Faster Algorithms for List-Decoding Reed-Solomon Codes via Simultaneous Polynomial Approximations

Vincent Neiger§,†

Claude-Pierre JEANNEROD§ Éric SCHOST† Gilles VILLARD§

§AriC, LIP, École Normale Supérieure de Lyon, France

†ORCCA, Computer Science Department, Western University, London, ON, Canada

Aric Tuesday Work Session July 1st, 2014

Outline

- Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm
- List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)
- List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)

List-decoding Reed-Solomon codes via simultaneous approximations

Outline

- Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm
- - List-decoding
 - The interpolation step (previous work)
- - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)

Error-correcting codes

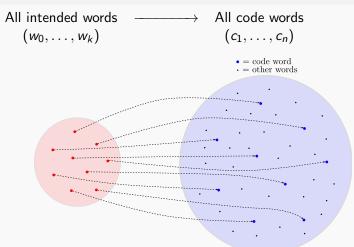
Goal:

Enable reliable delivery of data over unreliable communication channels

Strategy:

add redundancy to the message add redundancy to the message add redundancy to the message

Encoding: adding redundancy



polynomials of degree
$$\leqslant k \longrightarrow$$
 their evaluation at x_1, \dots, x_n
 $w = w_0 + w_1 X + \dots + w_k X^k \qquad (w(x_1), \dots, w(x_n))$

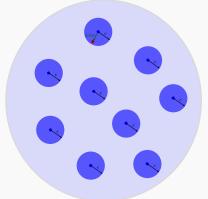
Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (c_1, \ldots, c_n) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

with $\#\{i \mid c_i \neq y_i\} \leqslant e$ (metric called Hamming distance)

- = code word = received word



Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (c_1, \ldots, c_n) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

with $\#\{i \mid c_i \neq y_i\} \leqslant e$ (metric called Hamming distance)

= code word

= received word

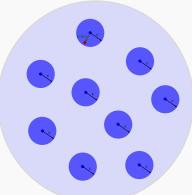
Reed-Solomon code:

$$(w(x_1), \dots, w(x_n)) \xrightarrow{\text{noise}} (y_1, \dots, y_n)$$

with $\#\{i \mid w(x_i) \neq y_i\} \leqslant e$

$$(y_1, \ldots, y_n)$$
 is the received word

All possible received words = words in the balls of radius e centered on the code words



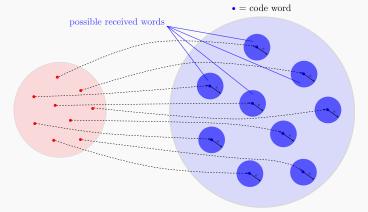
Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (w(x_1), \dots, w(x_n)) \xrightarrow{\text{noise}} y = (y_1, \dots, y_n)$$

with $\#\{i \mid w(x_i) \neq y_i\} \leqslant e$

(metric called Hamming distance)



Unique decoding

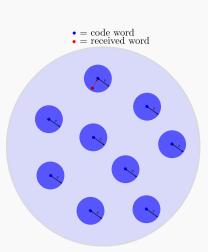
Received word (y_1, \ldots, y_n)

Decoding

find a polynomial w of degree $\leqslant k$ such that $\#\{i \mid w(x_i) \neq y_i\} \leqslant e$

Well-defined?

Exactly one such polynomial w as long as no overlap between the balls of radius e centered on the codewords



Unique decoding

Received word (y_1, \ldots, y_n)

Decoding

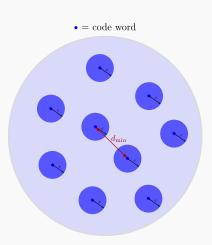
find a polynomial w of degree $\leqslant k$ such that $\#\{i \mid w(x_i) \neq y_i\} \leqslant e$

Well-defined?

Exactly one such polynomial w as long as no overlap between the balls of radius e centered on the codewords

Unique decoding when

 $2e < d_{\min}$



Unique decoding

Received word (y_1, \ldots, y_n)

Decoding

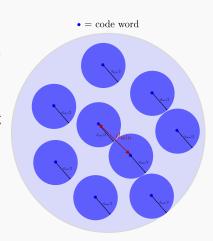
find a polynomial w of degree $\leqslant k$ such that $\#\{i \mid w(x_i) \neq y_i\} \leqslant e$

Well-defined?

