
Vincent Neiger

Laboratoire LIP6, Sorbonne Université

vincent.neiger@lip6.fr

polynomial matrices:

approximation and interpolation, quasi-linear GCD

Algorithmes E�caces en Calcul Formel
Master Parisien de Recherche en Informatique

14 December 2023

1

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

2

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

3

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod Xd

▶minpoly of linearly recurrent sequence

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD

O(M(d) log(d)) operations in K

matrix versions of these problems

O(mωM(d) log(d)) operations in K
or a tiny bit more for matrix-GCD

4

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod Xd

▶minpoly of linearly recurrent sequence

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD

O(M(d) log(d)) operations in K

matrix versions of these problems

O(mωM(d) log(d)) operations in K
or a tiny bit more for matrix-GCD

4

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod Xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD

O(M(d) log(d)) operations in K

matrix versions of these problems

O(mωM(d) log(d)) operations in K
or a tiny bit more for matrix-GCD

4

introduction

⇓ earlier in the course ⇓

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod Xd

▶ extended GCD uf+ vg = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod Xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

⇓ in this lecture ⇓

Padé approximation, sequence minpoly, extended GCD

O(M(d) log(d)) operations in K

matrix versions of these problems

O(mωM(d) log(d)) operations in K
or a tiny bit more for matrix-GCD

4

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,

→ compute p(X)
q(X) mod Xd algo?? O(??)

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,

→ compute p(X)
q(X) mod Xd algo?? O(??)

inv+mul: O(M(d))

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,

→ compute p(X)
q(X) mod Xd algo?? O(??)

inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

→ compute p(X)
q(X) mod M(X) algo?? O(??)

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,

→ compute p(X)
q(X) mod Xd algo?? O(??)

inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

→ compute p(X)
q(X) mod M(X) algo?? O(??)

xgcd+mul+rem O(M(d) log(d))

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,

→ compute p(X)
q(X) mod Xd algo?? O(??)

inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

→ compute p(X)
q(X) mod M(X) algo?? O(??)

xgcd+mul+rem O(M(d) log(d))

given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

→ compute p(X)
q(X) mod M(X) algo?? O(??)

5

introduction

rational approximation and interpolation

given power series p(X) and q(X) over K at precision d,
with q(X) invertible,

→ compute p(X)
q(X) mod Xd algo?? O(??)

inv+mul: O(M(d))

given M(X) ∈ K[X] of degree d > 0,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

→ compute p(X)
q(X) mod M(X) algo?? O(??)

xgcd+mul+rem O(M(d) log(d))

given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given polynomials p(X) and q(X) over K of degree < d,
with q(X) invertible modulo M(X), what does that mean?

→ compute p(X)
q(X) mod M(X) algo?? O(??)

eval+div+interp O(M(d) log(d))

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lecture 6

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lecture 6

18C-nite sequences and rational series

Proposition. The sequence (un)n2N satis�es

8n2N; un+s+ cs¡1un+s¡1+ � � �+ c0un=0

if and only its generating series is of the form

X

n=0

1

unx
n=

p(x)
1+ cs¡1 x+ � � �+ c0 xs

=
p(x)

revs(�)
for some p2K[x]<s:

denominator $ recurrence, numerator$ initial values / residual

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lecture 6

19

From s to 2 s terms
[Fiduccia 1985, Shoup 1991]

un+s+ cs¡1un+s¡1+ � � �+ c0un=0

Problem. Given (u0; : : : ; us¡1), compute (us; : : : ; u2s¡1).

Using the previous proposition, write
X

n>0

unx
n=

p(x)
q(x)

with q= revs(�) and degp<s.

p(x)
q(x)

=u0+ � � �+us¡1 x
s¡1

|| |{z}} }

U0(x)

+O(xs)) p(x)=q(x)U0(x) remxs

Algorithm. Input: u0:s, c0:s Output: u0:N

1. Compute p=qU0 remxs O(M(s))

2. Compute the �rstN terms of p/q by a power series division O(M(N))

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lecture 6

numerator p and charpoly χ �rst N terms of the LRS (un)n∈N

expand p
rev(χ) mod XN

5

introduction

rational approximation and interpolation

rational fractions ←→ linearly recurrent sequences
reminders from lecture 6

numerator p and charpoly χ �rst N terms of the LRS (un)n∈N

expand p
rev(χ) mod XN

reconstruct from U(X) mod XN

⇝ Padé approximation

5

introduction

rational approximation and interpolation

Padé approximation:

given power series f(X) at precision d,
→ compute p(X),q(X) such that f = p

q
mod Xd

5

introduction

rational approximation and interpolation

Padé approximation:

given power series f(X) at precision d,
→ compute p(X),q(X) such that f = p

q
mod Xd

opinions on this algorithmic problem?

