Vincent Neiger

LIP6, Sorbonne Université, France

designing fast Guruswami-Sudan decoders using univariate polynomial matrix algorithms

CAIPI symposium @ Bordeaux
November 9, 2023

outline

computer algebra

Reed-Solomon decoding
polynomial matrices
efficient list decoding

outline

computer algebra

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials

Reed-Solomon decoding
polynomial matrices
efficient list decoding

Ideals,
Varieties, and Algorithms
An introduction to Computational
An introduction to Computational
Algebraic Geometry and Commutative
Algebraic Geometry and Commutative Algebra
Fourth Edition

Undergradate Terbin Matiernuta

David A. Cox
John Little
Donal O'Shea
Ideals, Varieties, and Algorithms
An Introduction to Computational An introduction to computational
Algebraic Geometry and Commutative Algebraic Geometry and Commutative Algebra
Fourth Edition

Maple

Euclid's GCD -300

Gaussian elimination 179
-

computer algebra

algorithm design
and software implementations
for exact computations
with mathematical objects

Gaussian elimination 17
Newton's method 1669

computer algebra

algorithm design
and software implementations for exact computations with mathematical objects

Gaussian elimination 17
Newton's method 1669

computer algebra

algorithm design
and software implementations for exact computations with mathematical objects

Gaussian elimination 179
Newton's method 1669

computer algebra

algorithm design
and software implementations
for exact computations with mathematical objects

Karatsuba '62

Gaussian elimination 17
Newton's method 1669

computer algebra

algorithm design
and software implementations for exact computations with mathematical objects

\square	Strassen '69
\square	\square
Symiy	

Principal Discoveries of Efficient Methods of Computing the DFT				
Researcher(s)		Sequence Lengths	Number of DFT Values	Application
C. F. Gauss [10]	1805	Any composite integer	All	Interpolation of orbits of celestial bodies
F. Carlini [28]	1828	12	-	Harmonic analysis of barometric pressure
A. Smith [25]	1846	4,8,16,32	5 or 9	Correcting deviations in compasses on ships
J. D. Everett [23]	1860	12	5	Modeling underground temperature deviations
C. Runge [7]	1903	$2^{n k}$	All	Harmonic analysis of functions
K. Stumpff [16]	1939	$2^{n} k, 3^{n} k$	All	Harmonic analysis of functions
Danielson and Lanczos [5]	1942	2^{n}	All	X -ray diffraction in crystals
L. H. Thomas [13]	1948	Any integer with relatively prime factors	All	Harmonic analysis of functions
I. J. Good [3]	1958	Any integer with relatively prime factors	All	Harmonic analysis of functions
Cooley and Tukey [1]	1965	Any composite integer	All	Harmonic analysis of functions
S. Winograd [14]	1976	Any integer with relatively prime factors	All	Use of complexity theory for harmonic analysis

XXth-XXIst centuries : digital data \& interconnected networks integrity - confidentiality
discrete structures: exact and intensive computations

XXth-XXIst centuries: digital data \& interconnected networks integrity - confidentiality
discrete structures: exact and intensive computations

- matrices of large size, with sparsity or structure
- polynomials and polynomial matrices in one variable
- polynomials in several variables
goal of computer algebra
fast algorithms : complexity \& efficient implementations
reduce to efficient building blocks
- MatMul: matrix multiplication
- PolMul: polynomial multiplication

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption, ...
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$
field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\boldsymbol{f}(\mathrm{x})\rangle$ rational numbers \mathbb{Q}

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
 - low execution time

low memory usage, power consumption,

$$
\begin{aligned}
& \text { prime field } \mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathfrak{p} \mathbb{Z} \\
& \text { field extension } \mathbb{F}_{\mathfrak{p}}[x] /\langle\mathfrak{f}(x)\rangle \\
& \text { rational numbers } \mathbb{Q}
\end{aligned}
$$

algebraic complexity bounds
\rightsquigarrow count number of operations in \mathbb{K}
16 standard complexity model for algebraic computations
16 accurate for finite fields $\mathbb{K}=\mathbb{F}_{\mathfrak{p}}$
© ignores coefficient growth, e.g. over $\mathbb{K}=\mathbb{Q}$