Exactly one such polynomial w as long as no overlap between the balls of radius e centered on the codewords

Unique decoding when

 $2e < d_{\min}$



Minimum distance

For Reed-Solomon codes:

- for $w_1 \neq w_2$ polynomials of degree $\leq k$ over the base field \mathbb{K} , $(w_1(x_1), \ldots, w_1(x_n))$ and $(w_2(x_1), \ldots, w_2(x_n))$ agree at $\leq k$ positions \Rightarrow distance at least n-k between two code words
- for $w_1 = 0$ and $w_2 = (X x_1) \cdots (X x_k)$, the code words are $(0, \dots, 0)$ and $(0, \dots, 0, w_2(x_{k+1}), \dots, w_2(x_n))$ \Rightarrow two code words at distance exactly n - k
- \implies minimum distance $d_{\min} = n k$

Hence the unique decoding condition: $e < \frac{n-k}{2}$

Unique decoding problem

Unique decoding of Reed-Solomon codes

Input:

```
x_1, \ldots, x_n the n distinct evaluation points in \mathbb{K},
k the degree bound, e the error-correction radius,
(y_1,\ldots,y_n) the received word in \mathbb{K}^n
```

Unique decoding assumption: $e < \frac{n-k}{2}$

Output:

The polynomial w in $\mathbb{K}[X]$ such that

$$\deg w \leqslant k$$
 and $\#\{i \mid w(x_i) \neq y_i\} \leqslant e$.

Key equations (unique decoding)

Define the interpolation polynomial

$$R(X)$$
 such that $R(x_i) = y_i$,

and the error-locator polynomial

$$\Lambda(X) = \prod_{i \mid \text{error}} (X - x_i).$$

 $\Lambda(X)$ is an unknown polynomial with deg $\Lambda \leqslant e$

Key equations

for every
$$i$$
, $\Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i)$

Quadratic equations in the unknown coefficients of w and Λ ...

Modular key equation (unique decoding)

Interpolation polynomial and error-locator polynomial

$$R(x_i) = y_i, \qquad \Lambda(X) = \prod_{i \mid \text{error}} (X - x_i)$$

Key equations

for every
$$i$$
, $\Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i)$

i.e. for every i, $\Lambda(X)R(X) = \Lambda(X)w(X) \mod (X - x_i)$

Modular key equation (unique decoding)

Interpolation polynomial and error-locator polynomial

$$R(x_i) = y_i, \qquad \Lambda(X) = \prod_{i \mid \text{error}} (X - x_i)$$

Key equations

for every
$$i$$
, $\Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i)$

i.e. for every i, $\Lambda(X)R(X) = \Lambda(X)w(X) \mod (X - x_i)$ Define the master polynomial

$$G(X) = \prod_{1 \leqslant i \leqslant n} (X - x_i)$$

Modular key equation

$$\Lambda(X)R(X) = \Lambda(X)w(X) \mod G(X)$$

Unique decoding via rational reconstruction

Modular key equation:

$$\Lambda R = \Lambda w \mod G$$

where
$$R(x_i) = y_i$$
, $G(X) = \prod_{1 \le i \le n} (X - x_i)$, $\Lambda(X) = \prod_{i \mid \text{error}} (X - x_i)$.

 $\Longrightarrow \lambda = \Lambda, \omega = \Lambda w$ form a solution of the rational reconstruction problem

$$\begin{cases} \lambda R = \omega \mod G, \\ \deg(\lambda) \leqslant e, \deg(\omega) < n - e, \lambda \mod c. \end{cases}$$

(since deg $\Lambda w \leq e + k < n - e$ by the unique decoding assumption)

[Modern Computer Algebra, von zur Gathen - Gerhard, 2003]

Berlekamp-Welch(-like) algorithm for unique decoding

 $\lambda = \Lambda, \omega = \Lambda w$ form a solution of the rational reconstruction problem

$$\left\{ \begin{array}{l} \lambda R = \omega \mod G, \\ \deg(\lambda) \leqslant e, \deg(\omega) < n - e, \quad \lambda \text{ monic.} \end{array} \right.$$

 \implies unique rational solution ω/λ , which has to be $\frac{\Lambda w}{\Lambda} = w$!

