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Padé approximation, sequence minpoly, extended GCD
O(M(d)log(d)) operations in K

matrix versions of these problems
O(m®M(d) log(d)) operations in K

or a tiny bit more for matrix-GCD
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given power series p(X) and q(X) over K at precision d,

with q(X) invertible,

— compute E mod X4 algo?? O(?7)

inv+mul: O(M(d))

given M(X) € K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

— compute mod M(X) algo?? O(77)
xgcd+mul+rem O(M(d) log(d))

given M(X) = (X —og) -+ - (X — q) € KIX],

for pairwise distinct o, ..., xq € K,

given polynomials p(X) and q(X) over K of degree < d,

with q(X) invertible modulo M(X), what does that mean?
— compute mod M(X) algo?? O(77)

eval+div+interp O(M(d) log(d))
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introduction

rational approximation and interpolation

rational fractions «<— linearly recurrent sequences

reminders from lecture 6

C-finite sequences and rational series

Proposition. The sequence (u,)nen satisfies
YneEN, Unjps+CoiUnss—1+---+Coun=0

if and only its generating series is of the form

~
n_ p(x) __p()
“Z% U X e e Teve0 for some p € K[x] .

denominator < recurrence, numerator < initial values / residual
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rational approximation and interpolation

rational fractions «<— linearly recurrent sequences

reminders from lecture 6

From s to 2's terms e

[Fiduccia 1985, Shoup 1991]

Unts+Cs—1Unts—1+ - +Coun=0

G’roblem. Given (ug, ..., us_1), compute (Us, ..., Uss_1). )
Using the previous proposition, write Z Un X" = zg; with q =revy(x) and degp <s.
n>0
PO e 14 0() = px) = q(x) Ug(x) remx®
q) QTR P q 0

Uo(x)

Algorithm. Input: ug.s, Co:s Output: up.N
1. Compute p = q Uprem x* O(M(s))
2. Compute the first N terms of p / q by a power series division O(M(N))
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duction

rational approximation and interpolation

rational fractions «<— linearly recurrent sequences
reminders from lecture 6

expand s mod XN

rev(

/\

numerator p and charpoly x first N terms of the LRS (un)nen

\_/

reconstruct from U (X) mod XN

~ Padé approximation
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Padé approximation:

given power series f(X) at precision d,
— compute p(X), q(X) such that f = % mod X4

opinions on this algorithmic problem?
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rational approximation and interpolation

Padé approximation:

given power series f(X) at precision d,

given degree constraints dy, d; > 0,

— compute polynomials (p(X), q(X)) of degrees < (d;, dp)
and such that f = & mod @

Cauchy interpolation:

given M(X) = (X — o) -+ - (X — aq) € KIX],

for pairwise distinct o, ..., xq € K,

given degree constraints dy, dy > 0,

— compute polynomials (p(X), q(X)) of degrees < (d;, d2)
and such that f = }é mod M (X)

» degree constraints specified by the context
» usual choices have d; + dy ~ d and existence of a solution



approximation and structured linear system

K =Ty
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K =Ty

f=2X"+2X0 +5X* +2X%+ 4

d=8,d;=3,d,=6

— look for (p, q) of degree < (3,6) such that f = % mod X8

[a »l_; =0 mod X?
4 0 2 05 0 2 2]
40205 0 2
4020 50
4020 5
[do 91 d2 d3 da gslpo P1 P2l 40 2 0] =0
4 0 2
6 0000000O0
6 000000
I 6 0000 0




approximation and structured linear system

K =Ty

f=2X"+2X0 +5X* +2X%+ 4

d=8,d;=3,d,=6

— look for (p, q) of degree < (3,6) such that f = % mod X8

[ q p]_l =0 mod X8
4 02 0 5 0 2 2]
40,2 0 50 2
4.0.2.0 5 0
4 02 0 5
[do d1 92 93 g4 gs|po P1 P2l 4.0.2 0 =0
4 0 2
6 0000000
6 000000
| 6 00 0 0 0




Sur la généralisation des fractions continues algébriques;
' Pae M. H. PADE,

Docteur &s Sciences mathématiques,
Professeur au lycée de Lille.

- [1894, Journal de mathématiques pures et appliquées]
INTRODUCTION.