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption,
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$
field extension $\mathbb{F}_{\mathfrak{p}}[x] /\langle f(x)\rangle$ rational numbers \mathbb{Q}
practical performance
\rightsquigarrow measure software running time
this talk:
- working over $\mathbb{K}=\mathbb{F}_{p}$ with word-size prime p
- Intel Core i7-7600U @ 2.80 GHz , no multithreading

matrices: multiplication

$$
\mathbf{M}=\left[\begin{array}{cccc}
28 & 68 & 75 & 70 \\
38 & 25 & 75 & 55 \\
24 & 1 & 56 & 28
\end{array}\right] \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text { matrix over } \mathbb{K}\left(\text { here } \mathbb{F}_{97}\right)
$$

fundamental operations on $m \times m$ matrices:
-addition is "quadratic": $\mathrm{O}\left(\mathrm{m}^{2}\right)$ operations in \mathbb{K}

- naive multiplication is cubic: $\mathrm{O}\left(\mathrm{m}^{3}\right)$
[Strassen'69]
breakthrough: subcubic matrix multiplication

matrices: multiplication

$\mathbf{M}=\left[\begin{array}{cccc}28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28\end{array}\right] \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4$ matrix over \mathbb{K} (here \mathbb{F}_{97})
fundamental operations on $m \times m$ matrices:

- addition is "quadratic": $\mathrm{O}\left(\mathrm{m}^{2}\right)$ operations in \mathbb{K}
- naive multiplication is cubic: $\mathrm{O}\left(\mathrm{m}^{3}\right)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

- complexity exponent $\omega \approx 2.81$ - i.e. $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ complexity
- used in practice for $m \geqslant$ a few 100 s in NTL, FLINT, fflas-ffpack...
- best-known exponent $\omega \approx 2.373$
[Le Gall'14] [Alman-Williams'20]
- "galactic" algorithms: strongly impractical as such

matrices: main computational problems

reductions of most problems to matrix multiplication

not closed: open:

matrices: main computational problems

reductions of most problems to matrix multiplication

not closed: open:

matrices: main computational problems

reductions of most problems to matrix multiplication

not closed: is Frobenius normal form in $\mathrm{O}(\mathrm{MatMul})$? open:

matrices: main computational problems

reductions of most problems to matrix multiplication

not closed: is Frobenius normal form in $\mathrm{O}(\mathrm{MatMul})$? open:

matrices: main computational problems

reductions of most problems to matrix multiplication

not closed: is Frobenius normal form in $\mathrm{O}(\mathrm{MatMul})$? open: is linear system solving as hard as multiplication?

bonus: some notes

biblio: https://www.sciencedirect.com/science/article/pii/S0747717113000631

- explicit reductions between inversion \& MatMul \& variants of Gaussian elimination / echelon form computation
- constants in the $\mathrm{O}(\cdot)$ complexities when using classical matrix multiplication $(\omega=3)$ or Strassen's algorithm
"not closed": it is open, but
- there is a randomized algorithm for Frobenius form computation which has complexity O (MatMul)
\rightsquigarrow http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf
- recent developments for the characteristic polynomial gives new insight concerning core operations typically used in Frobenius form algorithms

polynomials: multiplication

$p=87 x^{7}+74 x^{6}+60 x^{5}+46 x^{4}+16 x^{3}+41 x^{2}+86 x+69$
$p \in \mathbb{K}[x]_{<8} \quad \longrightarrow$ univariate polynomial in x of degree <8 over \mathbb{K}
fundamental operations on polynomials of degree $<\mathrm{d}$:

- addition and Horner's evaluation are linear: $\mathrm{O}(\mathrm{d})$
- naive multiplication is quadratic: $\mathrm{O}\left(\mathrm{d}^{2}\right)$

$$
\text { [Karatsuba'62] } \quad M(d) \in O\left(d^{1.58}\right)
$$

breakthrough: subquadratic polynomial multiplication

polynomials: multiplication

$$
p=87 x^{7}+74 x^{6}+60 x^{5}+46 x^{4}+16 x^{3}+41 x^{2}+86 x+69
$$

$p \in \mathbb{K}[x]_{<8} \quad \longrightarrow$ univariate polynomial in x of degree <8 over \mathbb{K}
fundamental operations on polynomials of degree $<\mathrm{d}$:

- addition and Horner's evaluation are linear: $\mathrm{O}(\mathrm{d})$
- naive multiplication is quadratic: $\mathrm{O}\left(\mathrm{d}^{2}\right)$

$$
\left[\text { Karatsuba'62] } \quad \mathrm{M}(\mathrm{~d}) \in \mathrm{O}\left(\mathrm{~d}^{1.58}\right)\right.
$$

breakthrough: subquadratic polynomial multiplication
[Schönhage-Strassen'71] [Nussbaumer'80] [Cantor-Kaltofen'91] $\quad \mathrm{M}(\mathrm{d}) \in \mathrm{O}(\mathrm{d} \log (\mathrm{d}) \log \log (\mathrm{d}))$
breakthrough: quasi-linear polynomial multiplication
research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

- change of representation by evaluation-interpolation
- used in practice as soon as $\mathrm{d} \approx 100$

$$
\begin{aligned}
& \text { note: } M(d) \in O(d \log (d)) \\
& \text { if provided a "good" root of unity }
\end{aligned}
$$

-FFT techniques using (virtual) roots of unity

polynomials: main computational problems

most problems have quasi-linear complexity
thanks to reductions to PolMul

- addition $\mathrm{f}+\mathrm{g}$, multiplication $\mathrm{f} * \mathrm{~g}$
- division with remainder $\mathrm{f}=\mathrm{qg}+\mathrm{r}$
- truncated inverse $f^{-1} \bmod x^{d}$
- extended GCD $\mathrm{fu}+\mathrm{g} v=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$
- multipoint eval. $f \mapsto f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right)$
- interpolation $\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}$
- Padé approximation $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod \mathrm{x}^{\mathrm{d}}$
- minpoly of linearly recurrent sequence

polynomials: main computational problems

most problems have quasi-linear complexity
thanks to reductions to PolMul
$O(M(d))$

- addition $\mathrm{f}+\mathrm{g}$, multiplication $\mathrm{f} * \mathrm{~g}$
- division with remainder $f=q g+r$
- truncated inverse $f^{-1} \bmod x^{d}$
- extended GCD $\mathrm{fu}+\mathrm{g} v=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$
- multipoint eval. $f \mapsto f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right)$
- interpolation $\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}$
- Padé approximation $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod \mathrm{x}^{\mathrm{d}}$
- minpoly of linearly recurrent sequence

polynomials: main computational problems

most problems have quasi-linear complexity
thanks to reductions to PolMul
$O(M(d))$
$\mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

- addition $\mathrm{f}+\mathrm{g}$, multiplication $\mathrm{f} * \mathrm{~g}$
- division with remainder $f=q g+r$
- truncated inverse $f^{-1} \bmod x^{d}$
- extended GCD $f u+g v=\operatorname{gcd}(f, g)$
- multipoint eval. $f \mapsto f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right)$
- interpolation $\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}$
- Padé approximation $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod \chi^{\mathrm{d}}$
- minpoly of linearly recurrent sequence

polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

$O(M(d))$
$\mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

- addition $\mathrm{f}+\mathrm{g}$, multiplication $\mathrm{f} * \mathrm{~g}$
- division with remainder $f=q g+r$
- truncated inverse $f^{-1} \bmod x^{d}$
- extended GCD $\mathrm{fu}+\mathrm{g} v=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$
- multipoint eval. $\mathrm{f} \mapsto \mathrm{f}\left(\alpha_{1}\right), \ldots, f\left(\alpha_{\mathrm{d}}\right)$
- interpolation $\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}$
- Padé approximation $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod \mathrm{x}^{\mathrm{d}}$
- minpoly of linearly recurrent sequence

bonus: some notes

interpolation and multipoint eval. in $\mathrm{O}(\mathrm{PolMul})$ "not closed":

- remains open for an arbitrary set of points, with no assumption, but:
- by design, solved for FFT points (powers of some root of unity)
- more generally, solved for points forming a geometric sequence https://www.sciencedirect.com/science/article/pii/S0885064X05000026
- in many applications of interpolation/evaluation, one can choose the points, in which case O (PolMul) is feasible
polynomial multiplication in $\mathrm{O}(\mathrm{d} \log (\mathrm{d}))$ "not closed":
- remains open over an arbitrary field, concerning algebraic complexity
- solved when the field possesses suitable roots of unity for FFT
- method of choice in practice (using several primes and CRT if needed) when working over prime finite fields $\mathbb{Z} / \mathrm{p} \mathbb{Z}$
- recent progress in the bit complexity model
https://www.sciencedirect.com/science/article/pii/S0885064X19300378 https://dl.acm.org/doi/abs/10.1145/3505584
sage: M. degree matrix (shifts $=[-1,2]$, row wise $=$ False
$\left[\begin{array}{lll}{[0} & -2 & -1\end{array}\right]$
[5
hermite_form(include_zero_rows=True, transformation=False)
Return the Hermite form of this matrix.
The Hermite form is also normalized, i.e., the pivot polynomials are monic.
INPUT:
- include_zero_rows - boolean (default: True); if False, the zero rows in the output1 deleted
- transformation - boolean (default: False); if True, return the transformation mat:

OUTPUT:

VecLong rem_order(order);
// tindices of columns/orders that remain to be dealt with Veclong rem_index (cdim);
std::iota(rem_index,begin(), ren_index,end(), 0);
// all along the algorthm, shift = shifted row degrees of approximant // (inttially, input shift $=$ shifted row degree of the identity matrix)

```
Witte(not remorder.enpty:\)
```

र
/** Invariant:

* - appbas is shift-ordered weak Popoy approximant basts for
* (pmat, reached_order) where doneorder is the tuple such that
* -->reached_order[j] + rem_order[j] == order[j] for $]$ appearting
* \rightarrow reached_order[j] $==$ order[j] for j not appearing in rem index * - shift $==$ the "input shift"-row degree of appbas

matrices
 software
 polynomials

```
sage: M.<x> = GF(7) []
sage: A = natrix(M, 2, 3, lx, 1, 2`x, x, 1+x, 21)
sage: A hermite form()
[ [\begin{array}{cccc}{x}&{1}&{2*x]}\end{array}]
x 5*x + 2]
sage: A.hermite form(transformation=True)
    x llllllllllllllll
sage: A}=\mathrm{ natrix(M, 2, 3, 7x, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite form(transformation=True, include zero rows=False)
(5 x 12*x], %% 41)
sage: H,U=A.hermite_forn(transformation=True, include_zero_rows=True); H,U
[ x 1 2*x] [04]
[ 0}0000],[\begin{array}{ll}{5}&{1]}
sage: U* A == H
True
sage: H,U = A.hermite_forn(transformation=True, include_zero_rows=False)
sage: U' A
| x 1 2*x]
sage: U-A == H
True
```


See also: is hermite()

is_hermite(row_wise $=$ True, lower_echelon=False, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in Hermite form.

```
long deg = order[rem_index[j]] - rem_order[j];
```