This solution is computed using the extended Euclidean algorithm in $\mathcal{O}^{\sim}(n)$ operations in \mathbb{K}

Conclusion:

unique decoding in quasi-linear time via an approximation problem

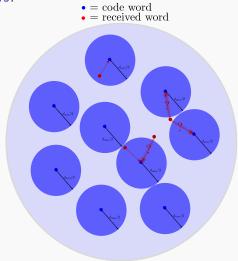
Outline

- Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm
- List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)
- 3 List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)

Non-unique decoding

How to "decode" when more errors?

transmission with $\leq e$ errors where $e \geqslant d_{\min}/2$



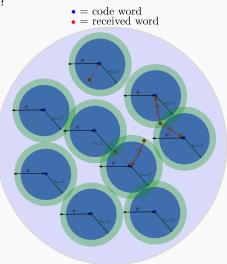
Non-unique decoding

How to "decode" when more errors?

transmission with $\leqslant e$ errors where $e \geqslant d_{\min}/2$

possibly two (or more) code words at the same distance...

the closest code word is not necessarily the one which was sent...



Non-unique decoding

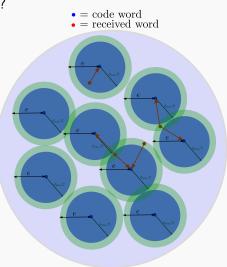
How to "decode" when more errors?

transmission with $\leq e$ errors where $e \geqslant d_{\min}/2$

possibly two (or more) code words at the same distance...

the closest code word is not necessarily the one which was sent...

⇒ Return a list of all code words at distance $\leq e$ (called list-decoding)



List-decoding problem

For convenience, we use the agreement parameter t = n - e

List-decoding Reed-Solomon codes

Input:

```
n points \{(x_i, y_i)\}_{1 \le i \le n} in \mathbb{K}^2, with the x_i's distinct
```

k the degree constraint, t the agreement

List-decoding assumption: $t^2 > kn$ [Guruswami - Sudan 1999]

Output:

all polynomials w in $\mathbb{K}[X]$ such that

$$\deg w \leqslant k$$
 and $\#\{i \mid w(x_i) = y_i\} \geqslant t$.

Problem also called Polynomial Reconstruction

Polynomial Reconstruction

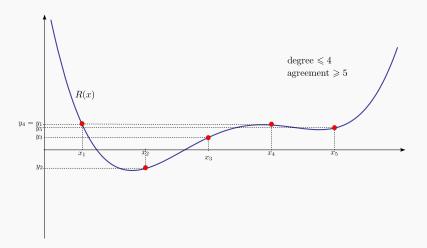


Figure: Polynomial reconstruction (Lagrange interpolation)

Polynomial Reconstruction

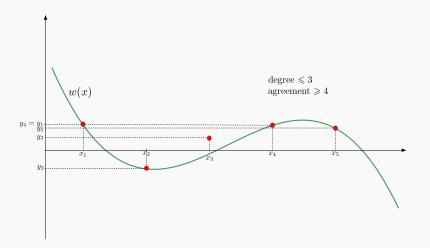


Figure: Polynomial reconstruction

Polynomial Reconstruction

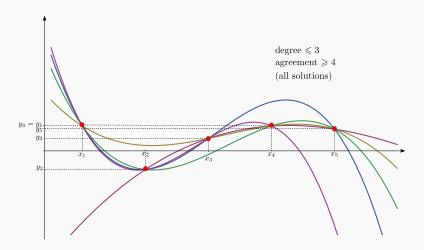


Figure: Polynomial reconstruction (all solutions)

Why the interpolation step (1/3)

Consider one solution w_1 . We still have the modular key equation

$$\Lambda_1 R = \Lambda_1 w_1 \mod G$$

where

$$R(x_i) = y_i, \quad G(X) = \prod_{1 \leqslant i \leqslant n} (X - x_i), \quad \Lambda_1(X) = \prod_{i \mid \mathsf{error}_1} (X - x_i).$$