5

introduction

rational approximation and interpolation

Padé approximation:

given power series f(X) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod Xd

5

introduction

rational approximation and interpolation

Padé approximation:

given power series f(X) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod Xd

Cauchy interpolation:

given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod M(X)

5

introduction

rational approximation and interpolation

Padé approximation:

given power series f(X) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod Xd

Cauchy interpolation:

given M(X) = (X− α1) · · · (X− αd) ∈ K[X],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(X),q(X)) of degrees < (d1,d2)
and such that f = p

q
mod M(X)

▶degree constraints speci�ed by the context
▶usual choices have d1 + d2 ≈ d and existence of a solution

5

introduction

approximation and structured linear system

K = F7

f = 2X7 + 2X6 + 5X4 + 2X2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod X8

[q p]

[
f
−1

]
= 0 mod X8

[q0 q1 q2 q3 q4 q5 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

6

introduction

approximation and structured linear system

K = F7

f = 2X7 + 2X6 + 5X4 + 2X2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod X8

[q p]

[
f
−1

]
= 0 mod X8

[q0 q1 q2 q3 q4 q5 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

6

introduction

approximation and structured linear system

K = F7

f = 2X7 + 2X6 + 5X4 + 2X2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod X8

[q p]

[
f
−1

]
= 0 mod X8

[q0 q1 q2 q3 q4 q5 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

6

[1894, Journal de mathématiques pures et appliquées]

7

introduction

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[X]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[X] such that

▶p1f1 + · · ·+ pmfm = 0 mod Xd

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[X]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[X] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(rational interpolation: particular case m = 2 and f2 = −1)

8

introduction

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[X]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[X] such that

▶p1f1 + · · ·+ pmfm = 0 mod Xd

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[X]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[X] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(rational interpolation: particular case m = 2 and f2 = −1)

8

introduction

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[X]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[X] such that

▶p1f1 + · · ·+ pmfm = 0 mod Xd

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[X]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[X] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm)

(rational interpolation: particular case m = 2 and f2 = −1)

in this lecture: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard

2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

▶polynomials f1, . . . , fm ∈ K[X]

▶�eld elements α1, . . . ,αd ∈ K ⇝ not necessarily distinct

▶degree bounds d1, . . . ,dm ∈ Z>0 ⇝ general �shift� s ∈ Zm

output:

polynomials p1, . . . ,pm ∈ K[X] such that

▶p1f1 + · · ·+ pmfm = 0 mod
∏

1⩽i⩽d(X− αi)

▶ cdeg([p1 · · ·pm]) < (d1, . . . ,dm) ⇝ minimal s-row degree

(Hermite-Padé: α1 = · · · = αd = 0; interpolation: pairwise distinct points)

8

introduction

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial p(X, Y) ∈ K[X, Y]
such that p(αi,βi) = 0 for 1 ⩽ i ⩽ 8

M(X) = (X− 24) · · · (X− 59)
L(X) = Lagrange interpolant

}
−→ solutions = ideal ⟨M(X), Y − L(X)⟩

solutions of smaller X-degree: p(X, Y) = p0(X) + p1(X)Y + p2(X)Y
2

p(X,L(X)) =
[
p0 p1 p2

]  1
L
L2

 = 0 mod M(X)

▶ instance of univariate rational vector interpolation
▶with a structured input equation (powers of L mod M)

9

introduction

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial p(X, Y) ∈ K[X, Y]
such that p(αi,βi) = 0 for 1 ⩽ i ⩽ 8

add degree constraints: seek p(X, Y) of the form
p00 + p01X+ p02X

2 + p03X
3 + p04X

4 + (p10 + p11X+ p12X
2)Y + p20Y

2:

[
p00 p01 p02 p03 p04 p10 p11 p12 p20

]



1 1 · · · 1
α1 α2 · · · α8

α2
1 α2

2 · · · α2
8

α3
1 α3

2 · · · α3
8

α4
1 α4

2 · · · α4
8

β1 β2 · · · β8

α1β1 α2β2 · · · α8β8

α2
1β1 α2

2β2 · · · α2
8β8

β2
1 β2

2 · · · β2
8


= 0

▶K-linear system
▶ two levels of structure

p(X,Y) = (2X4 + 56X3 + 42X2 + 48X+ 15) + (72X2 + 12X+ 30)Y + Y2

9

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[X]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(X) =
∏

1⩽i⩽d(X−αi)

why polynomial matrices here?

