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outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials
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error correcting codes cryptographic protocols

XXth-XXIst centuries : digital data & interconnected networks

integrity – confidentiality

goal of computer algebra
fast algorithms : complexity & efficient implementations

discrete structures : exact and intensive computations

▶matrices of large size, with sparsity or structure
▶polynomials and polynomial matrices in one variable
▶polynomials in several variables

reduce to efficient building blocks

▶MatMul: matrix multiplication
▶PolMul: polynomial multiplication
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measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rational numbers Q

algebraic complexity bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

accurate for finite fields K = Fp

ignores coefficient growth, e.g. over K = Q

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading
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matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

▶ addition is “quadratic”: O(m2) operations in K
▶naive multiplication is cubic: O(m3)

breakthrough: subcubic matrix multiplication

[Strassen’69]

▶ complexity exponent ω ≈ 2.81

▶used in practice for m ⩾ a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

▶best-known exponent ω ≈ 2.373
[Le Gall’14] [Alman-Williams’20]

▶ “galactic” algorithms: strongly impractical as such
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matrices: main computational problems

reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log

PLUQ = Gaussian elimination

TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

not closed:
open:
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PolMul

MinPoly
CharPoly

}
= O(MatMul)

exploiting non-naive PolMul

not closed: is Frobenius normal form in O(MatMul)?
open: is linear system solving as hard as multiplication?
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bonus: some notes

biblio: https://www.sciencedirect.com/science/article/pii/S0747717113000631

▶ explicit reductions between inversion & MatMul & variants of
Gaussian elimination / echelon form computation

▶ constants in the O(·) complexities when using classical matrix
multiplication (ω = 3) or Strassen’s algorithm

“not closed”: it is open, but

▶ there is a randomized algorithm for Frobenius form computation
which has complexity O(MatMul)
⇝ http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf

▶ recent developments for the characteristic polynomial gives new
insight concerning core operations typically used in Frobenius form
algorithms
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polynomials: multiplication

p = 87x7 + 74x6 + 60x5 + 46x4 + 16x3 + 41x2 + 86x+ 69

p ∈ K[x]<8 −→ univariate polynomial in x of degree < 8 over K

fundamental operations on polynomials of degree < d:

▶ addition and Horner’s evaluation are linear: O(d)
▶naive multiplication is quadratic: O(d2)

breakthrough: subquadratic polynomial multiplication

[Karatsuba’62] M(d) ∈ O(d1.58)

breakthrough: quasi-linear polynomial multiplication

[Schönhage-Strassen’71] [Nussbaumer’80] [Cantor-Kaltofen’91] M(d) ∈ O(d log(d) log log(d))

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

▶ change of representation by evaluation-interpolation

▶used in practice as soon as d ≈ 100

▶FFT techniques using (virtual) roots of unity

note: M(d) ∈O(d log(d))
if provided a “good” root of unity
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polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

not closed:
not closed:
open:
open:
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open: modular composition f(g) mod h closer to O(PolMul)?
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bonus: some notes

interpolation and multipoint eval. in O(PolMul) “not closed”:

▶ remains open for an arbitrary set of points, with no assumption, but:

▶ by design, solved for FFT points (powers of some root of unity)

▶ more generally, solved for points forming a geometric sequence
https://www.sciencedirect.com/science/article/pii/S0885064X05000026

▶ in many applications of interpolation/evaluation, one can choose the
points, in which case O(PolMul) is feasible

polynomial multiplication in O(d log(d)) “not closed”:

▶ remains open over an arbitrary field, concerning algebraic complexity

▶ solved when the field possesses suitable roots of unity for FFT

▶ method of choice in practice (using several primes and CRT if
needed) when working over prime finite fields Z/pZ

▶ recent progress in the bit complexity model
https://www.sciencedirect.com/science/article/pii/S0885064X19300378

https://dl.acm.org/doi/abs/10.1145/3505584
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matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

NTL & FLINT C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s
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outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials
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outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?
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error-correcting codes

goal:
reliable data transmission over
unreliable communication channel

modern development pioneered by
Hamming (1940s), Shannon (1948)

strategy:
add redundancy to the message
add redundancy to the message
add redundancy to the message

(drawing: courtesy of Johan Nielsen→Rosenkilde)

intended word
(w0, . . . ,wk)

code word
(c1, . . . , cn)

with k+1
n
⩽ 1
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encoding: adding redundancy

all intended words
(w0, . . . ,wk)

all code words
(c1, . . . , cn)

encoding

polynomials of degree ⩽ k

w(x) = w0 + w1x + · · · + wkx
k

their evaluations at α1, . . . ,αn

(w(α1), . . . ,w(αn))

encoding

Reed-Solomon codes (1960):

17



transmission over unreliable channel

code word
(w(α1), . . . ,w(αn))

polynomial w(x)

of degree ⩽ k

received word
(β1, . . . ,βn)

encoding noisy

channel

▶number of errors ⩽ e, meaning #{i | w(αi) ̸= βi} ⩽ e (Hamming distance)

▶possible received words = balls of radius e centered on the code words

noise ⇒ transmission errors:

18



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w?