But possibly.

$$deg(\Lambda_1) + deg(\Lambda_1 w_1) \geqslant n = deg G$$

 \implies no uniqueness of a rational solution ω_1/λ_1 to the problem $\lambda_1 R = \omega_1 \mod G$ with $\deg \omega_1 \leqslant e + k$

(more unknowns than equations in the linearized problem)

Why the interpolation step (2/3)

Note that

$$\Lambda_1(R-w_1)=0 \mod G$$

Now consider two solutions w_1, w_2 . We have the modular key equation

$$\Lambda(R - w_1)(R - w_2) = 0 \mod G$$

where
$$\Lambda = \prod_{i \mid \mathsf{error}_{1 \wedge 2}} (X - x_i) = \mathsf{gcd}(\Lambda_1, \Lambda_2)$$
.

 w_1, w_2 are Y-roots of the bivariate polynomial

$$Q(X,Y) = \Lambda(Y - w_1)(Y - w_2)$$

Why the interpolation step (3/3)

Consider two solutions w_1, w_2 , then $\Lambda(R - w_1)(R - w_2) = 0 \mod G$ and w_1, w_2 are Y-roots of

$$Q(X,Y) = \Lambda(Y - w_1)(Y - w_2) = \Lambda w_1 w_2 - \Lambda(w_1 + w_2)Y + \Lambda Y^2$$

Similar remark when considering all ℓ solutions w_1, \ldots, w_{ℓ}

Properties of Q(X, Y):

- the unknown degree in Y of Q(X,Y) is the number of solutions ℓ
- the unknown coefficients in X of Q(X, Y) have small degree
- we have the modular identity $Q(X,R)=0 \mod G$ or equivalently, for every i, $Q(x_i, y_i) = 0$

Guruswami-Sudan algorithm

It consists of two main steps,

- Interpolation step compute Q(X, Y) such that: w(X) solution $\Rightarrow Q(X, w(X)) = 0$
- Root-finding step find all Y-roots of Q(X, Y), keep those that are solutions

Here we are interested in the interpolation step

⇒ leads to a problem of Interpolation with Multiplicities.

A problem of Interpolation with multiplicities

Interpolation With Multiplicities

```
Input:
```

```
n points \{(x_i, y_i)\}_{1 \le i \le n} in \mathbb{K}^2, with the x_i's distinct
k the degree constraint, t the agreement
```

 ℓ the list-size, m the multiplicity $(m \leq \ell)$

Output:

a polynomial Q in $\mathbb{K}[X,Y]$ such that

- (*i*) Q is nonzero.
- (ii) $\deg_Y Q(X, Y) \leq \ell$,
- (iii) $\deg_X Q(X, X^k Y) < mt$,
- (iv) $\forall i, Q(x_i, y_i) = 0$ with multiplicity m. (vanishing condition)

(list-size condition)

(weighted-degree condition)

Algorithms based on structured linear systems

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011] Write

$$Q(X,Y) = \sum_{0 \leqslant j \leqslant \ell} Q_j(X)Y^j$$
 (list-size condition)

where deg $Q_i(X) < mt - jk$. (weighted-degree condition)

Then, rewrite the vanishing condition so that a solution Q(X, Y) can be retrieved as a nontrivial solution of a homogeneous mosaic-Hankel linear system (the unknown being the coefficient vector of Q(X, Y)).

Complexity bound for this method:

$$\mathcal{O}(\ell m^4 n^2)$$

using a modified Feng-Tzeng's linear system solver [Feng - Tzeng, 1991].

Algorithms based on polynomial lattices

[Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010] [Bernstein, 2011] [Cohn - Heninger, 2011]

Build a polynomial lattice \mathcal{L} such that

$$Q(X,Y) \in \mathcal{L} \quad \Leftrightarrow \quad (\mathsf{list\text{-size condition}}) + (\mathsf{vanishing condition}).$$

Then, a solution to Interpolation With Multiplicities can be retrieved as a short vector in \mathcal{L} (weighted-degree condition).