S is a �free K[X]-module of rank m�, meaning:
▶ stable under K[X]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[X]-linear independence + generates all solutions

▶S ⊂ K[X]m ⇒ S has rank ⩽ m
▶M(X)K[X]m ⊂ S ⇒ S has rank ⩾ m

remark: solutions are not considered modulo M
e.g. (M, 0, . . . , 0) is in S and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[X]m×m

▶ each row of P is a solution
▶ any solution is a K[X]-combination uP,u ∈ K[X]1×m

i.e. S is the K[X]-row space of P

prove: det(P) is a divisor of M(X)m

prove: any other basis is UP for U ∈ K[X]m×m with det(U) ∈ K \ {0}

computing a basis of S with �minimal degrees�
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

10

introduction

polynomial matrices: reminder and motivation

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 +X2 + 5X+ 3 6X+ 5 2X+ 1

 ∈ K[X]3×3 3 × 3 matrix of degree 3
with entries in K[X] = F7[X]

operations in K[X]m×m
<d :

▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

▶ some tools shared with K-matrices, others speci�c to K[X]-matrices

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen'91]

∈ O(mωM(d)) ⊂ O (̃mωd)

▶Newton truncated inversion, matrix-QuoRem

▶ inversion and determinant via evaluation-interpolation

▶ vector rational approximation & interpolation

→ fast O˜(mωd)

→ medium O˜(mω+1d)

→ ???

11

introduction

polynomial matrices: reminder and motivation

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 +X2 + 5X+ 3 6X+ 5 2X+ 1

 ∈ K[X]3×3 3 × 3 matrix of degree 3
with entries in K[X] = F7[X]

operations in K[X]m×m
<d :

▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

▶ some tools shared with K-matrices, others speci�c to K[X]-matrices

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen'91]

∈ O(mωM(d)) ⊂ O (̃mωd)

▶Newton truncated inversion, matrix-QuoRem

▶ inversion and determinant via evaluation-interpolation

▶ vector rational approximation & interpolation

→ fast O˜(mωd)

→ medium O˜(mω+1d)

→ ???

11

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of �average� degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate speci�c operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

12

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of �average� degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate speci�c operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

12

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of �average� degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate speci�c operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

12

introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix m×m of degree d

of �average� degree D
m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate speci�c operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ triangularization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

12

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

13

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

14

shifted reduced forms

reducedness: examples and properties

notation:

let A ∈ K[X]m×n with no zero row,
de�ne d = (d1, . . . ,dm) = rdeg(A)

and Xd =

X
d1

. . .

Xdm

 ∈ K[X]m×m

de�nition: (row-wise) leading matrix

the leading matrix of A is the unique matrix lm(A) ∈ Km×n

such that A = Xdlm(A) +R with rdeg(R) < d entry-wise

equivalently, X−dA = lm(A) + terms of strictly negative degree

de�nition: (row-wise) reduced matrix

A ∈ K[X]m×n is said to be reduced
if lm(A) has full row rank

15

shifted reduced forms

reducedness: examples and properties

notation:

let A ∈ K[X]m×n with no zero row,
de�ne d = (d1, . . . ,dm) = rdeg(A)

and Xd =

X
d1

. . .

Xdm

 ∈ K[X]m×m

de�nition: (row-wise) leading matrix

the leading matrix of A is the unique matrix lm(A) ∈ Km×n

such that A = Xdlm(A) +R with rdeg(R) < d entry-wise

equivalently, X−dA = lm(A) + terms of strictly negative degree

de�nition: (row-wise) reduced matrix

A ∈ K[X]m×n is said to be reduced
if lm(A) has full row rank

15

shifted reduced forms

reducedness: examples and properties

consider the following matrices, with K = F7:

A1 =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]

A2 =

 3X+ 1 4X+ 3 5X+ 5
0 4X2 + 6X 5

4X2 + 5X+ 2 5 6X2 + 1


A3 = transpose of A1

A4 = transpose of A2

answer the following, for i ∈ {1, 2, 3, 4}:
1. what is rdeg(Ai)?
2. what is lm(Ai)?
3. is Ai reduced?