M. Hermite s’est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X,, X, ..., X,, de degrés p,, ty, ..., 4,
qui satisfont & I'équation

S, X, + 8, X, +ovet 8, X, = S gttt

S,, S,, ..., S, étant des séries enti¢res données, et S une série égale-
ment entiére. Ou plutét, il sagit d’obtenir un algorithme qui permette
le calcul de proche en proche de ces systémes de r polynomes, et qui
soit analogue & I'algorithme par lequel le numérateur et le dénomina-
teur d’une réduite d’une fraction continue se déduisent des numéra-
tanre ot dénominatenrs des radiites nrécédentes. D'élécantes conside-



approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

» polynomials fy, ..., f,, € K[X]

» precision d € Zg

»degree bounds dy, ..., dm € Z~g

output:

polynomials py, ..., pm € K[X] such that
»pifi + -+ Ppmfm = 0 mod X4
»cdeg([p1- - pml) < (d1,...,dm)

(Padé approximation: particular case m = 2 and f, = —1)



approximation and interpolation: the vector case

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

» polynomials fy, ..., f,, € K[X]

» pairwise distinct points oy, ..., g € K
»degree bounds dy, ..., dm € Z+g

output:

polynomials p1, ..., pm € K[X] such that

»pr(ai)fi(o) + - -+ pmlai)fm(o) =0forall 1 <i<d
»cdeg([p1- - pml) < (d1,...,dm)

(rational interpolation: particular case m = 2 and f, = —1)



ction

approximation and interpolation: the vector case

in this lecture: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard
2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

» polynomials fy, ..., i, € K[X]

> field elements &y, ..., g € K ~» not necessarily distinct
» degree bounds dy, ..., dm € Z+g ~> general “shift” s € Z™
output:

polynomials p1, ..., pm € K[X] such that
»p1fi + -+ pmfm = 0 mod ngigd(x — o)
»cdeg([pr- - pml) < (d1,...,dm) ~» minimal s-row degree

(Hermite-Padé: o1 = - - - = oxqg = 0; interpolation: pairwise distinct points)



interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points {(o, i), 1 <1< 8}
={(24,80), (31,73), (15,73), (32,35), (83, 66), (27,46), (20,91), (59, 64)},
compute a bivariate polynomial p(X,Y) € K[X, Y]

such that p(ay, i) =0for 1 <1< 8

I]t/(l)(())()::L(a);r;nzg? mte(:;;ai? } — solutions = ideal (M(X),Y —L(X))

solutions of smaller X-degree: p(X,Y) = po(X) + p1(X)Y + p2(X)Y?

1
pPX, LX) =[po P1 P2 ]—2 = 0 mod M(X)
L
» instance of univariate rational vector interpolation
»with a structured input equation (powers of L mod M)
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interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points {(o, i), 1 <1< 8}
={(24,80), (31,73), (15,73), (32,35), (83, 66), (27,46), (20,91), (59, 64)},
compute a bivariate polynomial p(X,Y) € K[X, Y]

such that p(ay, i) =0for 1 <1< 8

add degree constraints: seek p(X,Y) of the form
Poo + PorX + paaX? 4+ po3X® + poaX* + (p1o + p1uiX + p12X?)Y + pa Y2

r 1 1 1
o [0.4)) g
o3 o3 o3
o3 o3 o
. . ot o4 o
[ Poo Por Po2 P03 Pos | Pro Pu P2 ¢ P || St % 2 .8 _|=0
B1 B2 Bs
a1PBr P2 - xgPs
2 2 2
" % o - o
» K-linear system 11 oofs sPe
T2 P Y
» two levels of structure L B1 B 8

P(X,Y) = (2X* + 56X3 + 42X2 + 48X + 15) + (72X2 + 12X + 30)Y + Y2
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polynomial matrices: reminder and motivation

why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

8 is a “free K[X]-module of rank m", meaning:

» stable under K[X]-linear combinations

» admits a basis consisting of m elements

» basis = K[X]-linear independence + generates all solutions

»8 C KIXI™ = 8 hasrank <m
»M(X)KIXI™Cc8 = S hasrank >m

remark: solutions are not considered modulo M
eg. (M,0,..., 0) is in 8 and may appear in a basis