Complexity bound for this method:

$$\mathcal{O}^{\sim}(\ell^{\omega}mn)$$

using an efficient polynomial lattice basis reduction algorithm: [Giorgi - Jeannerod - Villard, 2003] (probabilistic) or [Gupta - Sarkar - Storjohann - Valeriote, 2012]

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

- New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound

$$\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$$

- Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Aric Tuesday Session 25 / 42

Outline

- Unique decoding via approximation
 - Encoding and transmission
 - Unique decoding
 - Berlekamp-Welch(-like) algorithm
- List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)
- 3 List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

- New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound

$$\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$$

- Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Assume that Q satisfies the list-size condition:

$$Q = \sum_{j \leqslant \ell} Q_j(X) Y^j$$

for some unknown polynomials Q_0, \ldots, Q_ℓ

The vanishing condition can be rewritten as a set of modular equations

$$\forall i \in \{1, \dots, n\}, \ Q(x_i, y_i) = 0 \text{ with multiplicity } m$$

$$\iff \forall i < m, \quad \sum_{i \leqslant j \leqslant \ell} \frac{Q_j(X)}{i} \binom{j}{i} R(X)^{j-i} = 0 \mod G(X)^{m-i}$$

where $G(X) = \prod_{1 \le i \le n} (X - x_i)$ and R(X) such that $\forall i, R(x_i) = y_i$.

Vanishing condition + list-size condition

$$\forall i < m,$$

$$\sum_{i \leqslant j \leqslant \ell} \frac{Q_j(X)}{Q_j(X)} \underbrace{\binom{j}{i} R(X)^{j-i}}_{F_{i,j}(X)} = 0 \pmod{\underbrace{G(X)^{m-i}}_{P_i(X)}}$$

Cost for computing $F_{i,j}$ and P_i :

- computing n(m-i) coefficients of $F_{i,j}$ for every i,j \approx computing *nm* coefficients of $R(X)^j$ for $0 \le j \le \ell$ $\rightsquigarrow \mathcal{O}(\ell m^2 n)$ operations $\in \mathcal{O}(\ell^{\omega-1} m^2 n)$
- computing P_i for every i= computing the *m* polynomials $G(X), G(X)^2, \ldots, G(X)^m$ \rightarrow $\mathcal{O}^{\sim}(m^2n)$ operations $\in \mathcal{O}(\ell^{\omega-1}m^2n)$

Vanishing condition + list-size condition + weighted-degree condition

$$\forall i < m,$$

$$\sum_{i \leqslant j \leqslant \ell} \frac{Q_j(X)}{Q_j(X)} \underbrace{\binom{j}{i} R(X)^{j-i}}_{F_{i,j}(X)} = 0 \pmod{\underbrace{G(X)^{m-i}}_{P_i(X)}}$$

with the degree constraints $\deg Q_i(X) < mt - jk$ for $j \leq \ell$

Cost for computing $F_{i,j}$ and P_i :

- computing n(m-i) coefficients of $F_{i,j}$ for every i,jpprox computing nm coefficients of $R(X)^j$ for $0 \leqslant j \leqslant \ell$ $\rightsquigarrow \mathcal{O}(\ell m^2 n)$ operations $\in \mathcal{O}(\ell^{\omega-1} m^2 n)$
- computing P_i for every i= computing the m polynomials $G(X), G(X)^2, \ldots, G(X)^m$ \rightarrow $\mathcal{O}^{\sim}(m^2n)$ operations $\in \mathcal{O}(\ell^{\omega-1}m^2n)$

The approximation problem

$$\forall i < m, \qquad \sum_{i \leqslant j \leqslant \ell} \frac{Q_j(X)}{Q_j(X)} \underbrace{\binom{j}{i} R(X)^{j-i}}_{F_{i,j}(X)} = 0 \quad (\text{mod } \underbrace{G(X)^{m-i}}_{P_i(X)})$$

with the degree constraints $\deg Q_j(X) < mt - jk$ for $j \leqslant \ell$

Simultaneous Polynomial Approximations

Input:

Parameters: ℓ the list-size, m the number of equations

Moduli: $P_i \in \mathbb{K}[X]$ monic of degree M_i , for every i < m

Polynomials: $F_{i,j} \in \mathbb{K}[X]$ of degree less than M_i , for i < m and $j \leqslant \ell$

Degree bounds: N_j a positive integer, for every $j \leqslant \ell$

Output: $Q_0, \ldots, Q_\ell \in \mathbb{K}[X]$ satisfying

(i') Q_i are not all zero,

 $(ii') \quad \forall j \leqslant \ell, \deg Q_j < N_j,$

(iii') $\forall i < m, \sum_{i \le \ell} Q_i F_{i,j} = 0 \pmod{P_i}$.