16

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

polynomial matrices in reduced form

reducedness: examples and properties

let A ∈ K[X]m×n with m ⩽ n,
the following are equivalent:

(i) A is reduced (i.e. lm(A) has full rank)

(ii) for any vector u = [u1 1 u2] ∈ K[X]1×m with 1 at index i,
rdeg(uA) ⩾ rdeg(Ai,∗)

(iii) predictable degree: for any vector u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

(iv) degree minimality: rdeg(A) ≼ rdeg(UA) holds for any nonsingu-
lar matrix U ∈ K[X]m×m, where ≼ sorts the tuples in nondecreasing
order and then uses lexicographic comparison

(v) predictable determinantal degree: deg det(A) = |rdeg(A)|
(only when m = n)

17

shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = F7,

A =

 3X+ 1 4X+ 3 5X+ 5
0 4X2 + 6X 5

4X2 + 5X+ 2 5 6X2 + 1


1. what is deg det(A)?

2. what is rdeg([4X2 + 1 2X 4X+ 5]A)?

3. is it possible to �nd a matrix

P =

[
p00 p01 p02

p10 p11 p12

]
whose rank is 2, whose degree is 1, and which is a
left-multiple of A?

18

shifted reduced forms

reducedness: examples and properties

recall the matrix, with K = F7,

A =

 3X+ 1 4X+ 3 5X+ 5
0 4X2 + 6X 5

4X2 + 5X+ 2 5 6X2 + 1


1. what is deg det(A)?

2. what is rdeg([4X2 + 1 2X 4X+ 5]A)?

3. is it possible to �nd a matrix

P =

[
p00 p01 p02

p10 p11 p12

]
whose rank is 2, whose degree is 1, and which is a
left-multiple of A?

�nd a row vector u of degree 1 such that uA has
degree 2, where

A =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
18

shifted reduced forms

shifted forms and degree constraints

▶ input: fi's and αi's and degree constraints d1, . . . ,dm ∈ Z>0

▶output: a solution p satisfying the constraints cdeg(p) < (d1, . . . ,dm)

keeping our problem in mind:

obstacle:
computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis P ∈ K[X]m×m of solutions

▶ think of particular constraints (d1, . . . ,dm) that can be handled via P

▶give constraints (d1, . . . ,dm) for which P is �typically� not satisfactory

solution: compute P in shifted reduced form

19

shifted reduced forms

shifted forms and degree constraints

▶ input: fi's and αi's and degree constraints d1, . . . ,dm ∈ Z>0

▶output: a solution p satisfying the constraints cdeg(p) < (d1, . . . ,dm)

keeping our problem in mind:

obstacle:
computing a reduced basis of solutions ignores the constraints

exercise: suppose we have a reduced basis P ∈ K[X]m×m of solutions

▶ think of particular constraints (d1, . . . ,dm) that can be handled via P

▶give constraints (d1, . . . ,dm) for which P is �typically� not satisfactory

solution: compute P in shifted reduced form

19

shifted reduced forms

shifted forms and degree constraints

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 + X2 + 5X+ 3 6X+ 5 2X+ 1


using elementary row operations, transform A into. . .

Hermite form H =

 X6 + 6X4 + X3 + X+ 4 0 0
5X5 + 5X4 + 6X3 + 2X2 + 6X+ 3 X 0

3X4 + 5X3 + 4X2 + 6X+ 1 5 1



Popov form P =

X3 + 5X2 + 4X+ 1 2X+ 4 3X+ 5
1 X2 + 2X+ 3 X+ 2

3X+ 2 4X X2


20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶ row reduced/distinct pivots
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶ row reduced/distinct pivots
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶ row reduced/distinct pivots
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶ row reduced/distinct pivots
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

20

shifted reduced forms

shifted forms and degree constraints

nonsingular A ∈ K[X]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶ row reduced/distinct pivots
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[X]-module S ⊂ K[X]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis
20

shifted reduced forms

shift: integer tuple s = (s1, . . . , sm) acting as column weights

→ connects Popov and Hermite forms

s = (0, 0, 0, 0)
Popov


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



s = (0, 2, 4, 6)
s-Popov


7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1



8 5 1
7 6 1

2
0 1 0



s = (0,D, 2D, 3D)
Hermite


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2


▶normal form, average column degree D/m

▶ shifted reduced form: same without normalization
▶ shifts arise naturally in algorithms (approximants, kernel, . . .)