10
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why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

basis of solutions:
» square nonsingular matrix P in K[X]
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polynomial matrices: reminder and motivation
why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

basis of solutions:
» square nonsingular matrix P in K[X]™>*™

»each row of P is a solution
» any solution is a K[X]-combination uP, u € K[X]'*™

i.e. 8 is the K[X]-row space of P

prove: det(P) is a divisor of M(X)™

prove: any other basis is UP for U € K[X]™*™ with det(U) € K\ {0}

10



polynomial matrices: reminder and motivation

why polynomial matrices here?
omitting degree constraints, the set of solutions is
S={(p1,..-,pm) € KIXI™ | p1fi + -+ pmfm = 0 mod M}
recall M(X) = [Ticica (X — 1)

basis of solutions:
» square nonsingular matrix P in K[X]™>*™

»each row of P is a solution
» any solution is a K[X]-combination uP, u € K[X]'*™

i.e. 8 is the K[X]-row space of P

computing a basis of 8 with “minimal degrees”
» has many more applications than a single small-degree solution
~is in most cases the fastest known strategy anyway(!)

~» degree minimality ensured via shifted reduced forms

10
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polynomial matrices: reminder and motivation

3X + 4 X3 4+4X+1  4X2+3 .
A= 5 5X2 43X +1 5X+3 | eKX]3x3 3 x 3 matrix of degree 3
3X3 4+ X2 45X + 3 6X +5 2X 41 with entries in K[X] = F7[X]

operations in K[X]T7™:

» combination of matrix and polynomial computations
» addition in O(m?2d), naive multiplication in O(m3d?)
» some tools shared with K-matrices, others specific to K[X]-matrices
[Cantor-Kaltofen'91]
multiplication in O(m®dlog(d) + m2dlog(d) loglog(d))
€ O(m®M(d)) c O"(m«d)
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polynomial matrices: reminder and motivation

3X + 4 X3 4+4X+1  4X2+3 .
A= 5 5X2 43X +1 5X+3 | eKX]3x3 3 x 3 matrix of degree 3
3X3 4+ X2 45X + 3 6X +5 2X 41 with entries in K[X] = F7[X]

operations in K[X]T7™:

» combination of matrix and polynomial computations
» addition in O(m?2d), naive multiplication in O(m3d?)
» some tools shared with K-matrices, others specific to K[X]-matrices
[Cantor-Kaltofen'91]
multiplication in O(m®dlog(d) + m2dlog(d) loglog(d))
€ O(m®M(d)) c O"(m«d)

» Newton truncated inversion, matrix-QuoRem — fast O"(m®d)

> inversion and determinant via evaluation-interpolation — medium O~ (m®*t1qd)

» vector rational approximation & interpolation N
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polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d — 07(m®d)
of “average” degree % — O"(m“’%)

classical matrix operations univariate specific operations

» multiplication

» truncated inverse, QuoRem

» kernel, system solving » Hermite-Padé approximation

» rank, determinant

> inversion

O~ (m3d)

» vector rational interpolation

» syzygies / modular equations

transformation to normal forms

» triangularization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form

12
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polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d — 07(m®d)
“ " D ~ wD
of “average” degree — — O7(m® )
classical matrix operations univariate specific operations
» multiplication » truncated inverse, QuoRem

» kernel, system solving » Hermite-Padé approximation

» rank, determinant » vector rational interpolation

»inversion 0O~(m3d) » syzygies / modular equations

transformyation to normal forms

ization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form

12
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» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
shifted reduced forms » shifted forms and degree constraints
» stability under multiplication

fast algorithms

applications

14



shifted reduced forms

reducedness: examples and properties

notation:
let A € KIX]™ ™ with no zero row,
define d = (dy,...,dm) = rdeg(A)
X4
and X4 = e K[xymxm
Xdm

definition: (row-wise) leading matrix
the leading matrix of A is the unique matrix Im(A) € Km*n
such that A = X%Im(A) + R with rdeg(R) < d entry-wise

equivalently, X %A = Im(A) + terms of strictly negative degree

15



shifted reduced forms

reducedness: examples and properties

notation:
let A € KIX]™ ™ with no zero row,
define d = (dy,...,dm) = rdeg(A)
X4
and X4 = e K[xymxm
Xdm

definition: (row-wise) leading matrix
the leading matrix of A is the unique matrix Im(A) € Km*n
such that A = X%Im(A) + R with rdeg(R) < d entry-wise

equivalently, X %A = Im(A) + terms of strictly negative degree

definition: (row-wise) reduced matrix

A € K[X]™*™ is said to be reduced
if Im(A) has full row rank

15



shifted reduced forms

reducedness: examples and properties

consider the following matrices, with K = F7:

A [BXF4 X+axX+1 4XP+3

T 5 5X24+3X+1 5X+3
3X+1 4X+3  B5X+5

A, = 0 4X? + 6X 5
| 4X% +5X + 2 5 6X2 +1

A3 = transpose of A;

A4 = transpose of A,

answer the following, for i € {1, 2, 3, 4}:
1. what is rdeg(A;)?

