Let \mathbb{K} be an effective field of characteristic zero. All complexities are expressed in terms of arithmetic operations in \mathbb{K} .

1. Krylov iterates and characteristic polynomial

Let $A \in \mathbb{K}^{n \times n}$. We assume that there exists a vector $v \in \mathbb{K}^{n \times 1}$ such that the matrix

$$P = \begin{bmatrix} v & Av & A^2v & \cdots & A^{n-1}v \end{bmatrix} \in \mathbb{K}^{n \times n}$$

is invertible.

(2.a) Show that there exist coefficients $f_0, \ldots, f_{n-1} \in \mathbb{K}$ such that

$$AP = PC, \quad \text{where } C = \begin{bmatrix} 0 & f_0 \\ 1 & f_1 \\ & \ddots & \vdots \\ & & 1 & f_{n-1} \end{bmatrix} \in \mathbb{K}^{n \times n}.$$

- (2.b) Define $F(x) = x^n f_{n-1}x^{n-1} \dots f_1x f_0 \in \mathbb{K}[x]$. Show that F(x) is the characteristic polynomial of A, that is, $F(x) = \det(xI_n A)$.
- (2.c) Describe an algorithm and the corresponding complexity bound for computing P from A and v. Deduce a complexity bound for computing the characteristic polynomial F(x), given as input A and also the vector v.

2. Composition of a series with arcsine

Given a formal power series $F \in \mathbb{K}[[x]]$ satisfying F(0) = 0, we are interested in computing C(x) := A(F(x)) for $A(x) := \arcsin(x)$.

- (1) Describe a naive general composition algorithm that takes as input two series truncated to order N and returns their composition up to order N, and estimate its complexity.
- (2) Describe an algorithm of linear complexity which takes as input $N \in \mathbb{N}$ and computes the first N terms of A(x). *Hint:* recall $A'(x) = (1 x^2)^{-1/2}$.
- (3) Describe an algorithm for calculating C(x) up to order N by employing the naive algorithm of (1). What is its complexity? How much can this be improved by employing Kinoshita and Li's algorithm?
- (4) Combine fast algorithms introduced in the course (Newton's scheme/fast computations with series) to compute C(x) in complexity $O(\mathsf{M}(N))$.

3. Polynomial matrix equation $\mathbf{AU} = \mathbf{V}$.

Let $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ be nonsingular with all entries of degree $\leq d_1$, let $\mathbf{V} \in \mathbb{K}[x]^{m \times k}$ with all entries of degree $\leq d_2$.

Two typical cases of interest for the equation $\mathbf{AU} = \mathbf{V}$ are k = 1 (linear system solving over $\mathbb{K}[x]$), and k = m with $\mathbf{V} = \mathbf{I}_m$ (inversion of \mathbf{A}).

- (1) Show that $\mathbf{A}^{-1}\mathbf{V}$ can be represented as a fraction with numerator a matrix \mathbf{U} in $\mathbb{K}[x]^{m \times k}$ and denominator a polynomial Δ in $\mathbb{K}[x]$.
- (2) Give an upper bound on $\deg(\det(\mathbf{A}))$.
- (3) Give upper bounds that you can require on $\deg(\Delta)$ and on the degrees of entries of **U** (i.e. there exists a couple (\mathbf{U}, Δ) for question 1 which satisfies these bounds).
- (4) Prove that $\mathbf{A}^{-1} \in \mathbb{K}[x]^{m \times m} \Leftrightarrow \det(\mathbf{A}) \in \mathbb{K} \setminus \{0\}.$

Remark: matrices with determinant in $\mathbb{K} \setminus \{0\}$ are called *unimodular*.

- 4. Composition of a D-finite series with an algebraic series
- (1) Show that if $f \in \mathbb{K}[[x]]$ is D-finite and if $g \in x\mathbb{K}[[x]]$ is algebraic, then $h := f \circ g$ is D-finite.
- (2) Given an algorithm that takes as input a linear differential equation with coefficients in $\mathbb{K}[x]$ satisfied by f(x) and a polynomial $P \in \mathbb{K}[x, y]$ such that P(x, g(x)) = 0, and that returns as output a linear differential equation with coefficients in $\mathbb{K}[x]$ satisfied by h(x).