. uniqueness of w?
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e = 0: Lagrange interpolation
e = 1: no error detection!
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bonus: minimum distance for Reed-Solomon codes

▶ for v ̸= w polynomials of degree ⩽ k over the base field K,
(v(α1), . . . , v(αn)) and (w(α1), . . . ,w(αn)) agree at ⩽ k positions

⇒ distance at least n− k between two code words

▶ for v = 0 and w = (x− α1) · · · (x− αk), the code words are
(0, . . . , 0) and (0, . . . , 0,w(αk+1), . . . ,w(αn))
⇒ two code words at distance exactly n− k

=⇒ minimum distance dmin = n− k
(for dimension reasons, this is the best one can hope for)

in this case, unique decoding condition: e <
n− k

2
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summary: unique decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, e the error-correction radius,
▶ (β1, . . . ,βn) the received word in Kn

unique decoding requirement: e < n−k
2

output: the polynomial w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) ̸= βi} ⩽ e
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summary: unique decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, e the error-correction radius,
▶ (β1, . . . ,βn) the received word in Kn

unique decoding requirement: e < n−k
2

output: the polynomial w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) ̸= βi} ⩽ e

multiple viewpoints + fruitful interactions: [coding theory]/[computer algebra]
▶ linear recurrence generator – Toeplitz linear system – Padé approximation
[Berlekamp’68] [Massey’69] [Brent-Gustavson-Yun’80] [Beckermann-Labahn’94]

▶modified extended GCD – rational function reconstruction
[Sugiyama-Kasahara-Hirasawa-Namekawa’75] [Welch-Berlekamp’86]
[Knuth’70] [Schönhage’71] [Moenck’73] [Brent-Gustavson-Yun’80]

▶Vandermonde-like linear system – vector rational interpolation
[Olshevsky-Shokrollahi’99] [Kötter-Vardy 2003]
[Morf’74] [Bitmead-Anderson’80] [Pan’90] [van Barel-Bultheel’92] [Beckermann-Labahn’97]

one target complexity: O(n3)→ O(n2)→ O(M(n) log(n))
21



encoding/decoding efficiency: basic remarks

encoding w(x) 7→ (w(α1), . . . ,w(αn))

▶naive: n times Horner evaluation O(k) O(nk)

▶ fast: n
k
times k-point evaluation O(n

k
M(k) log(k)) ⊆O(M(n) log(n))

points in geometric sequence ⇒ no log factor [Aho-Steiglitz-Ullman’75] [Bostan-Schost 2005]
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encoding/decoding efficiency: basic remarks

encoding w(x) 7→ (w(α1), . . . ,w(αn))

▶naive: n times Horner evaluation O(k) O(nk)

▶ fast: n
k
times k-point evaluation O(n

k
M(k) log(k)) ⊆O(M(n) log(n))

points in geometric sequence ⇒ no log factor [Aho-Steiglitz-Ullman’75] [Bostan-Schost 2005]

naive decoding

▶ infinitely lucky decoder: there was no error
⇝ Lagrange interpolation in O(M(n) log(n))

▶ very lucky decoder: at most 1 error, unknown position
⇝ trial and error, worst case O(nM(n) log(n))

▶ lucky decoder: at most 2 errors, unknown positions
⇝ trial and error, worst case O(n2M(n) log(n))

▶ ordinary decoder: at most e errors, unknown positions
⇝ life is tough, complexity exponential in e

next slides = one can be both ordinary and

22



linear key equations and “rational interpolation” decoding

known interpolant R(x)
such that R(αi) = βi

unknown error-locator
Λ(x) =

∏
i | error(x − αi)

⇒ deg(Λ) ⩽ e

key equations: Λ(αi)R(αi) = Λ(αi)w(αi) for 1 ⩽ i ⩽ n

multivariate, non-linear, polynomial system: a priori difficult
(n equations of degree 2 in the k+ 1+ e coefficients of w and Λ)

approach: linearization
introducing the new unknown µ = Λw of degree ⩽ k + e
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linear key equations and “rational interpolation” decoding

known interpolant R(x)
such that R(αi) = βi

unknown error-locator
Λ(x) =

∏
i | error(x − αi)

⇒ deg(Λ) ⩽ e

key equations: Λ(αi)R(αi) = Λ(αi)w(αi) for 1 ⩽ i ⩽ n

multivariate, non-linear, polynomial system: a priori difficult
(n equations of degree 2 in the k+ 1+ e coefficients of w and Λ)

approach: linearization
introducing the new unknown µ = Λw of degree ⩽ k + e

linear system with n equations and k+ 1+ 2e unknowns (k+ 1+ 2e ⩽ n):