2. what is Im(A;)?

3. is A; reduced?

16



polynomial matrices in reduced form

reducedness: examples and properties

let A € KIX]™*™ with m < n,
the following are equivalent:

(i) A is reduced (i.e. Im(A) has full rank)

17
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polynomial matrices in reduced form

reducedness: examples and properties

let A € K[X]™*™ with m < n,
the following are equivalent:

(i) A is reduced (i.e. Im(A) has full rank)

(ii) for any vector u = [u; 1 up] € K[X]'*™ with 1 at index i,
rdeg(uA) > rdeg(A; .)

(iii) predictable degree: for any vector u = [ug - - - U] € K[X]PX™,

rdeg(uA) = maxigigm (deg(uy) + rdeg(A; . ))

(iv) degree minimality: rdeg(A) < rdeg(UA) holds for any nonsingu-

lar matrix U € K[X]™*™, where < sorts the tuples in nondecreasing
order and then uses lexicographic comparison

17



polynomial matrices in reduced form

reducedness: examples and properties

let A € KIX]™*™ with m < n,
the following are equivalent:

(i) A is reduced (i.e. Im(A) has full rank)

(ii) for any vector u = [u; 1 up] € K[X]'*™ with 1 at index i,
rdeg(uA) > rdeg(A; .)

(iii) predictable degree: for any vector u = [ug - - - U] € K[X]PX™,
rdeg(uA) = maxigigm (deg(uy) + rdeg(A; . ))

(iv) degree minimality: rdeg(A) < rdeg(UA) holds for any nonsingu-
lar matrix U € K[X]™*™, where < sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: degdet(A) = |rdeg(A)
(only when m =n)

17



shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = [F,

3X +1 4X+3 5X+5
A= 0 4X2% + 6X 5
4X%2 45X +2 5 6X%2 +1

1. what is degdet(A)?
2. what is rdeg([4X?> +1 2X 4X+5]A)?

3. is it possible to find a matrix
P— [Poo Po1 Poz}

Pio P11 P12
whose rank is 2, whose degree is 1, and which is a

left-multiple of A?

18



shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = [F,

3X +1 4X+3 5X+5
A= 0 4X2% + 6X 5
4X%2 45X +2 5 6X%2 +1

1. what is degdet(A)?
2. what is rdeg([4X?> +1 2X 4X+5]A)?

3. is it possible to find a matrix
P— [Poo Po1 Poz}

Pio P11 P12
whose rank is 2, whose degree is 1, and which is a

left-multiple of A?

find a row vector u of degree 1 such that uA has
degree 2, where
Ao [3X+4 X3+4X+1 4X2+3

| 5  5X243X+1 5X+3

18



shifted reduced forms

shifted forms and degree constraints
keeping our problem in mind:

»input: fi's and «;'s and degree constraints dy, ..., dyn € Z-o
»output: a solution p satisfying the constraints cdeg(p) < (d1,...,dm)

obstacle:

computing a reduced basis of solutions ignores the constraints

mXxm

exercise: suppose we have a reduced basis P € K[X] of solutions

»think of particular constraints (dy, ..., d;) that can be handled via P

» give constraints (dy, ..., d,,) for which P is “typically” not satisfactory

19



shifted reduced forms

shifted forms and degree constraints
keeping our problem in mind:

»input: fi's and «;'s and degree constraints dy, ..., dyn € Z-o
»output: a solution p satisfying the constraints cdeg(p) < (d1,...,dm)

obstacle:

computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis P € K[X]™*™ of solutions

»think of particular constraints (dy, ..., d;) that can be handled via P

» give constraints (dy, ..., d,,) for which P is “typically” not satisfactory

solution: compute P in shifted reduced form

19



shifted reduced forms

shifted forms and degree constraints

3X+4 X3 +4X+1 4X2+3
A= 5 5X2 +3X+1 5X+3
3X3 4+ X2 +5X+3 6X+5 2X +1

using elementary row operations, transform A into. ..

