable degree property:

A is reduced if and only if for any $u = [u_1 \ldots u_m] \in \mathbb{K}[X]^{1 \times m}$,

\[
\text{rdeg}(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}(A_i, *))
\]

- this means $\text{rdeg}(uA) = \text{rdeg}_t(u)$ where $t = \text{rdeg}(A)$
- i.e. $\text{rdeg}(uA) = \text{rdeg}(uX^{\text{rdeg}(A)})$, "no surprising cancellation"
- proof: let $\delta = \text{rdeg}_t(u)$, our goal is to show $\text{rdeg}(uA) = \delta$
 terms of $X^{-\delta}uA$ have degree ≤ 0,
 and $X^{-\delta}uA = (X^{-\delta}uX^t)(X^{-t}A)$;
 the term of degree 0 is $\text{Im}_t(u)\text{Im}(A)$,
 it is nonzero since $\text{Im}(A)$ has full rank and $\text{Im}_t(u) \neq 0$
 (the case $u = 0$ is trivial)
the characterizations generalize to the \(s \)-shifted case, using \(s \)-row degrees and \(s \)-leading matrices where appropriate

(proofs: direct, with: \(A \) is \(s \)-reduced \(\iff \) \(AX^s \) is reduced)

for example recall the predictable degree property:

A is reduced if and only if for any \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),

\[
\text{rdeg}(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}(A_{i,\ast}))
\]

A is \(s \)-reduced if and only if for any \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),

\[
\text{rdeg}_s(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}_s(A_{i,\ast}))
\]

this means \(\text{rdeg}_s(uA) = \text{rdeg}_t(u) \), where \(t = \text{rdeg}_s(A) \)
the characterizations generalize to the \(s \)-shifted case, using \(s \)-row degrees and \(s \)-leading matrices where appropriate

(proofs: direct, with: \(A \) is \(s \)-reduced \(\iff \) \(AX^s \) is reduced)

for example recall the predictable degree property:

\(A \) is reduced if and only if for any \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),
\[
\text{rdeg}(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}(A_{i,*}))
\]

\(A \) is \(s \)-reduced if and only if for any \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),
\[
\text{rdeg}_s(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}_s(A_{i,*}))
\]

this means \(\text{rdeg}_s(uA) = \text{rdeg}_t(u) \), where \(t = \text{rdeg}_s(A) \)

- \(s \)-reduced forms provide vectors of minimal \(s \)-degree in the module
- satisfying degree constraints \((d_1, \ldots, d_m) \Rightarrow \) taking \(s = (-d_1, \ldots, -d_m) \)
- indeed \(\text{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m) \)
 if and only if \(\text{rdeg}_{(-d_1,\ldots,-d_m)}([p_1 \cdots p_m]) < 0 \)
shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

▶ compute a first basis P_1 for a subproblem
▶ update the input instance to get the second subproblem
▶ compute a second basis P_2 for this second subproblem
▶ the output basis of solutions is $P_2 P_1$

we want $P_2 P_1$ to be reduced:
1. is it implied by “P_1 reduced and P_2 reduced”?
2. any idea of how to fix this?
shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

▷ compute a first basis \(P_1 \) for a subproblem
▷ update the input instance to get the second subproblem
▷ compute a second basis \(P_2 \) for this second subproblem
▷ the output basis of solutions is \(P_2 P_1 \)

we want \(P_2 P_1 \) to be reduced:
1. is it implied by “\(P_1 \) reduced and \(P_2 \) reduced”?
2. any idea of how to fix this?

we want \(P_2 P_1 \) to be reduced
theorem: implied by “\(P_1 \) is reduced and \(P_2 \) is \(t \)-reduced”
where \(t = rdeg(P_1) \)
shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

▷ compute a first basis P_1 for a subproblem
▷ update the input instance to get the second subproblem
▷ compute a second basis P_2 for this second subproblem
▷ the output basis of solutions is $P_2 P_1$

we want $P_2 P_1$ to be reduced:
1. is it implied by “P_1 reduced and P_2 reduced”?
2. any idea of how to fix this?

we want $P_2 P_1$ to be s-reduced

theorem: implied by “P_1 is s-reduced and P_2 is t-reduced”
where $t = \text{rdeg}_s(P_1)$
let $M \subseteq M_1$ be two $K[X]$-submodules of $K[X]^m$ of rank m, let $P_1 \in K[X]^{m \times m}$ be a basis of M_1, let $s \in \mathbb{Z}^m$ and $t = \text{rdeg}_s(P_1)$,