▶Gaussian elimination O(n3)→ O(nω) [Bunch-Hopcroft’74] [Ibarra-Moran-Hui’82]

▶O(n2)→ O(M(n) log(n)) exploiting the Vandermonde-like structure
[Morf’74] [Bitmead-Anderson’80] [Pan’90] [Olshevsky-Shokrollahi’99]

▶O(n2)→ O(M(n) log(n)) via vector rational interpolation
[Beckermann’92] [van Barel-Bultheel’92] [Beckermann-Labahn’94,’97] [Kötter-Vardy 2003]
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univariate key equation and “rational reconstruction” decoding

known interpolant R(x)

such that R(αi) = βi

unknown error-locator

Λ(x) =
∏

i | error(x − αi)

deg(Λ) ⩽ e

unknown linearizer

µ(x) = Λ(x)w(x)

deg(µ) ⩽ e+ k

univariate key equation: Λ(x)R(x) = µ(x) mod G(x)

Λ(αi)R(αi) = µ(αi) for 1 ⩽ i ⩽ n
⇕

Λ(x)R(x) = µ(x) mod (x−αi) for 1 ⩽ i ⩽ n
⇕

G(x) =
∏

1⩽i⩽n(x− αi), degree n[Welch-Berlekamp’86]

approach: rational reconstruction
{

ΛR = µ mod G

deg(Λ) ⩽ e, deg(µ) < n− e, Λ monic

note: e+ k < n− e
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univariate key equation and “rational reconstruction” decoding

known interpolant R(x)

such that R(αi) = βi

unknown error-locator

Λ(x) =
∏

i | error(x − αi)

deg(Λ) ⩽ e

unknown linearizer

µ(x) = Λ(x)w(x)

deg(µ) ⩽ e+ k

univariate key equation: Λ(x)R(x) = µ(x) mod G(x)

Λ(αi)R(αi) = µ(αi) for 1 ⩽ i ⩽ n
⇕

Λ(x)R(x) = µ(x) mod (x−αi) for 1 ⩽ i ⩽ n
⇕

G(x) =
∏

1⩽i⩽n(x− αi), degree n[Welch-Berlekamp’86]

approach: rational reconstruction
{

ΛR = µ mod G

deg(Λ) ⩽ e, deg(µ) < n− e, Λ monic

note: e+ k < n− e

▶unique rational solution µ
Λ
, which has to be Λw

Λ
= w

▶ solved by XGCD algorithm stopped at suitable iteration O(n2)
[Sugiyama-Kasahara-Hirasawa-Namekawa’75] [Modern Computer Algebra, v.z.Gathen-Gerhard, 2003]

▶ fast XGCD algorithms can be adapted → O(M(n) log(n))
[Knuth’70] [Schönhage’71] [Moenck’73] [Gustavson-Yun’79][Brent-Gustavson-Yun’80]
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classical key equation and “Padé approximation” decoding

{
ΛR = µ mod G = µ+ νG with deg(Λ) ⩽ e,Λ monic
deg(µ) ⩽ deg(Λ) + k, deg(ν) ⩽ deg(Λ) − 1

{
Λ̄R̄ = µ̄xn−k−1 + ν̄Ḡ = ν̄Ḡ mod xn−k−1 with deg(Λ̄) ⩽ e, Λ̄(0) = 1
deg(µ̄) ⩽ deg(Λ̄) + k, deg(ν̄) ⩽ deg(Λ̄) − 1

reverse w.r.t. xn−1+deg(Λ)

approach: linear recurrence
{

Λ̄S = ν̄ mod xn−k−1

deg(Λ̄) ⩽ e, deg(ν̄) < e, Λ̄(0) = 1

S = R̄/Ḡ mod xn−k−1 (Newton iteration)
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classical key equation and “Padé approximation” decoding

{
ΛR = µ mod G = µ+ νG with deg(Λ) ⩽ e,Λ monic
deg(µ) ⩽ deg(Λ) + k, deg(ν) ⩽ deg(Λ) − 1

{
Λ̄R̄ = µ̄xn−k−1 + ν̄Ḡ = ν̄Ḡ mod xn−k−1 with deg(Λ̄) ⩽ e, Λ̄(0) = 1
deg(µ̄) ⩽ deg(Λ̄) + k, deg(ν̄) ⩽ deg(Λ̄) − 1

reverse w.r.t. xn−1+deg(Λ)

approach: linear recurrence
{

Λ̄S = ν̄ mod xn−k−1

deg(Λ̄) ⩽ e, deg(ν̄) < e, Λ̄(0) = 1

S = R̄/Ḡ mod xn−k−1 (Newton iteration)