X0 +6X*+X34+X+4 00
Hermite form H = |5X> +5X* +6X3+2X2+6X+3 X 0
3X4 4+ 5X3 +4X2+6X+1 5 1

X34+ 5X2+4X+1 2X + 4 3X +5]
Popov form P = 1 X2 4+2X+3 X+2
3X+2 4X X2

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851]
» triangular
» column normalized

16 4

15 0 3.7

15 0 1 5 3
15 0 3 6 1 2

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots
» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 1} 3 6 1 2 3 3 3 4 6 0 1 6

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots

» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5

15 0 3 7 3 4 3 3 0 1 0

15 0 1 5 3 3 3 4 3 2

15 0 3 6 1 2 3 3 3 4 6 0 1 6
S pot reduced Grdbner basis <top

K[X]-module 8 c K[X]**™ of rank m

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots
» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 1} 3 6 1 2 3 3 3 4 6 0 1 6

invariant: D = deg(det(A)) =4+7+3+2=7+14+2+4+6

> average column degree is 2

»size of object is mD +m? = m?(2 +1)

20



shifted reduced forms

shifted forms and degree constraints
nonsingular A € K[X]™*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

> triangular » row reduced/distinct pivots
» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 1} 3 6 1 2 3 3 3 4 6 0 1 6

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:

arbitrary degree constraints + no column normalization

~~ minimal, non-reduced, <-Grébner basis
20



shifted reduced forms

shift: integer tuple s = (s1,...,sm) acting as column weights
— connects Popov and Hermite forms

4 3 3 3 7 0 1 5
s =(0,0,0,0) 3 4 3 3 0 1 0
Popov 3 3 4 3 2
3 3 3 4 |6 0 1 8
(7 4 2 0] 8 5 1 ]
s =(0,2,4,6) 6 5 2 0 7 6 1
s-Popov 6 4 3 0 2
6 4 2 1] o 1 0)
16 4
s =(0,D,2D,3D) 15 0 3 7
Hermite 15 0 153
15 0 3 6 1 2

» normal form, average column degree D/m
» shifted reduced form: same without normalization
» shifts arise naturally in algorithms (approximants, kernel, ...)

20



shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai;) € KIXI™*™, and s = (s1,...,5n) € Z™,
rdegs (A) = (rdegs(Ay ), ..., rdegg (A «))

J— . . . . m
= <lga<xn(deg(A1,]) +5s5), ..., 121jza<xn(deg(AmJ) + s])> e

¢ 2
example: for the matrix A = 3X+4 XP4+4xX+1  4X —|—3}

5 5X2 +3X+1 5X+3
describe rdeg g o0)(A), rdeg(g12)(A), and rdeg(_; 3 _5)(A)
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shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai;) € KIXI™*™, and s = (s1,...,5n) € Z™,
rdegs (A) = (rdegs(Ay ), ..., rdegg (A «))

J— . . . . m
= <1ga<xn(deg(A1,]) +5s5), ..., 121ja<xn(deg(AmJ) + s])> e

¢ 2
example: for the matrix A = 3X+4 XP4+4xX+1  4X —|—3}

5 5X2 +3X+1 5X+3
describe rdeg g o0)(A), rdeg(g12)(A), and rdeg(_; 3 _5)(A)

»rdeg, (A) = rdeg(AXS)
»rdeg. (A) only depends on s and the degrees in A
c)(A) = rdegs (A) +c

21



shifted reduced forms

shifted forms and degree constraints

notation:

let A € K[IX]™*™ with no zero row, and s € Z™,
define d = (dy, ..., dm) = rdegg(A)
X4
and X4 = e K[X, Xx~1jmxm
Xdm

definition: s-leading matrix / s-reduced matrix

assuming s > 0,
»the s-leading matrix of A is Img(A) = Im(AXS) € Km*™
» A € K[X]™ ™ is s-reduced if Img(A) has full row rank
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shifted reduced forms

shifted forms and degree constraints

notation:
let A € K[IX]™*™ with no zero row, and s € Z™,
define d = (dy, ..., dm) = rdegg(A)
X4
and X4 = e K[X, Xx~1jmxm
Xdm

definition: s-leading matrix / s-reduced matrix

assuming s > 0,
»the s-leading matrix of A is Img(A) = Im(AXS) € Km*™
» A € K[X]™ ™ is s-reduced if Img(A) has full row rank

» these notions are invariant under s — s + (c,...,c)
» they coincide with the non-shifted case when s = (0,...,0)
» X 9AXS = Img(A) + terms of strictly negative degree