Simultaneous approximations via a structured system (1/3)

Write $Q_j(X) = \sum_{r < N_i} Q_j^{(r)} X^r$, then the equations are

$$\forall i < m,$$

$$\sum_{i \leqslant j \leqslant \ell} \sum_{r < N_i} Q_j^{(r)} X^r F_{i,j}(X) = 0 \pmod{P_i(X)}$$

Define the companion matrix

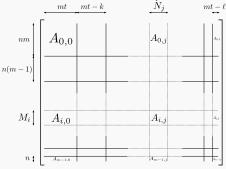
$$C(P_i) = \begin{bmatrix} 0 & 0 & \cdots & 0 & -P_i^{(0)} \\ 1 & 0 & \cdots & 0 & -P_i^{(1)} \\ 0 & 1 & \cdots & 0 & -P_i^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -P_i^{(M_i-1)} \end{bmatrix} \in \mathbb{K}^{M_i \times M_i}$$

Key property:

multiplication by $C(P_i)$ on the left is multiplication by X modulo $P_i(X)$

Simultaneous approximations via a structured system (2/3)

Solution \iff nonzero vector in the nullspace of the matrix A



where the block $A_{i,j} \in \mathbb{K}^{M_i \times N_j}$ is defined by its first column

$$c^{(0)} = \begin{bmatrix} F_{i,j}^{(0)} \\ \vdots \\ F_{i}^{(M_i-1)} \end{bmatrix} \text{ and the subsequent columns } c^{(r+1)} = \mathcal{C}(P_i) \cdot c^{(r)}$$

Simultaneous approximations via a structured system (3/3)

Let $M = M_0 + \cdots + M_{m-1}$ (number of linear equations), and $N = N_0 + \cdots + N_\ell$ (number of linear unknowns) Define

$$\mathcal{Z}_{M} = \left[egin{array}{ccccc} 0 & 0 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 \ 0 & 1 & 0 & \cdots & 0 \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & 1 & 0 \end{array}
ight] \in \mathbb{K}^{M imes M}$$

Fact: $A - \mathcal{Z}_M A \mathcal{Z}_N^T$ has rank $\leqslant m + \ell + 1$

the displacement operator $A \mapsto A - \mathcal{Z}_M A \mathcal{Z}_N^T$ corresponds to a Toeplitz structure

Conclusion:

the matrix of the system is Toeplitz-like with displacement rank $\leq 2\ell$

Complexity bound for this approach

Solving the structured linear system [Bitmead - Anderson, 1980] [Morf, 1980] [Kaltofen, 1994] [Pan, 2001] [Bostan - Jeannerod - Schost, 2007]

Two main operations:

- computing generators
 - \approx computing the first and last column of each block $\leadsto \mathcal{O}^{\sim}(\ell m^2 n)$ + computing the first row of each block $\leadsto \mathcal{O}^{\sim}(\ell m^2 n)$
 - \rightarrow $\mathcal{O}^{\sim}(\ell m^2 n)$ operations
- solving the system

at most $\ell+1$ blocks on each row or column, the number of equations is $\sum_i n(m-i) = \mathcal{O}(m^2n)$

 $\rightsquigarrow \mathcal{O}^{\sim}(\ell^{\omega-1}\mathsf{m}^2\mathsf{n})$ operations

Complexity bound:

$$\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$$

- New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound

$$\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$$

- 2 Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

- New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound

$$\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$$

- Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Multivariate Interpolation with Multiplicities