▶unique rational solution ν̄/Λ̄, which yields Λ
▶ coefficients of S: linearly recurrent sequence generated by Λ̄
⇝ specific algorithms in O(n2) [Berlekamp’68] [Massey’69]

⇝ in fact equivalent to the XGCD approach O(n2)→ O(M(n) log(n))
[Sugiyama et al.’75] [Brent-Gustavson-Yun’80] [Dornstetter’84]

▶find Λ̄ by homogeneous Toeplitz linear system O(n2)→ O(M(n) log(n))
▶use direct Padé approximation O(n2)→ O(M(n) log(n))

[Padé 1894] [Sergeyev’86][van Barel-Bultheel’91][Beckermann-Labahn’94]
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non-unique decoding

how to decode more errors?
. transmission with ⩽ e errors
. where e ⩾ dmin/2
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well-defined?

. existence of w: , by construction

. uniqueness of w: , possibly several
code words at the same distance

. closest code word not necessarily the
sent code word!
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non-unique decoding

how to decode more errors?
. transmission with ⩽ e errors
. where e ⩾ dmin/2

well-defined?

. existence of w: , by construction

. uniqueness of w: , possibly several
code words at the same distance

. closest code word not necessarily the
sent code word!

list-decoding:
return a list of all code
words at distance ⩽ e

[Elias’50s]
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list decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, t = n− e the agreement,
▶ (β1, . . . ,βn) the received word in Kn

list decoding requirement: t2 > kn [Guruswami-Sudan’99]

output: all polynomials w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) = βi} ⩾ t

for convenience, we use the agreement parameter t = n − e:
#{i | w(αi) ̸= βi} ⩽ e ⇔ #{i | w(αi) = βi} ⩾ t

27



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?
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outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation

29



introduction to vector interpolation

⇓ earlier in the talk ⇓

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

⇓ next in the talk ⇓

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(mωM(d) log(d)) operations in K

or a tiny bit more for matrix-GCD
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introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences
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Cauchy interpolation:
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introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences

Cauchy interpolation:

given G(x) = (x− α1) · · · (x− αd) ∈ K[x],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod G(x)

▶degree constraints specified by the context
▶usual choices have d1 + d2 ≈ d and existence of a solution
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introduction to vector interpolation

approximation and structured linear system

K = F7

f = 2x7 + 2x6 + 5x4 + 2x2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod x8

[ q p ]

[
f
−1

]
= 0 mod x8

[q0 q1 q2 q3 q4 1 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0
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[1894, Journal de mathématiques pures et appliquées]
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introduction to vector interpolation

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)
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Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)

in this talk: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard

2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶field elements α1, . . . ,αd ∈ K ⇝ not necessarily distinct

▶degree bounds d1, . . . ,dm ∈ Z>0 ⇝ general “shift” s ∈ Zm

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod
∏

1⩽i⩽d(x− αi)

▶deg(pi) < di for all i ⇝ minimal s-row degree

(Hermite-Padé: α1 = · · · = αd = 0; interpolation: pairwise distinct points)
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introduction to vector interpolation

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial Q(x,y) ∈ K[x,y]
such that Q(αi,βi) = 0 for 1 ⩽ i ⩽ 8

G(x) = (x− 24) · · · (x− 59)
R(x) = Lagrange interpolant

}
−→ solutions = ideal ⟨G(x),y− R(x)⟩

solutions of smaller x-degree: Q(x,y) = Q0(x) +Q1(x)y+Q2(x)y
2

Q(x,R(x)) =
[
Q0 Q1 Q2

]  1
R
R2

 = 0 mod G(x)

▶ instance of univariate rational vector interpolation
▶with a structured input equation (powers of R mod G)
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introduction to vector interpolation

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial Q(x,y) ∈ K[x,y]
such that Q(αi,βi) = 0 for 1 ⩽ i ⩽ 8

add degree constraints: seek Q(x,y) of the form
q00 +q01x+q02x

2 +q03x
3 +q04x

4 + (q10 +q11x+q12x
2)y+q20y

2:

[
q00 q01 q02 q03 q04 q10 q11 q12 q20

]



1 1 · · · 1
α1 α2 · · · α8

α2
1 α2

2 · · · α2
8

α3
1 α3

2 · · · α3
8

α4
1 α4

2 · · · α4
8

β1 β2 · · · β8

α1β1 α2β2 · · · α8β8

α2
1β1 α2

2β2 · · · α2
8β8

β2
1 β2

2 · · · β2
8


= 0

▶K-linear system
▶ two levels of structure

Q(x,y) = (2x4 + 56x3 + 42x2 + 48x+ 15) + (72x2 + 12x+ 30)y+ y2
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introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms
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polynomial matrices: multiplication

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3
3 × 3 matrix of degree 3

with entries in K[x] = F7[x]

operations on K[x]m×m<d

▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

2 × 2 matrices in XGCD, Padé approximation,
Berlekamp-Massey, Toeplitz linear systems. . .