- the rank of the module $M_2 = \{ \lambda \in K[X]^{1 \times m} \mid \lambda P_1 \in M \}$ is m

and for any basis $P_2 \in K[X]^{m \times m}$ of M_2, the product $P_2 P_1$ is a basis of M

- if P_1 is s-reduced and P_2 is t-reduced, then $P_2 P_1$ is s-reduced
shifted reduced forms

stability under multiplication

Let \(\mathcal{M} \subseteq \mathcal{M}_1 \) be two \(\mathbb{K}[X]\)-submodules of \(\mathbb{K}[X]^m \) of rank \(m \), let \(\mathbf{P}_1 \in \mathbb{K}[X]^{m \times m} \) be a basis of \(\mathcal{M}_1 \), let \(s \in \mathbb{Z}^m \) and \(t = \text{rdeg}_s(\mathbf{P}_1) \),

- the rank of the module \(\mathcal{M}_2 = \{ \lambda \in \mathbb{K}[X]^{1 \times m} \mid \lambda \mathbf{P}_1 \in \mathcal{M} \} \) is \(m \) and for any basis \(\mathbf{P}_2 \in \mathbb{K}[X]^{m \times m} \) of \(\mathcal{M}_2 \),
- the product \(\mathbf{P}_2 \mathbf{P}_1 \) is a basis of \(\mathcal{M} \)
- if \(\mathbf{P}_1 \) is \(s \)-reduced and \(\mathbf{P}_2 \) is \(t \)-reduced, then \(\mathbf{P}_2 \mathbf{P}_1 \) is \(s \)-reduced.

Let \(\mathbf{A} \in \mathbb{K}[X]^{m \times m} \) denote the adjugate of \(\mathbf{P}_1 \). Then, we have \(\mathbf{A} \mathbf{P}_1 = \det(\mathbf{P}_1)\mathbf{I}_m \).

Thus, \(p \mathbf{A} \mathbf{P}_1 = \det(\mathbf{P}_1) p \in \mathcal{M} \) for all \(p \in \mathcal{M} \), and therefore \(\mathcal{M} \mathbf{A} \subseteq \mathcal{M}_2 \). Now, the nonsingularity of \(\mathbf{A} \) ensures that \(\mathcal{M} \mathbf{A} \) has rank \(m \); this implies that \(\mathcal{M}_2 \) has rank \(m \) as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix \(\mathbf{P}_2 \mathbf{P}_1 \) is nonsingular since \(\det(\mathbf{P}_2 \mathbf{P}_1) \neq 0 \). Now let \(p \in \mathcal{M} \); we want to prove that \(p \) is a \(\mathbb{K}[X] \)-linear combination of the rows of \(\mathbf{P}_2 \mathbf{P}_1 \). First, \(p \in \mathcal{M}_1 \), so there exists \(\lambda \in \mathbb{K}[X]^{1 \times m} \) such that \(p = \lambda \mathbf{P}_1 \). But then \(\lambda \in \mathcal{M}_2 \), and thus there exists \(\mu \in \mathbb{K}[X]^{1 \times m} \) such that \(\lambda = \mu \mathbf{P}_2 \). This yields the combination \(p = \mu \mathbf{P}_2 \mathbf{P}_1 \).
shifted reduced forms

stability under multiplication

Let \(M \subseteq M_1 \) be two \(\mathbb{K}[X] \)-submodules of \(\mathbb{K}[X]^m \) of rank \(m \),
let \(P_1 \in \mathbb{K}[X]^{m \times m} \) be a basis of \(M_1 \),
let \(s \in \mathbb{Z}^m \) and \(t = \text{rdeg}_s(P_1) \),

- the rank of the module \(M_2 = \{ \lambda \in \mathbb{K}[X]^{1 \times m} \mid \lambda P_1 \in M \} \) is \(m \)
and for any basis \(P_2 \in \mathbb{K}[X]^{m \times m} \) of \(M_2 \),
the product \(P_2P_1 \) is a basis of \(M \)
- if \(P_1 \) is \(s \)-reduced and \(P_2 \) is \(t \)-reduced,
then \(P_2P_1 \) is \(s \)-reduced