5. DIFFERENTIAL EQUATIONS VS DIFFERENTIAL SYSTEMS

(1) Suppose that $y \in \mathbb{K}[[x]]$ is a solution of the differential equation

$$a_r(x)y^{(r)}(x) + \dots + a_1(x)y'(x) + a_0(x)y(x) = 0$$

where $a_0, \ldots, a_r \in \mathbb{K}(x)$ and $a_r \neq 0$. Give an $r \times r$ matrix $A \neq 0$ with entries in $\mathbb{K}(x)$ and a vector $Y \in \mathbb{K}[[x]]^r$ such that the first entry of Y is equal to y and Y satisfies the differential system

$$Y'(x) = A(x)Y(x).$$

(2) Suppose that $Y \in \mathbb{K}[[x]]^r$ satisfies the differential system

$$Y'(x) = A(x)Y(x)$$

where $A \in \mathbb{K}(x)^{r \times r}$. Show that the first entry of Y(x) satisfies a nontrivial differential equation of order at most r with coefficients in K(x) and give an algorithm taking A as input to compute such an equation.

6. POLYNOMIAL MATRIX OPERATIONS VIA EVALUATION-INTERPOLATION.

Using the evaluation-interpolation paradigm,

- (1) Give a multiplication algorithm for matrices in $\mathbb{K}[x]^{m \times m}$.
- (2) Give a determinant algorithm.
- (3) Give an inversion algorithm (finding the inverse over the fractions $\mathbb{K}(X)$).

Hints: exploit known degree bounds on the output to determine the number of points to use; for inversion, you can assume that you have at your disposal a quasi-linear algorithm for Cauchy interpolation (see the slides for references).

For each of these algorithms,

- (1) Give the lower bound it requires on the cardinality of \mathbb{K} .
- (2) State and prove an upper bound on its complexity.

Further perspective: could your complexity bounds take into account degree measures that refine the matrix degree such as the average row degree?

7. First n terms of a differentially finite series

Let $a_0, \ldots, a_r \in \mathbb{K}[x]$ be polynomials of degree at most d over an effective field \mathbb{K} of characteristic zero. This problem studies the cost of computing the first n terms of a series solution $y(x) = \sum_{k=0}^{\infty} y_k x^k \in \mathbb{K}[[x]]$ to the equation

(1)
$$a_r(x)\theta^r(y) + \dots + a_1(x)\theta(y) + a_0(x)y = 0$$

where θ is the operator mapping a series $f \in \mathbb{K}[[x]]$ to xf'(x). We set $L = a_r(x)\theta^r + \cdots + a_1(x)\theta + a_0(x)$, so that (1) rewrites as L(y) = 0.

For any series $f \in \mathbb{K}[[x]]$ and integers ℓ, h , we denote $f_{\ell:h}(x) = \sum_{k=\ell}^{h-1} f_k x^k$. We also write $f_{:n}$ for $f_{0:n}$ and $f_{n:}$ for $f_{n:\infty}$.

- (1) For $i, k \in \mathbb{N}$, write $\theta^i(x^k)$ as a function of i and k.
- (2) Show that $L(y_{:n})$ is a polynomial of the form $\sum_{k=n}^{n+d-1} p_k x^k$.

Let $q(t) = \sum_{i=0}^{r} a_i(0)t^i$. We consider the following problem T(L, y, n): given the operator L, the coefficients y_k for k such that q(k) = 0, and an integer n, and compute the truncated solution $y_{:n}$.

- (3) For $q(k) \neq 0$, express the coefficient y_k in terms of $L(y_{k})$ and q(k).
- (4) Deduce an algorithm that solves T(L, y, n) in O(rdn) operations. What happens in your algorithm when $q(k) \neq 0$ for all $k \in \mathbb{N}$?
- (5) Briefly explain how to solve T(L, y, n) in $O(nd \log(r)^p)$ operations for some $p \in \mathbb{N}$ (for instance, by adapting the previous algorithm).
- (6) Show that, given the operator L, integers $m, n \in \mathbb{N}$, and the truncated series solution $y_{:n}$, one can compute $L(y_{n-m:n})_{:n+m}$ in $O(r\mathsf{M}(m))$ operations.
- $(7)^*$ Describe an algorithm that takes as input L, the coefficients y_k for k such that q(k) = 0, two integers $\ell \leq h$, and the polynomial $L(y_{\ell:h})_{:h}$, and computes $y_{\ell:h}$ in

$$O(r\mathsf{M}(h-\ell)\log(h-\ell))$$

operations. Deduce that one can solve T(L, y, n) in $O(r\mathsf{M}(n)\log(n))$ operations (uniformly in d, that is, so that the implied constant does not depend on d).

- (8) Deduce an algorithm that solves T(L, y, n) in $O(rn \log(d)^p)$ operations for some $p \in \mathbb{N}$.
- (9)** Can you solve T(L, y, n) in significantly less than $\min(r, d)n\lambda(\max(r, d))$ operations, where $\lambda(t) = \mathsf{M}(t)/t$?