⇝ m×m matrix versions of these problems

▶ some problems&techniques shared with matrices over K
▶ some problems&techniques specific to entries in K[x]
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▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

applying univariate polynomial techniques directly:

▶Newton truncated inversion, matrix-QuoRem O (̃mωd)

▶ inversion & determinant by evaluation-interpolation O (̃mω+1d)

▶ vector rational approximation & interpolation ???

applying matrix techniques directly: echelonization is exponential time
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polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

38



polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem
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▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

38



Hermite and Popov forms

working over K = Z/7Z

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1


using elementary row operations, transform A into. . .

Hermite form H =

 x6 + 6x4 + x3 + x+ 4 0 0
5x5 + 5x4 + 6x3 + 2x2 + 6x+ 3 x 0

3x4 + 5x3 + 4x2 + 6x+ 1 5 1



Popov form P =

x3 + 5x2 + 4x+ 1 2x+ 4 3x+ 5
1 x2 + 2x+ 3 x+ 2

3x+ 2 4x x2


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Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis
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shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis
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shifted forms

shift: integer tuple s = (s1, . . . , sm) acting as column weights

→ connects Popov and Hermite forms

s = (0, 0, 0, 0)
Popov


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



s = (0, 2, 4, 6)
s-Popov


7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1



8 5 1
7 6 1

2
0 1 0



s = (0,D, 2D, 3D)
Hermite


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2


▶normal form, average column degree D/m

▶ shifts arise naturally in algorithms (approximants, kernel, . . . )
▶ they allow one to specify non-uniform degree constraints
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from normal forms to relations

normal form computation

shifted
Popov form

Popov form Hermite form

high-order lifting
[Storjohann, 2003]

[Giorgi-Jeannerod-Villard 2003]
[Neiger 2016] [Neiger-Vu 2017]

reconstruction as relations


p1f11 + · · ·+ pmf1m = 0 mod g1

...
...

...
p1fn1 + · · ·+ pmfnm = 0 mod gn
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software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .
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polynomial matrices: two open questions

deterministic Smith form

[ s1
s2

. . .

sm

][
A

]
si+1 divides si

▶ complexity O (̃mω D
m
) [Storjohann’03]

▶Las Vegas randomized algorithm

▶ requires large field K

deterministic algo in O (̃mω D
m
)?

algebraic interpolants

= main step of Sudan decoding

p1f1 + p2f2 + · · ·+ pmfm = 0 mod G

p11+ p2R+ · · ·+ pmRm−1 = 0 mod G

structured fi’s

▶most algorithms ignore the structure

▶ recent progress [Villard’18]

▶ restrictive: genericity, specific m & d

how to leverage this structure?
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fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



values


1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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values
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1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
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fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


1 1 1 1 1 1 1 1
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 7 88 8 59 3 93 35
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 x2 + 42x+ 65 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 x2 + 42x+ 65 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 x3 + 27x2 + 17x+ 92 0 0 0
54x2 + 38x+ 11 1 0 0
17x2 + 91x+ 54 0 1 0
66x2 + 68x+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 x3 + 27x2 + 17x+ 92 0 0 0
54x2 + 38x+ 11 1 0 0
17x2 + 91x+ 54 0 1 0
66x2 + 68x+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 3 4 6]

basis

 x3 + 31x2 + 27x+ 3 36 0 0
54x3 + 56x2 + 56x+ 36 x+ 65 0 0

56x2 + 43x+ 35 60 1 0
52x2 + 33x+ 60 68 0 1



values


0 0 0 0 95 50 66 0
0 0 0 0 54 0 19 58
0 0 0 0 4 45 79 95
0 0 0 0 7 31 41 17


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 5 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 3 4 6]

basis

 x4 + 45x3 + 73x2 + 90x+ 42 36x+ 19 0 0
81x3 + 20x2 + 9x+ 20 x+ 67 0 0

2x3 + 21x2 + 41 35 1 0
52x3 + 15x2 + 79x+ 22 0 0 1



values


0 0 0 0 0 13 13 0
0 0 0 0 0 89 55 58
0 0 0 0 0 48 17 95
0 0 0 0 0 12 78 17


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 6 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 4 4 6]

basis

 x4 + 19x3 + 57x2 + 44x+ 26 74x+ 43 0 0
81x4 + 64x3 + 51x2 + 68x+ 42 x2 + 40x+ 34 0 0