Multivariate Interpolation With Multiplicities

```
Input:
```

```
s the number of variables
```

```
n points \{(x_i, y_{i1}, \dots, y_{is})\}_{1 \le i \le n} in \mathbb{K}^{s+1}, with the x_i's distinct
```

k the degree constraint, t the agreement

 ℓ the list-size, m the multiplicity

Output: a polynomial Q in $\mathbb{K}[X, Y_1, \dots, Y_s]$ such that

- (i) Q is nonzero,
- (ii) $\deg_Y Q(X, Y_1, \dots, Y_s) \leq \ell$, (list-size condition)
- (iii) $\deg_X Q(X, X^k Y_1, \dots, X^k Y_s) < mt$, (weighted-degree condition)
- (iv) $\forall i, \ Q(x_i, y_{i1}, \dots, y_{is}) = 0$ with multiplicity m. (vanishing condition)

Application: list-decoding of folded Reed-Solomon codes

Assume that Q satisfies the list-size condition:

$$Q = \sum_{|j| \leqslant \ell} Q_j(X) Y^j$$

for some unknown polynomials $\{Q_i, |j| \leq \ell\}$

The vanishing condition can be rewritten as a set of modular equations.

for
$$i \in \{1, ..., n\}$$
: $Q(x_i, y_{i1}, ..., y_{is}) = 0$ with multiplicity m

$$\iff \text{ for } i = (i_1, ..., i_s), |i| < m:$$

$$\sum_{j_s} Q_j(X) \binom{j_1}{j_1} R_1(X)^{j_1 - i_1} \cdots \binom{j_s}{i_s} R_s(X)^{j_s - i_s} = 0 \mod G(X)^{m - |i|}$$

where
$$G(X) = \prod_{1 \leqslant i \leqslant n} (X - x_i)$$
 and

$$R_1(X), \ldots, R_s(X)$$
 such that $R_1(x_i) = y_{i1}, \ldots, R_s(x_i) = y_{is}$

 $i \leq j, |j| \leq \ell$

Vanishing condition + list-size condition

$$\sum_{\boldsymbol{i} \preccurlyeq \boldsymbol{j}, |\boldsymbol{j}| \leqslant \ell} \frac{Q_{\boldsymbol{j}}(X)}{\sum_{i_1}^{j_1} R_1(X)^{j_1 - i_1} \cdots \binom{j_s}{i_s} R_s(X)^{j_s - i_s}} = 0 \mod \underbrace{G(X)^{m - |\boldsymbol{i}|}}_{P_{\boldsymbol{i}}(X)}$$

for $i = (i_1, \ldots, i_m)$ such that |i| < m,

Instance of Simultaneous Polynomial Approximations

- list-size $\binom{s+\ell}{s}$
- number of linear equations $mn\binom{s+m-1}{s}$

Vanishing condition + list-size condition + weighted-degree condition

$$\sum_{\boldsymbol{i} \preccurlyeq \boldsymbol{j}, |\boldsymbol{j}| \leqslant \ell} \frac{Q_{\boldsymbol{j}}(X)}{\sum_{i_1}^{j_1} R_1(X)^{j_1 - i_1} \cdots \binom{j_s}{i_s} R_s(X)^{j_s - i_s}} = 0 \mod \underbrace{G(X)^{m - |\boldsymbol{i}|}}_{P_{\boldsymbol{i}}(X)}$$

for
$$i=(i_1,\ldots,i_m)$$
 such that $|i| < m$, with the degree constraints $\deg Q_j(X) < mt-|j|k$ for $|j| \leqslant \ell$

Instance of Simultaneous Polynomial Approximations

- list-size $\binom{s+\ell}{s}$
- number of linear equations $mn\binom{s+m-1}{s}$

Complexity bound in the multivariate case

Complexity bound in the multivariate case

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Improves on [Busse, 2008], [Brander, 2010] and [Nielsen, 2014]

Further extends to

- weight specific to each variable $\deg_X Q(X, X^{k_1}Y_1, \dots, X^{k_s}Y_s) < mt$
- multiplicity specific to each point $Q(x_i, y_{i1}, \dots, y_{is}) = 0$ with multiplicity m_i

- New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound

$$\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$$

- Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

- New approach for the interpolation step
 - Based on a approximation problem
 - Solved using structured linear systems
 - Improved complexity bound

$$\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$$

- Extension to the multivariate case (folded Reed-Solomon codes)
 - Based on the same approximation problem
 - Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$