20

shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai,j) ∈ K[X]m×n, and s = (s1, . . . , sn) ∈ Zn,

rdegs(A) = (rdegs(A1,∗), . . . , rdegs(Am,∗))

=

(
max

1⩽j⩽n
(deg(A1,j) + sj), . . . , max

1⩽j⩽n
(deg(Am,j) + sj)

)
∈ Zm

example: for the matrix A =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
,

describe rdeg(0,0,0)(A), rdeg(0,1,2)(A), and rdeg(−1,−3,−2)(A)

▶ rdegs(A) = rdeg(AXs)
▶ rdegs(A) only depends on s and the degrees in A
▶ rdegs+(c,...,c)(A) = rdegs(A) + c

21

shifted reduced forms

shifted forms and degree constraints

shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for A = (ai,j) ∈ K[X]m×n, and s = (s1, . . . , sn) ∈ Zn,

rdegs(A) = (rdegs(A1,∗), . . . , rdegs(Am,∗))

=

(
max

1⩽j⩽n
(deg(A1,j) + sj), . . . , max

1⩽j⩽n
(deg(Am,j) + sj)

)
∈ Zm

example: for the matrix A =

[
3X+ 4 X3 + 4X+ 1 4X2 + 3

5 5X2 + 3X+ 1 5X+ 3

]
,

describe rdeg(0,0,0)(A), rdeg(0,1,2)(A), and rdeg(−1,−3,−2)(A)

▶ rdegs(A) = rdeg(AXs)
▶ rdegs(A) only depends on s and the degrees in A
▶ rdegs+(c,...,c)(A) = rdegs(A) + c

21

shifted reduced forms

shifted forms and degree constraints

notation:

let A ∈ K[X]m×n with no zero row, and s ∈ Zn,
de�ne d = (d1, . . . ,dm) = rdegs(A)

and Xd =

X
d1

. . .

Xdm

 ∈ K[X,X−1]m×m

de�nition: s-leading matrix / s-reduced matrix

assuming s ⩾ 0,
▶ the s-leading matrix of A is lms(A) = lm(AXs) ∈ Km×n

▶A ∈ K[X]m×n is s-reduced if lms(A) has full row rank

▶ these notions are invariant under s→ s+ (c, . . . , c)
▶ they coincide with the non-shifted case when s = (0, . . . , 0)
▶X−dAXs = lms(A) + terms of strictly negative degree

22

shifted reduced forms

shifted forms and degree constraints

notation:

let A ∈ K[X]m×n with no zero row, and s ∈ Zn,
de�ne d = (d1, . . . ,dm) = rdegs(A)

and Xd =

X
d1

. . .

Xdm

 ∈ K[X,X−1]m×m

de�nition: s-leading matrix / s-reduced matrix

assuming s ⩾ 0,
▶ the s-leading matrix of A is lms(A) = lm(AXs) ∈ Km×n

▶A ∈ K[X]m×n is s-reduced if lms(A) has full row rank

▶ these notions are invariant under s→ s+ (c, . . . , c)
▶ they coincide with the non-shifted case when s = (0, . . . , 0)
▶X−dAXs = lms(A) + terms of strictly negative degree

22

shifted reduced forms

shifted forms and degree constraints

exercise: for each of the matrices below, and each shift s,
1. give the s-leading matrix
2. deduce whether the matrix is s-reduced

A =

 3X+ 4 X3 + 4X+ 1 4X2 + 3
5 5X2 + 3X+ 1 5X+ 3

3X3 +X2 + 5X+ 3 6X+ 5 2X+ 1



H =

 X6 + 6X4 +X3 +X+ 4 0 0
5X5 + 5X4 + 6X3 + 2X2 + 6X+ 3 X 0

3X4 + 5X3 + 4X2 + 6X+ 1 5 1



P =

X3 + 5X2 + 4X+ 1 2X+ 4 3X+ 5
1 X2 + 2X+ 3 X+ 2

3X+ 2 4X X2


s = (0, 0, 0), s = (0, 5, 6), s = (−3,−2,−2)

23

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), �no surprising cancellation�

▶proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module

▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), �no surprising cancellation�

▶proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module

▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), �no surprising cancellation�

▶proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module

▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case,
using s-row degrees and s-leading matrices where appropriate

(proofs: direct, with: A is s-reduced ⇔ AXs is reduced)