3x3 + 44x2 + 54x+ 64 6x+ 49 1 0
28x3 + 45x2 + 44x+ 52 50x+ 52 0 1



values


0 0 0 0 0 0 66 70
0 0 0 0 0 0 3 13
0 0 0 0 0 0 56 55
0 0 0 0 0 0 15 7


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 7 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 4 4 6]

basis

 x5 + 96x4 + 65x3 + 68x2 + 19x+ 62 74x2 + 18x+ 13 0 0
6x4 + 94x3 + 44x2 + 66x+ 32 x2 + 19x+ 10 0 0
55x4 + 78x3 + 75x2 + 49x+ 39 2x+ 86 1 0
13x4 + 81x3 + 10x2 + 34x+ 2 42x+ 29 0 1



values


0 0 0 0 0 0 0 14
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 25
0 0 0 0 0 0 0 44


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 x5 + 12x4 + 10x3 + 34x2 + 65x+ 2 60x2 + 43x+ 67 0 0
6x5 + 31x4 + 27x3 + 89x2 + 18x+ 52 x3 + 57x2 + 53x+ 89 0 0

2x4 + 56x3 + 42x2 + 48x+ 15 72x2 + 12x+ 30 1 0
40x4 + 19x3 + 14x2 + 40x+ 49 53x2 + 79x+ 74 0 1



values


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 x5 + 12x4 + 10x3 + 34x2 + 65x+ 2 60x2 + 43x+ 67 0 0
6x5 + 31x4 + 27x3 + 89x2 + 18x+ 52 x3 + 57x2 + 53x+ 89 0 0

2x4 + 56x3 + 42x2 + 48x+ 15 72x2 + 12x+ 30 1 0
40x4 + 19x3 + 14x2 + 40x+ 49 53x2 + 79x+ 74 0 1



values


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Q(x,y) = (2x4 + 56x3 + 42x2 + 48x+ 15) + (72x2 + 12x+ 30)y+ y2
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fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

input: vector F =

[
f1
...

fm

]
, points α1, . . . ,αd ∈ K, shift s = (s1, . . . , sm) ∈ Zm

1. P =

[
−p1−...
−pm−

]
= identity matrix in K[x]m×m

2. for i from 1 to d:

a. choose pivot π with smallest sπ such that fπ(αi) ̸= 0
update pivot shift sπ = sπ + 1

b. constant elimination: for j ̸= π do pj ← pj −
fj(αi)

fπ(αi)
pπ

polynomial elimination: pπ ← (x− αi)pπ

c. compute residual equation: for j ̸= π do fj ← fj −
fj(αi)

fπ(αi)
fπ

fπ ← (x− αi)fπ

after i iterations: P is an s-reduced basis of solutions for (α1, . . . ,αi)
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fast divide and conquer interpolation

iterative algorithm: complexity aspects

at step i, P and F are left multiplied by Ei =

[
Iπ−1 λ1 0
0 x−α 0
0 λ2 Im−π

]
where λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications EiF and EiP
▶ at any stage P has degree ⩽ d and dimensions m×m
▶ at any stage F has degree < 2d and dimensions m× 1

one gets O(md2) with either:
. normalizing at each step + finer analysis
. “balanced” input shift + finer analysis
(shifts in RS list-decoding are balanced)

correctness:
▶ the main task is to prove the base case (d = 1, single point)
▶ then, correctness follows from the “basis multiplication theorem”
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fast divide and conquer interpolation

iterative algorithm: complexity aspects
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fast divide and conquer interpolation

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn ’94+’97] [Giorgi-Jeannerod-Villard 2003]

▶ compute a first basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 shifted reduced

P2P1 reduced not implied by “P1 reduced and P2 reduced”

theorem:
(P1 is s-reduced and P2 is t-reduced”) ⇒ P2P1 is s-reduced

where t is a shift trivially computed from s and P1 (t = rdegs(P1))
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fast divide and conquer interpolation

bonus: detailed statement and proof

let M ⊆M1 be two K[x]-submodules of K[x]m of rank m,
let P1 ∈ K[x]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[x]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[x]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[x]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1 is

nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p is a

K[x]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists λ ∈
K[x]1×m such that p = λP1. But then λ ∈M2, and thus there exists µ ∈ K[x]1×m

such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.
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fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn ’94+’97]

input: F, (α1, . . . ,αd), s
output: P

▶ if d ⩽ threshold: call iterative algorithm
▶ else:

a. G1 ← (x− α1) · · · (x− α⌊d/2⌋); G2 ← (x− α⌊d/2⌋+1) · · · (x− αd)

b. P1 ← recursive call on F rem G1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual equation: F← 1
G1

P1F

e. P2 ← recursive call F rem G2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1
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G1

P1F

e. P2 ← recursive call F rem G2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ residual: {p | pP1F = 0 mod G} = {p | p( 1