Let \(d = \text{rdeg}_t(P_2) \); we have \(d = \text{rdeg}_s(P_2P_1) \) by the predictable degree property. Using \(X^{-d}P_2P_1X^s = X^{-d}P_2X^tX^{-t}P_1X^s \), we obtain that \(\text{Im}_s(P_2P_1) = \text{Im}_t(P_2)\text{Im}_s(P_1) \). By assumption, \(\text{Im}_t(P_2) \) and \(\text{Im}_s(P_1) \) are invertible, and therefore \(\text{Im}_s(P_2P_1) \) is invertible as well; thus \(P_2P_1 \) is \(s \)-reduced.
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

input: vector $F = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix}$, points $\alpha_1, \ldots, \alpha_d \in K$, shift $s = (s_1, \ldots, s_m) \in \mathbb{Z}^m$

1. $P = \begin{bmatrix} -p_1 \\ \vdots \\ -p_m \end{bmatrix}$ = identity matrix in $K[X]^{m \times m}$

2. for i from 1 to d:
 a. evaluate updated vector $\begin{bmatrix} (p_1 \cdot F)(\alpha_i) \\ \vdots \\ (p_m \cdot F)(\alpha_i) \end{bmatrix} = (P \cdot F)(\alpha_i)$
 b. choose pivot π with smallest s_π such that $(p_\pi \cdot F)(\alpha_i) \neq 0$
 update pivot shift $s_\pi = s_\pi + 1$
 c. eliminate: $\forall j \neq \pi, (p_j \cdot F)(\alpha_i) = 0$

 for $j \neq \pi$ do $p_j \leftarrow p_j - \frac{(p_j \cdot F)(\alpha_i)}{(p_\pi \cdot F)(\alpha_i)} p_\pi$; $p_\pi \leftarrow (X - \alpha_i) p_\pi$

after i iterations: P is an s-reduced basis of solutions for $(\alpha_1, \ldots, \alpha_i)$
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \), \(m = 4 \), \(s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]^{T} \)

iteration: \(i = 1 \), point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift \(\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \)

basis \(\begin{bmatrix} 0 & 2 & 4 & 6 \end{bmatrix} \)

values \(\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 \\ 95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 \\ 34 & 47 & 47 & 1 & 85 & 45 & 75 & 50 \end{bmatrix} \)
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \), \(m = 4 \), \(s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 1 \)
point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 2 & 4 & 6 \\
80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 \\
95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 \\
34 & 47 & 47 & 1 & 85 & 45 & 75 & 50 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(F_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \quad L \quad L^2 \quad L^3]^{T}\)

iteration: \(i = 1 \) \hspace{1cm} point: \(24, 31, 15, 32, 83, 27, 20, 59\)

\[
\begin{align*}
\text{shift} & \quad [0 \quad 2 \quad 4 \quad 6] \\
\text{basis} & \quad \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
17 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
63 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix} \\
\text{values} & \quad \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 & 0 \\
0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 & 0 \\
0 & 13 & 13 & 64 & 51 & 11 & 41 & 16 & 0 \\
\end{bmatrix}
\end{align*}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \ L \ L^2 \ L^3]^T\)

iteration: \(i = 1\)
point: \(24, 31, 15, 32, 83, 27, 20, 59\)

shift

\[
\begin{bmatrix}
X + 73 \\
17 \\
2 \\
63
\end{bmatrix}
\]

basis

\[
\begin{bmatrix}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\
0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\
0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\
0 & 13 & 13 & 64 & 51 & 11 & 41 & 16
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8\), \(m = 4\), \(s = (0, 2, 4, 6)\), base field \(\mathbb{F}_{97}\)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbb{F} = \begin{bmatrix} 1 & L & L^2 & L^3 \end{bmatrix}^T\)

iteration: \(i = 2\)
point: \(24, 31, 15, 32, 83, 27, 20, 59\)

shift

\[
\begin{bmatrix}
X + 73 & 0 & 0 & 0 \\
17 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
63 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\
0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\
0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\
0 & 13 & 13 & 64 & 51 & 11 & 41 & 16 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \quad L \quad L^2 \quad L^3]^T \)

iteration: \(i = 2 \)
point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift \[[1 \quad 2 \quad 4 \quad 6] \]