If record the coefticients of degree deg of the column 3 of residual
// also keep track of which of these are nonzero,
// and among the nonzero ones, which is the first with smallest shift
Vec<zz_p> const_residual;
const_residual. Setlength(rdin);
Veclong indices_nonzero;
long piv $=-1$;
for (long $\mathrm{i}=0$; $\mathrm{i}<\operatorname{rdim} ;+\mathrm{i}$)
[
const_residual[i] = coeff(residual[i][j],deg);
if (const_residual[i$]!=0$)
\{
tndtces_nonzero.push_back(i);
if (piv<e || shift[i] < shift[piv])
$p t v=t ;$
\}
\}
// tf indices_nonzero is empty, const_restidual is already zero, there
if (not indices_nonzero, empty())
[
$7 /$ update alt. rows of appbas and residual in indices nonzero exce 13
open-source mathematics software system 5들

Python/Cython
high-performance exact linear algebra LinBox - fflas-ffpack $\quad C / C++$
high-performance polynomials (and more) NTL \& FLINT

C/C++

Veclong rem_order(order)
VecLong rem index(cdim); std::iota(rem_index.begin(), ren_index.end(), 0);
whtle (not rem_order.empty())
Tnvartant:

- appbas ts a shift-ordered weak Popov approximant basts for
(pmat, reached_order) where doneorder ts the tuple such that
->reached_order[j]

matrices
 software
 polynomials

open-source mathematics software system
5ロㄹ Python/Cython
high-performance exact linear algebra

$$
\text { LinBox - fflas-ffpack } \quad C / C++
$$

high-performance polynomials (and more) NTL \& FLINT
$C / C++$

- choice of algorithms
- data structures and storage
- cache efficiency
- SIMD vectorization instructions
- multithreading, GPU programming

matrices
 software
 polynomials

[^0]Long deg = order[rem_index[j]] - rem_order[j];
// record the coefficients of degree deg of the co
// also keep track of which of these are nonzero,
// and among the nonzero ones, which is the first
Vecezz_p> const, residual;
const_residual. SetLength(rdim);
VecLong indices_nonzero;
long ptv $=-1$;
for (long $\mathrm{i}=0$; $\mathrm{i}<$ rdim; ++i)
[const_residual[$[\mathrm{i}]=$ coeff(residual[[i][j], deg);
if (const residual[$i]!=0$)
indices_nonzero.push_back(i);
if (piv<0 || shift[i] < shift[piv])
open-source mathematics software system
5ロㄹ Python/Cython
high-performance exact linear algebra

$$
\text { LinBox - fflas-ffpack } \quad C / C++
$$

high-performance polynomials (and more) NTL \& FLINT
$C / C++$

- choice of algorithms
- data structures and storage
- cache efficiency
- SIMD vectorization instructions
- multithreading, GPU programming

matrices
 software
 polynomials

what you can compute in about 1 second with fflas-ffpack with NTL

-PLUQ $\quad \mathrm{m}=3800 \quad 1.00$ s

- LinSys $\quad \mathrm{m}=3800$ 1.00s
- MatMul $\quad m=3000 \quad 0.97 \mathrm{~s}$
- Inverse $\quad \mathrm{m}=2800$ 1.01s
- CharPoly m=2000 1.09s

- PolMul	$d=7 \times 10^{6}$	1.03 s
- Division	$d=4 \times 10^{6}$	0.96 s
- XGCD	$d=2 \times 10^{5}$	0.99 s
- MinPoly	$d=2 \times 10^{5}$	1.10 s
- MPeval	$d=1 \times 10^{4}$	1.01 s

outline

computer algebra

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials

Reed-Solomon decoding
polynomial matrices
efficient list decoding

outline

computer algebra

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- context and unique decoding problem
- key equations and how to solve them
- correcting more errors?
polynomial matrices
efficient list decoding

goal:

reliable data transmission over unreliable communication channel modern development pioneered by Hamming (1940s), Shannon (1948)

strategy:

add redundancy to the message add redundancy to the message add redundancy to the message

encoding: adding redundancy

all code words
$\left(c_{1}, \ldots, c_{n}\right)$

- = code word
- = other words

Reed-Solomon codes (1960):

polynomials of degree $\leqslant k$
$w(x)=w_{0}+w_{1} x+\cdots+w_{k} x^{k}$
encoding
their evaluations at $\alpha_{1}, \ldots, \alpha_{n}$ $\left(w\left(\alpha_{1}\right), \ldots, w\left(\alpha_{n}\right)\right)$

transmission over unreliable channel

polynomial $w(x)$

of degree $\leqslant k$$\xrightarrow{\text { encoding }}$\begin{tabular}{c}
code word

$\left(w\left(\alpha_{1}\right), \ldots, w\left(\alpha_{n}\right)\right)$

 -

noisy

channel

\quad

received word

$\left(\beta_{1}, \ldots, \beta_{n}\right)$
\end{tabular}

noise \Rightarrow transmission errors:

- number of errors $\leqslant e$, meaning $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e \quad$ (Hamming distance)
- possible received words $=$ balls of radius e centered on the code words

unique decoding

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$
. $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ encoding points

- $\left(\beta_{1}, \ldots, \beta_{n}\right)=$ received word
$n-e=$ agreement

well-defined:

. existence of w ?
. uniqueness of w ?

unique decoding

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$
. $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ encoding points

- $\left(\beta_{1}, \ldots, \beta_{n}\right)=$ received word
$n-e=$ agreement

well-defined:

. existence of w ?
. uniqueness of w ?

$$
\begin{aligned}
& n=5, k=4 \\
& e=0: \text { Lagrange interpolation } \\
& e=1: \text { no error detection! }
\end{aligned}
$$

unique decoding

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$
. $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ encoding points

- $\left(\beta_{1}, \ldots, \beta_{n}\right)=$ received word
$n-e=$ agreement

well-defined:

. existence of w ?
. uniqueness of w ?
$n=5, k=3$
$e=0$: Lagrange interpolant exists!
$e=1$: up to 5 possible solutions...
\rightarrow error is detected, not corrected

unique decoding

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$
. $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ encoding points

- $\left(\beta_{1}, \ldots, \beta_{n}\right)=$ received word
. $n-e=$ agreement

well-defined:

. existence of w ?
. uniqueness of w ?
$n=5, k=3$
$e=0$: Lagrange interpolant exists!
$e=1$: up to 5 possible solutions...
\rightarrow error is detected, not corrected

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$
. $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ encoding points

- $\left(\beta_{1}, \ldots, \beta_{n}\right)=$ received word
. $\mathrm{n}-\mathrm{e}=$ agreement

well-defined:

. existence of w ? by construction
. uniqueness of w ? a priori \boldsymbol{q}. .. yet, guaranteed if no overlap between the balls of possible received words
$n=5, k=3$
$e=0$: Lagrange interpolant exists!
$e=1$: up to 5 possible solutions...
\rightarrow error is detected, not corrected

unique decoding

- = code word
- = received word

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$
. $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ encoding points

- $\left(\beta_{1}, \ldots, \beta_{n}\right)=$ received word
$n-e=$ agreement

well-defined:

. existence of w ? by construction
. uniqueness of w ? a priori $\boldsymbol{\varphi}$... yet, guaranteed if no overlap between the balls of possible received words

unique decoding

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$

well-defined:

. existence of w ? by construction . uniqueness of w ? a priori \boldsymbol{q}. . . yet, guaranteed if no overlap between the balls of possible received words
unique decoding bound:

$$
2 e<\mathrm{d}_{\min }
$$

- = code word

$$
\begin{aligned}
& \left(\alpha_{1}, \ldots, \alpha_{n}\right)=\text { encoding points } \\
& \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\text { received word } \\
& \cdot n-e=\text { agreement }
\end{aligned}
$$