G1
P1F) = 0 mod G2}
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f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ residual: {p | pP1F = 0 mod G} = {p | p( 1

G1
P1F) = 0 mod G2}

complexity O(mωM(d) log(d)):
▶ if ω = 2, quasi-linear in worst-case output size
▶most expensive step in the recursion is the product P2P1

▶ equation C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))
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fast divide and conquer interpolation

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2 ) + 4M(d
4 ) + · · ·+

d
2 M(2)

)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))
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fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F ∈ K[x]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]
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m
⌉) [Lecerf, ca 2001, unpublished]

▶more recently: O (̃mω−1nd) for F mod xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis
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▶more recently: O (̃mω−1nd) for F mod xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis

▶F mod G and general modular matrix equations in similar complexity
[Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis
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outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation
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▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation

▶ the Guruswami-Sudan algorithm
▶ via structured systems or basis reduction
▶ a word on extensions
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list decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, t = n− e the agreement,
▶ (β1, . . . ,βn) the received word in Kn

list decoding requirement: t2 > kn [Guruswami-Sudan’99]

output: all polynomials w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) = βi} ⩾ t

for convenience, we use the agreement parameter t = n − e:
#{i | w(αi) ̸= βi} ⩽ e ⇔ #{i | w(αi) = βi} ⩾ t
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list decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, t = n− e the agreement,
▶ (β1, . . . ,βn) the received word in Kn

list decoding requirement: t2 > kn [Guruswami-Sudan’99]

output: all polynomials w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) = βi} ⩾ t

for convenience, we use the agreement parameter t = n − e:
#{i | w(αi) ̸= βi} ⩽ e ⇔ #{i | w(αi) = βi} ⩾ t

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

Guruswami-Sudan algorithm:
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introducing the interpolation+root-finding approach

consider one solution w1:

key equation:
Λ1R = Λ1w1 mod G

where R(αi) = βi, G(x) =
∏

1⩽i⩽n(x− αi) Λ1(x) =
∏

i | error1
(x− αi)

obstacle: no uniqueness of solution µ1

Λ1
for rational reconstruction

Λ1R = µ1 mod G

with degµ1 ⩽ e+ k

since e ⩾ n−k
2
⇒ (unique decoding bound not satisfied),

possibly deg(Λ1) + deg(Λ1w1) ⩾ n = degG

(more unknowns than equations in the linearized problem)

56



introducing the interpolation+root-finding approach

note Λ1(R−w1) = 0 mod G, and consider a second solution w2:

“extended” key equation:

Λ(R−w1)(R−w2) = 0 mod G

where Λ =
∏

i | error1∧2
(x− αi) = gcd(Λ1,Λ2)

w1 and w2 are y-roots of the bivariate polynomial

Q(x,y) = Λ(y−w1)(y−w2) = Λw1w2 − Λ(w1 +w2)y + Λy2

⇝ similar remark for all ℓ solutions w1, . . . ,wℓ

properties of Q(x,y):

▶degree in y is ℓ = number of solutions
▶weighted-degree degx(Q(x, xky)) close to ℓk
▶Q(αi,βi) = 0 for every i (i.e. Q(x,R) = 0 mod G)
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the Guruswami-Sudan algorithm

bivariate interpolation with multiplicities:
Input:

n points {(αi,βi)}1⩽i⩽n in K2, with the αi’s distinct
k the degree constraint, t the agreement
ℓ the list-size, s the multiplicity (s ⩽ ℓ)

Output:
a nonzero polynomial Q(x,y) in K[x,y] such that
(i) degy(Q) ⩽ ℓ (list-size condition)
(ii) degx(Q(x, xky) < st (weighted-degree condition)
(iii) ∀i, Q(αi,βi) = 0 with multiplicity s (vanishing condition)

▶find parameters ℓ and s

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions
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compute all y-roots of Q(x,y), keep those that are solutions
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ℓ
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root-finding step: quasi-linear complexity
[Alekhnovich 2005] [Neiger-Rosenkilde-Schost 2017]
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[Jeannerod-Neiger-Schost-Villard 2017]
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alternative approach: structured linear algebra

features common to all algorithms:
▶use (i) + (ii) to fix the linear unknowns:

Q =
∑

0⩽j⩽ℓ

∑
0⩽i<st−jk qi,jx

iyj

▶ same number of linear unknowns: (ℓ+ 1)st− ℓ(ℓ+1)
2 k

▶ same number of linear equations: s(s+1)
2 n

▶ call a structured linear system solver

Vandermonde-like system O(ℓs4n2)
▶ [Olshevsky-Shokrollahi’99]

▶ linearize the vanishing condition on each point

Mosaic-Hankel system O(ℓs4n2)
▶ [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]

▶ linearize the reversed extended key equation
▶ uses an adapted [Feng-Tzeng’91] solver