22



shifted reduced forms

shifted forms and degree constraints

exercise: for each of the matrices below, and each shift s,
1. give the s-leading matrix
2. deduce whether the matrix is s-reduced

3X+4 X3 44X +1 4ax?+3

A= 5 5X24+3X+1 5X+3
3X3+X24+5X+3 6X +5 2X +1

XO 46X+ X34 X +4 0 0

H= [5X°+5X*+6X3+2X2+6X+3 X 0
3X*+5X3+4X2+6X+1 5 1
X3 4+5X2 44X +1 2X + 4 3X+5

P= 1 X2 42X +3 X+2
3X 42 4x X2

s =(0,0,0),s=(0,5,6), s =(—3,—2,—2)

23



shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)
for example recall the predictable degree property:
A is reduced if and only if for any u = [u; - - -] € K[X]1X™,
rdeg(uA) = maxigigm(deg(ui) + rdeg (A .))
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shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)

for example recall the predictable degree property:
Ixm

A is reduced if and only if for any u = [u; - - - U] € K[X]
rdeg(uA) = maxigigm (deg(ui) + rdeg(A; .))

» this means rdeg(uA) = rdeg, (u) where t = rdeg(A)
»i.e. rdeg(uA) = rdeg(uXre&(A)) “no surprising cancellation”

» proof: let & = rdeg(u), our goal is to show rdeg(uA) =5
terms of X ®uA have degree < 0,

and X %uA = (X %uX!)(XtA);

the term of degree 0 is Im¢(u)Iim(A),

it is nonzero since Im(A) has full rank and Im¢(u) # 0
(the case u =0 is trivial)
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shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)
for example recall the predictable degree property:
Ixm

A is reduced if and only if for any u = [u; - - - U] € K[X]
rdeg(uA) = maxigigm (deg(ui) + rdeg(A; .))

A is s-reduced if and only if for any u = [u; - - - u] € K[X]1*™,

rdegg (uA) = maxigigm(deg(ui) + rdegg (A «))
this means rdeg, (uA) = rdeg, (u), where t = rdeg,(A)

24



shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate
(proofs: direct, with: A is s-reduced < AX?® is reduced)

for example recall the predictable degree property:

A is reduced if and only if for any u = [u; - - -] € K[X]1X™,
rdeg(uA) = maxigigm (deg(ui) + rdeg(Ai )

A is s-reduced if and only if for any u = [u; - - - u] € K[X]1*™,
rdegs (WA) = maxicigm (deg(wi) + rdegg(Ai«))
this means rdeg, (uA) = rdeg, (u), where t = rdeg,(A)

» s-reduced forms provide vectors of minimal s-degree in the module
» satisfying degree constraints (dy, ..., d,,) = taking s = (—dy, ..., —dm)

»indeed cdeg([p; -+ pml) < (dy,..., dm)
if and only if rdeg _,,
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shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

» compute a first basis P; for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is P,Py

we want P,P; to be reduced:
1. is it implied by “P; reduced and P, reduced”?
2. any idea of how to fix this?
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shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

» compute a first basis P; for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is P,Py

we want P,P; to be reduced:
1. is it implied by “P; reduced and P, reduced”?
2. any idea of how to fix this?

we want P,P; to be reduced
theorem: implied by “P; is reduced and P; is t-reduced”
where t = rdeg(P;)

25



shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

» compute a first basis P; for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is P,Py

we want P,P; to be reduced:
1. is it implied by “P; reduced and P, reduced”?
2. any idea of how to fix this?

we want P,P; to be s-reduced
theorem: implied by “P; is s-reduced and P; is t-reduced”
where t = rdeg, (P;)

25



shifted reduced forms

stability under multiplication

let M C M; be two K[X]-submodules of K[X]™ of rank m,

let P; € K[X]™*™ be a basis of M,

let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[X]™*™ | AP; € M} is m
and for any basis P, € K[X]™*™ of M,

the product P5>P; is a basis of M

»if Py is s-reduced and P> is t-reduced,

then P,P; is s-reduced
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shifted reduced forms

stability under multiplication

let M C M; be two K[X]-submodules of K[X]™ of rank m,
let P; € K[X]™*™ be a basis of M,
let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[X]'*™ | AP; € M} is m
and for any basis P, € K[X]™*™ of M,
the product P5>P; is a basis of M