A is reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdeg(uA) = max1⩽i⩽m(deg(ui) + rdeg(Ai,∗))

for example recall the predictable degree property:

▶ this means rdeg(uA) = rdegt(u) where t = rdeg(A)

▶ i.e. rdeg(uA) = rdeg(uXrdeg(A)), �no surprising cancellation�

▶proof: let δ = rdegt(u), our goal is to show rdeg(uA) = δ
terms of X−δuA have degree ⩽ 0,
and X−δuA = (X−δuXt)(X−tA);
the term of degree 0 is lmt(u)lm(A),
it is nonzero since lm(A) has full rank and lmt(u) ̸= 0
(the case u = 0 is trivial)

A is s-reduced if and only if for any u = [u1 · · ·um] ∈ K[X]1×m,
rdegs(uA) = max1⩽i⩽m(deg(ui) + rdegs(Ai,∗))

this means rdegs(uA) = rdegt(u), where t = rdegs(A)

▶ s-reduced forms provide vectors of minimal s-degree in the module

▶ satisfying degree constraints (d1, . . . ,dm) ⇒ taking s = (−d1, . . . ,−dm)

▶ indeed cdeg([p1 · · · pm]) < (d1, . . . ,dm)

if and only if rdeg(−d1,...,−dm)([p1 · · · pm]) < 0

24

shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication
[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

▶ compute a �rst basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 to be reduced:
1. is it implied by �P1 reduced and P2 reduced�?
2. any idea of how to �x this?

we want P2P1 to be reduced
theorem: implied by �P1 is reduced and P2 is t-reduced�
where t = rdeg(P1)

we want P2P1 to be s-reduced
theorem: implied by �P1 is s-reduced and P2 is t-reduced�
where t = rdegs(P1)

25

shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication
[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

▶ compute a �rst basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 to be reduced:
1. is it implied by �P1 reduced and P2 reduced�?
2. any idea of how to �x this?

we want P2P1 to be reduced
theorem: implied by �P1 is reduced and P2 is t-reduced�
where t = rdeg(P1)

we want P2P1 to be s-reduced
theorem: implied by �P1 is s-reduced and P2 is t-reduced�
where t = rdegs(P1)

25

shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication
[iterative: van Barel-Bultheel 1991, Beckermann-Labahn 2000]
[divide and conquer: Beckermann-Labahn 1994, Giorgi-Jeannerod-Villard 2003]

▶ compute a �rst basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 to be reduced:
1. is it implied by �P1 reduced and P2 reduced�?
2. any idea of how to �x this?

we want P2P1 to be reduced
theorem: implied by �P1 is reduced and P2 is t-reduced�
where t = rdeg(P1)

we want P2P1 to be s-reduced
theorem: implied by �P1 is s-reduced and P2 is t-reduced�
where t = rdegs(P1)

25

shifted reduced forms

stability under multiplication

let M ⊆M1 be two K[X]-submodules of K[X]m of rank m,
let P1 ∈ K[X]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[X]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[X]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[X]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1

is nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p

is a K[X]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists

λ ∈ K[X]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈
K[X]1×m such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

26

shifted reduced forms

stability under multiplication

let M ⊆M1 be two K[X]-submodules of K[X]m of rank m,
let P1 ∈ K[X]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[X]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[X]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[X]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1

is nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p

is a K[X]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists

λ ∈ K[X]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈
K[X]1×m such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

26

shifted reduced forms

stability under multiplication

let M ⊆M1 be two K[X]-submodules of K[X]m of rank m,
let P1 ∈ K[X]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[X]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[X]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[X]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1

is nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p

is a K[X]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists

λ ∈ K[X]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈
K[X]1×m such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

26

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

27

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶base case: modulus of degree 1
▶ recursion: residual and basis multiplication

28

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

input: vector F =

[
f1
...

fm

]
, points α1, . . . ,αd ∈ K, shift s = (s1, . . . , sm) ∈ Zm

1. P =

[
−p1−...
−pm−

]
= identity matrix in K[X]m×m

2. for i from 1 to d:

a. evaluate updated vector

 (p1 · F)(αi)...
(pm · F)(αi)

 = (P · F)(αi)

b. choose pivot π with smallest sπ such that (pπ · F)(αi) ̸= 0
update pivot shift sπ = sπ + 1

c. eliminate: /* after this, ∀j ̸= π, (pj · F)(αi) = 0 */

for j ̸= π do pj ← pj −
(pj · F)(αi)