Toeplitz-like system O (̃ℓω−1s2n)
▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]

▶ linearize the extended key equation
▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized
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

4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0
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q00 q01 q02 q03 q04 q10 q11 q12 q20

]



1 1 · · · 1
α1 α2 · · · α8

α2
1 α2

2 · · · α2
8

α3
1 α3

2 · · · α3
8

α4
1 α4

2 · · · α4
8

β1 β2 · · · β8

α1β1 α2β2 · · · α8β8

α2
1β1 α2

2β2 · · · α2
8β8

β2
1 β2

2 · · · β2
8


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alternative approach: basis reduction

features common to all algorithms:
▶use (i) to fix the polynomial unknowns:

Q =
∑

0⩽j⩽ℓ Qj(x)y
j ←→ [Q0(x) · · ·Qℓ(x)]

▶ consider same interpolant K[x]-module:
{Q | (i) + (iii)} = {

∑
0⩽j⩽ℓ Qj(x)y

j | Q(αi,βi) = 0 with mult. s}

▶use (iii) to derive a basis of the module:
{Q | (i) + (iii)} = ⟨p0(x,y),p1(x,y), . . . ,pℓ(x,y)⟩

▶ call a K[x]-module basis reduction algorithm,
using a shift to satisfy the weighted-degree condition (ii)

basis reduction ≈ [Mulders-Storjohann 2003] quadratic in n
▶ [Reinhard 2003] O(ℓ3m2n2)
▶ [Lee-O’Sullivan 2008] O(ℓ4mn2)
▶ [Trifonov 2010] O(m3n2) (heuristic)

basis reduction = matrix-half-GCD l̃inear in n
▶ [Alekhnovich 2002+2005] O (̃ℓ4m4n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] l̃inear in n
▶ [Beelen-Brander 2010] O (̃ℓ4mn)
▶ [Bernstein 2010] O (̃ℓω+1n)
▶ [Cohn-Heninger 2011+2015] O (̃ℓωmn)

basis reduction = fastest known O (̃ℓω−1s2n)
▶ [Neiger 2016] [Neiger-Vu 2017]

▶do not go this way!
⇝ here, better call fast vector interpolation directly
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

G 0 0 0 · · · 0
−R 1 0 0 · · · 0
0 −R 1 0 · · · 0
0 0 −R 1 · · · 0
...

. . .
. . .

. . .

0 · · · · · · 0 −R 1



G −→
y− R −→

y(y− R) −→
y2(y− R) −→

...
yℓ−1(y− R) −→
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generalizations of the interpolation step

summary for [Sudan ’97] [Guruswami-Sudan ’99]:
▶ list-decoding of Reed-Solomon codes, extends error-correction bound

compute Q(x,y) = Q0 +Q1y+ · · ·+Qmyℓ such that

▶ [Q0, . . . ,Qℓ] has small shifted degree

▶ Q(αi,βi) = 0 with multiplicity µ for all i
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generalizations of the interpolation step

[Kötter-Vardy 2003]
soft-decision decoding of Reed-Solomon codes

α1, . . . ,αn are not pairwise distinct
compute Q(x,y) = Q0 +Q1y+ · · ·+Qℓy

ℓ such that

▶ [Q0, . . . ,Qℓ] has small shifted degree

▶ Q(αi,βi) = 0 with multiplicity µi for all i
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generalizations of the interpolation step

[Guruswami-Rudra 2006]
list-decoding of folded Reed-Solomon codes:
further extends the error-correction bound up to the information-theoretic
limit

[Devet-Goldberg-Heninger 2012]
Optimally robust Private Information Retrieval

compute Q(x,y1, . . . ,ys) =
∑

(j1,...,js)∈Γ Qj1,...,jsy
j1
1 · · ·y

js
s such that

▶ [Qj1,...,js ](j1,...,js)∈Γ has small shifted degree

▶ Q(αi,βi1, . . . ,βis) = 0 with multiplicity µ for all i
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generalizations of the interpolation step

[Beelen-Rosenkilde-Solomatov 2022]
[Beelen-Neiger (preprint) 2023]
Guruswami-Sudan algorithm in the algebraic-geometry code setting

up to more precomputations, very similar context:
. . . also up to many technical details

Ms,ℓ,β =

{
Q =

ℓ∑
t=0

ztQt ∈ F[z]
∣∣ Qt ∈ ∆(−tG),

Q has a root of multiplicity at least s at (Pj,βj) for all j

}
.

Ms,ℓ,β =

s−1⊕
t=0

(z− R)t∆(Gt)⊕
ℓ⊕

t=s

ft(z)(z− R)s∆(Gt).
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summary

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation

▶ the Guruswami-Sudan algorithm
▶ via structured systems or basis reduction
▶ a word on extensions
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