basis
\[
\begin{bmatrix}
X + 73 & 0 & 0 & 0 \\
X + 90 & 1 & 0 & 0 \\
56X + 16 & 0 & 1 & 0 \\
12X + 66 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values
\[
\begin{bmatrix}
0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\
0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\
0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\
0 & 0 & 2 & 63 & 80 & 47 & 90 & 48 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8\) \(m = 4\) \(s = (0, 2, 4, 6)\), base field \(\mathbb{F}_{97}\)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1\ \ L\ \ L^2\ \ L^3]^T\)

iteration: \(i = 2\) point: \(24, 31, 15, 32, 83, 27, 20, 59\)

shift \(\begin{bmatrix} 2 & 2 & 4 & 6 \end{bmatrix}\)

basis \[
\begin{bmatrix}
X^2 + 42X + 65 & 0 & 0 & 0 \\
X + 90 & 1 & 0 & 0 \\
56X + 16 & 0 & 1 & 0 \\
12X + 66 & 0 & 0 & 1
\end{bmatrix}
\]

values \[
\begin{bmatrix}
0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\
0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\
0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\
0 & 0 & 2 & 63 & 80 & 47 & 90 & 48
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \), \(m = 4 \), \(s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: (24, 31, 15, 32, 83, 27, 20, 59) and \(F = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 3 \) point: 24, 31, 15, 32, 83, 27, 20, 59

\[
\begin{align*}
\text{shift} & \quad [2 \ 2 \ 4 \ 6] \\
\text{basis} & \quad \begin{bmatrix}
X^2 + 42X + 65 & 0 & 0 & 0 \\
X + 90 & 1 & 0 & 0 \\
56X + 16 & 0 & 1 & 0 \\
12X + 66 & 0 & 0 & 1 \\
\end{bmatrix} \\
\text{values} & \quad \begin{bmatrix}
0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\
0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\
0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\
0 & 0 & 2 & 63 & 80 & 47 & 90 & 48 \\
\end{bmatrix}
\end{align*}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59) \) and \(\mathbf{F} = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 3 \) \quad point: 24, 31, \textbf{15}, 32, 83, 27, 20, 59

shift

\[
\begin{bmatrix}
3 & 2 & 4 & 6
\end{bmatrix}
\]

basis

\[
\begin{bmatrix}
X^3 + 27X^2 + 17X + 92 & 0 & 0 & 0 \\
54X^2 + 38X + 11 & 1 & 0 & 0 \\
17X^2 + 91X + 54 & 0 & 1 & 0 \\
66X^2 + 68X + 88 & 0 & 0 & 1
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\
0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\
0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\
0 & 0 & 0 & 9 & 32 & 31 & 84 & 29
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \quad \mathbf{L} \quad \mathbf{L}^2 \quad \mathbf{L}^3]^T \)

iteration: \(i = 4 \)

point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift

\[
[3 \quad 2 \quad 4 \quad 6]
\]

basis

\[
\begin{bmatrix}
X^3 + 27X^2 + 17X + 92 & 0 & 0 & 0 \\
54X^2 + 38X + 11 & 1 & 0 & 0 \\
17X^2 + 91X + 54 & 0 & 1 & 0 \\
66X^2 + 68X + 88 & 0 & 0 & 1
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\
0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\
0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\
0 & 0 & 0 & 9 & 32 & 31 & 84 & 29
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \quad \text{base field } \mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \quad L \quad L^2 \quad L^3]^T \)

iteration: \(i = 4 \) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift \[
\begin{bmatrix}
[3 & 3 & 4 & 6]
\end{bmatrix}
\]

basis \[
\begin{bmatrix}
X^3 + 31X^2 + 27X + 3 & 36 & 0 & 0 \\
54X^3 + 56X^2 + 56X + 36 & X + 65 & 0 & 0 \\
56X^2 + 43X + 35 & 60 & 1 & 0 \\
52X^2 + 33X + 60 & 68 & 0 & 1
\end{bmatrix}
\]

values \[
\begin{bmatrix}
0 & 0 & 0 & 0 & 95 & 50 & 66 & 0 \\
0 & 0 & 0 & 0 & 54 & 0 & 19 & 58 \\
0 & 0 & 0 & 0 & 4 & 45 & 79 & 95 \\
0 & 0 & 0 & 0 & 7 & 31 & 41 & 17
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \quad L \quad L^2 \quad L^3]^T \)