(pπ · F)(αi)
pπ; pπ ← (X− αi)pπ

after i iterations: P is an s-reduced basis of solutions for (α1, . . . ,αi)

29

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



values


1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



values


1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


1 1 1 1 1 1 1 1
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 X+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 X+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 X+ 73 0 0 0
X+ 90 1 0 0

56X+ 16 0 1 0
12X+ 66 0 0 1



values


0 7 88 8 59 3 93 35
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 X2 + 42X+ 65 0 0 0
X+ 90 1 0 0

56X+ 16 0 1 0
12X+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 X2 + 42X+ 65 0 0 0
X+ 90 1 0 0

56X+ 16 0 1 0
12X+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 X3 + 27X2 + 17X+ 92 0 0 0
54X2 + 38X+ 11 1 0 0
17X2 + 91X+ 54 0 1 0
66X2 + 68X+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 X3 + 27X2 + 17X+ 92 0 0 0
54X2 + 38X+ 11 1 0 0
17X2 + 91X+ 54 0 1 0
66X2 + 68X+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 3 4 6]

basis

 X3 + 31X2 + 27X+ 3 36 0 0
54X3 + 56X2 + 56X+ 36 X+ 65 0 0

56X2 + 43X+ 35 60 1 0
52X2 + 33X+ 60 68 0 1



values


0 0 0 0 95 50 66 0
0 0 0 0 54 0 19 58
0 0 0 0 4 45 79 95
0 0 0 0 7 31 41 17


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 5 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 3 4 6]

basis

 X4 + 45X3 + 73X2 + 90X+ 42 36X+ 19 0 0
81X3 + 20X2 + 9X+ 20 X+ 67 0 0

2X3 + 21X2 + 41 35 1 0
52X3 + 15X2 + 79X+ 22 0 0 1



values


0 0 0 0 0 13 13 0
0 0 0 0 0 89 55 58
0 0 0 0 0 48 17 95
0 0 0 0 0 12 78 17


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 6 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 4 4 6]

basis

 X4 + 19X3 + 57X2 + 44X+ 26 74X+ 43 0 0
81X4 + 64X3 + 51X2 + 68X+ 42 X2 + 40X+ 34 0 0

3X3 + 44X2 + 54X+ 64 6X+ 49 1 0
28X3 + 45X2 + 44X+ 52 50X+ 52 0 1



values


0 0 0 0 0 0 66 70
0 0 0 0 0 0 3 13
0 0 0 0 0 0 56 55
0 0 0 0 0 0 15 7


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 7 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 4 4 6]

basis

X5 + 96X4 + 65X3 + 68X2 + 19X+ 62 74X2 + 18X+ 13 0 0
6X4 + 94X3 + 44X2 + 66X+ 32 X2 + 19X+ 10 0 0
55X4 + 78X3 + 75X2 + 49X+ 39 2X+ 86 1 0
13X4 + 81X3 + 10X2 + 34X+ 2 42X+ 29 0 1



values


0 0 0 0 0 0 0 14
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 25
0 0 0 0 0 0 0 44


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base �eld F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 X5 + 12X4 + 10X3 + 34X2 + 65X+ 2 60X2 + 43X+ 67 0 0
6X5+31X4+27X3+89X2+18X+52 X3 + 57X2 + 53X+ 89 0 0

2X4 + 56X3 + 42X2 + 48X+ 15 72X2 + 12X+ 30 1 0
40X4 + 19X3 + 14X2 + 40X+ 49 53X2 + 79X+ 74 0 1



values


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


30

fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

to be continued. . .

31

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶base case: modulus of degree 1
▶ recursion: residual and basis multiplication

32

outline

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶base case: modulus of degree 1
▶ recursion: residual and basis multiplication

▶minimal kernel bases and linear systems
▶ fast gcd and extended gcd
▶perspectives

33

summary

▶ introduction

▶ shifted reduced forms

▶ fast algorithms

▶ applications

▶ rational approximation and interpolation
▶ the vector case
▶pol. matrices: reminders and motivation

▶ reducedness: examples and properties
▶ shifted forms and degree constraints
▶ stability under multiplication

▶ iterative algorithm and output size
▶base case: modulus of degree 1
▶ recursion: residual and basis multiplication

▶minimal kernel bases and linear systems
▶ fast gcd and extended gcd
▶perspectives

34