»if Py is s-reduced and P> is t-reduced,
then P,P; is s-reduced

Let A € K[X]™*™ denote the adjugate of P;. Then, we have AP; = det(Pq)I;,.
Thus, pAP; = det(P1)p € M for all p € M, and therefore MA C M,. Now,
the nonsingularity of A ensures that MA has rank m; this implies that M, has
rank m as well (see e.g. [Dummit-Foote 2004, Sec.12.1, Thm.4]). The matrix PoP;
is nonsingular since det(PoP;1) # 0. Now let p € M; we want to prove that p
is a K[X]-linear combination of the rows of PoP;. First, p € Mj, so there exists
A € K[X]**™ such that p = AP;. But then A € Mo, and thus there exists u €

K[X]**™ such that A = uP5. This yields the combination p = uP,P;.
26



shifted reduced forms

stability under multiplication

let M C M; be two K[X]-submodules of K[X]™ of rank m,

let P; € K[X]™*™ be a basis of M,

let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[X]™*™ | AP; € M} is m
and for any basis P, € K[X]™*™ of M,

the product P5>P; is a basis of M

»if Py is s-reduced and P> is t-reduced,

then P,P; is s-reduced

Let d = rdegy(P2); we have d = rdegs (P,P1) by the predictable degree prop-
erty. Using X~ 9P,P; XS = X 9P,X'X P XS, we obtain that Img(PoP;) =
Im¢ (P2)Img (P1). By assumption, Im¢(P2) and Img(P;1) are invertible, and there-
fore Img (P2P1) is invertible as well; thus PPy is s-reduced.
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» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
shifted reduced forms » shifted forms and degree constraints
» stability under multiplication

fast algorithms

applications
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» rational approximation and interpolation

introduction » the vector case
» pol. matrices: reminders and motivation

» reducedness: examples and properties
shifted reduced forms » shifted forms and degree constraints
» stability under multiplication

» iterative algorithm and output size
fast algorithms » base case: modulus of degree 1
» recursion: residual and basis multiplication

applications
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
f1
input: vector F = { : ] points o, ..., g € K, shift s = (sy,...,s8m) € Z™
fm
—Pim .
1. P= : = identity matrix in K[X]™>*™
2. for i from 1 to d:
(p1 - F)(o:)
a. evaluate updated vector = (P -F)(o)
(Pm - F)(eti)

b. choose pivot 7t with smallest s, such that (p, - F)(o;) #0
update pivot shift s,y =s, + 1

c. eliminate: /* after this, Vj # 7, (pj-F)(xi) =0 */
(pj -FJ(cxt)p ,
(pr-F)(ou)

after i iterations: P is an s-reduced basis of solutions for (&g, ..., &)

for j # 7 do pj <~ pj — Pr & (X— oi)px

29



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m=4 s =(0,2,4,6), base field Fo;
input: (24,31,15,32,83,27,20,59) and F = [1 L L? 3T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 0 2 4 6
1 0 0 0
basis 0 L 0 0
0 0 1 0
0 0 0 1

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
9% 91 91 61 88 79 36 22
34 47 47 1 8 45 75 50

values
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 0 2 4 6]
1 0 0 0
basis 0 L 0 0
0 0 1 0
0 0 0 1

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
9% 91 91 61 88 79 36 22
34 47 47 1 8 45 75 50

values

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 0 2 4 6
1 0 0 0
b . 17 1 0 0
asis 2 0 1 0
63 0 0 1
1 1 1 1 1 1 1 1
e 0 90 90 52 83 63 11 81
vaiu 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;
input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6
X473 0 0 o
basis 17 L o 0
2 0 1 0
63 0 0 1
0 7 8 8 5 3 93 35
e 0 9 90 52 83 63 11 81
vaiu 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6
X+73 0 0 0
basis 17 L o 0
2 0 1 0
63 0 0 1
0O 7 88 8 5 3 93 35
e 0 9 90 52 83 63 11 81
vaiu 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6]

X +73 0 0 o
) X + 90 1 0 o
basis 56X -+ 16 0 1 0
12X + 66 0 0o 1

0 7 88 8 59 3 93 35

alues 0 0 81 60 45 66 7 19

valu 0 0 74 26 96 55 8 44

0 0 2 63 80 47 90 48

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 2 2 4 6]