iteration: \(i = 5 \) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59\)

\[
\begin{bmatrix}
X^4 + 45X^3 + 73X^2 + 90X + 42 & 36X + 19 & 0 & 0 \\
81X^3 + 20X^2 + 9X + 20 & X + 67 & 0 & 0 \\
2X^3 + 21X^2 + 41 & 35 & 1 & 0 \\
52X^3 + 15X^2 + 79X + 22 & 0 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 13 & 13 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 89 & 55 & 58 \\
0 & 0 & 0 & 0 & 0 & 48 & 17 & 95 \\
0 & 0 & 0 & 0 & 0 & 0 & 12 & 78 & 17
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59) \) and \(\mathbf{F} = [1 \quad L \quad L^2 \quad L^3]^T \)

iteration: \(i = 6 \)

point: 24, 31, 15, 32, 83, 27, 20, 59

\[
\begin{bmatrix}
X^4 + 19X^3 + 57X^2 + 44X + 26 & 74X + 43 & 0 & 0 \\
81X^4 + 64X^3 + 51X^2 + 68X + 42 & X^2 + 40X + 34 & 0 & 0 \\
3X^3 + 44X^2 + 54X + 64 & 6X + 49 & 1 & 0 \\
28X^3 + 45X^2 + 44X + 52 & 50X + 52 & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 66 & 70 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 56 & 55 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 15 & 7
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \), \(m = 4 \), \(s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 7 \)
point: \(24, 31, 15, 32, 83, 27, 20, 59\)

shift \[\begin{bmatrix} 5 & 4 & 4 & 6 \end{bmatrix} \]

basis
\[
\begin{bmatrix}
X^5 + 96X^4 + 65X^3 + 68X^2 + 19X + 62 & 74X^2 + 18X + 13 & 0 & 0 \\
6X^4 + 94X^3 + 44X^2 + 66X + 32 & X^2 + 19X + 10 & 0 & 0 \\
55X^4 + 78X^3 + 75X^2 + 49X + 39 & 2X + 86 & 1 & 0 \\
13X^4 + 81X^3 + 10X^2 + 34X + 2 & 42X + 29 & 0 & 1
\end{bmatrix}
\]

values
\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 44
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \quad L \quad L^2 \quad L^3]^T\)

iteration: \(i = 8\) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59\)

shift \[
\begin{bmatrix}
5 & 5 & 4 & 6 \\
X^5 + 12X^4 + 10X^3 + 34X^2 + 65X + 2 & 60X^2 + 43X + 67 & 0 & 0 \\
6X^5 + 31X^4 + 27X^3 + 89X^2 + 18X + 52 & X^3 + 57X^2 + 53X + 89 & 0 & 0 \\
2X^4 + 56X^3 + 42X^2 + 48X + 15 & 72X^2 + 12X + 30 & 1 & 0 \\
40X^4 + 19X^3 + 14X^2 + 40X + 49 & 53X^2 + 79X + 74 & 0 & 1 \\
\end{bmatrix}
\]

basis \[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

values
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

to be continued...
outline

introduction
- rational approximation and interpolation
- the vector case
- pol. matrices: reminders and motivation

shifted reduced forms
- reducedness: examples and properties
- shifted forms and degree constraints
- stability under multiplication

fast algorithms
- iterative algorithm and output size
- base case: modulus of degree 1
- recursion: residual and basis multiplication

applications
outline

- **introduction**
 - rational approximation and interpolation
 - the vector case
 - pol. matrices: reminders and motivation

- **shifted reduced forms**
 - reducedness: examples and properties
 - shifted forms and degree constraints
 - stability under multiplication

- **fast algorithms**
 - iterative algorithm and output size
 - base case: modulus of degree 1
 - recursion: residual and basis multiplication

- **applications**
 - minimal kernel bases and linear systems
 - fast gcd and extended gcd
 - perspectives
summary

introduction
- rational approximation and interpolation
- the vector case
- pol. matrices: reminders and motivation

shifted reduced forms
- reducedness: examples and properties
- shifted forms and degree constraints
- stability under multiplication

fast algorithms
- iterative algorithm and output size
- base case: modulus of degree 1
- recursion: residual and basis multiplication

applications
- minimal kernel bases and linear systems
- fast gcd and extended gcd
- perspectives