X2 + 42X 4 65 0 0 0
basi X + 90 1 0 0
asis 56X + 16 0 1 0
12X + 66 0 0 1

0 0 47 8 61 85 44 10

values 0 0 81 60 45 66 7 19

0 0 74 26 96 55 8 44

0 0 2 63 80 47 90 48

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =3 point: 24,31, 15, 32, 83, 27, 20, 59
shift 2 2 4 6]
X2 + 42X 4 65 0 0 o0
basis X 490 1 0 0
56X + 16 0 1 0
12X + 66 0 0 1
0 0 47 8 61 85 44 10
values 0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =3 point: 24,31, 15, 32, 83, 27, 20, 59
shift B 2 4 6]
X3 427X + 17X + 92 0 0 0
. 54X2 4+ 38X + 11 1 0 0
basis 17X2 + 91X + 54 0 1 0
66X2 + 68X + 88 0 0 1
30 74 50 26 52
7 41 0 b5 74
values

66 45 77 20
9 32 31 84 29

O O O o

o O O o

O O O o
&

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =4 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 2 4 6]
X3 £ 27X2 417X + 92 0 0 0
. 54X2 4+ 38X + 11 1 0 0
basis 17X2 4+ 91X + 54 0 1 0
66X2 4 68X + 88 0 0 1
39 74 50 26 52
7 41 0 b5 74
values

66 45 77 20
9 32 31 84 29

O O O o

o O O o

O O O o
&

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=238 m==4 s =1(0,2,4,6), base field Fo;

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =4 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 3 4 6]
X3 431X% 427X +3 36 0 o0
basis 54X3 4+ 56X? + 56X + 36 X + 65 0 o0
56X2 + 43X + 35 60 1 0
52X2 4 33X + 60 68 0 1

9% 50 66 O

54 0 19 58
4 45 79 95
7 31 41 17

values

o O O o
o O O o
o O O o
o O O o
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =(0,2,4,6), base field Fy7

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: 1 =5 point: 24,31, 15, 32, 83, 27,20, 59
shift 4 3 4 6]

X4 4 45X3 4+ 73X2 + 90X + 42 36X + 19 0 0
basi 81X3 + 20X2 + 9X + 20 X + 67 0 0
asis 2X3 4+ 21X2 + 41 35 1 0
52X3 + 15X2 + 79X + 22 0 0o 1

0 0 0 0 0 13 13 o0

values 0 0 0 0 0 8 55 58

0 0 0 0 0 48 17 095

0 0 0 0 0o 12 78 17

30



fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =(0,2,4,6), base field Fy7

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =6 point: 24,31, 15, 32, 83, 27, 20, 59
shift 4 4 4 6

X* 4+ 19X3 + 57X2 + 44X + 26 74X + 43 0 0
basi 81X* + 64X3 + 51X2 + 68X + 42 X2 + 40X + 34 0 0
asis 3X3 + 44X2 + 54X + 64 6X + 49 1 0
28X3 + 45X2 4 44X + 52 50X + 52 0 1

0 0 0 0 0 0 66 70

values 0 0 0 0 0 0 3 13

0 0 0 0 0 0 56 55

0 0 0 0 0 0 15 7
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]
parameters: d=38 m==4 s =(0,2,4,6), base field Fy7

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: 1 =7 point: 24,31, 15, 32,83, 27,20, 59
shift 5 4 4 6]

X% +96X* 4 65X3 + 68X2 + 19X + 62 74X2 4+ 18X + 13 0 0
basi 6X* 4+ 94X3 4+ 44X2 + 66X + 32 X2 4+19X +10 0 0
asis 55X4 4 78X3 + 75X2 + 49X + 39 2X + 86 1 0
13X* + 81X3 + 10X2 4 34X + 2 42X + 29 0 1

0 0 0 0 0 0 0 14

values 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 25

0 0 0 0 0 0 0 44
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d=38 m==4 s =(0,2,4,6), base field Fy7

input: (24,31, 15,32,83,27,20,59) and F=[1 L L2 L3]T

iteration: i =8 point: 24,31, 15, 32, 83, 27, 20, 59
shift 5 5 4 6]
X5 4 12X* 4+ 10X3 + 34X2 4 65X + 2 60X2 + 43X + 67 0 0
basi 6X° 4+ 31X*+27X34+89X2+18X+52 X3 +57X2 +53X +89 0 o0
asis 2X4 + 56X3 + 42X2 + 48X + 15 72X2 + 12X + 30 1 0
40X* + 19X3 4 14X2 + 40X + 49 53X2 4 79X + 74 0 1

values

O O O o
o O O o
O O O o
o O O o
o O O o
o O O o
o O O o
o O O o
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fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

20 be continued. ..
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