$e<\frac{n-k}{2}$

unique decoding

decoding:

find the polynomial $w(x)$ of degree $\leqslant k$ such that $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e$

$$
\begin{aligned}
& \left(\alpha_{1}, \ldots, \alpha_{n}\right)=\text { encoding points } \\
& \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\text { received word } \\
& \cdot n-e=\text { agreement }
\end{aligned}
$$

well-defined:

. existence of w ? by construction . uniqueness of w ? a priori \boldsymbol{q}... yet, guaranteed if no overlap between the balls of possible received words
unique decoding bound:

$$
2 e<\mathrm{d}_{\min }
$$

bonus: minimum distance for Reed-Solomon codes

- for $v \neq w$ polynomials of degree $\leqslant k$ over the base field \mathbb{K}, $\left(v\left(\alpha_{1}\right), \ldots, v\left(\alpha_{n}\right)\right)$ and $\left(w\left(\alpha_{1}\right), \ldots, w\left(\alpha_{n}\right)\right)$ agree at $\leqslant \mathrm{k}$ positions \Rightarrow distance at least $n-k$ between two code words
- for $v=0$ and $w=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{k}\right)$, the code words are $(0, \ldots, 0)$ and $\left(0, \ldots, 0, w\left(\alpha_{k+1}\right), \ldots, w\left(\alpha_{n}\right)\right)$ \Rightarrow two code words at distance exactly $n-k$
\Longrightarrow minimum distance $d_{\text {min }}=n-k$
(for dimension reasons, this is the best one can hope for)
in this case, unique decoding condition: $e<\frac{n-k}{2}$

summary: unique decoding problem

input:

$-\alpha_{1}, \ldots, \alpha_{n}$ the n distinct evaluation points in \mathbb{K},
$\rightarrow k$ the degree bound, e the error-correction radius,

- $\left(\beta_{1}, \ldots, \beta_{n}\right)$ the received word in \mathbb{K}^{n}
unique decoding requirement: $e<\frac{n-k}{2}$
output: the polynomial $w(x)$ in $\mathbb{K}[x]$ such that

$$
\operatorname{deg}(w) \leqslant k \quad \text { and } \quad \#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e
$$

summary: unique decoding problem

input:

$-\alpha_{1}, \ldots, \alpha_{n}$ the n distinct evaluation points in \mathbb{K},

- k the degree bound, e the error-correction radius,
- $\left(\beta_{1}, \ldots, \beta_{n}\right)$ the received word in \mathbb{K}^{n}
unique decoding requirement: $e<\frac{n-k}{2}$
output: the polynomial $w(x)$ in $\mathbb{K}[x]$ such that

$$
\operatorname{deg}(w) \leqslant k \quad \text { and } \quad \#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e
$$

multiple viewpoints + fruitful interactions: [coding theory]/[computer algebra]

- linear recurrence generator - Toeplitz linear system - Padé approximation
[Berlekamp'68] [Massey'69]
[Brent-Gustavson-Yun'80] [Beckermann-Labahn'94]
- modified extended GCD - rational function reconstruction
[Sugiyama-Kasahara-Hirasawa-Namekawa'75] [Welch-Berlekamp'86]
[Knuth'70] [Schönhage'71] [Moenck'73] [Brent-Gustavson-Yun'80]
- Vandermonde-like linear system - vector rational interpolation
[Olshevsky-Shokrollahi'99] [Kötter-Vardy 2003]
[Morf'74] [Bitmead-Anderson'80] [Pan'90] [van Barel-Bultheel'92] [Beckermann-Labahn'97]
one target complexity: $\mathrm{O}\left(n^{3}\right) \rightarrow \mathrm{O}\left(n^{2}\right) \rightarrow \mathrm{O}(M(n) \log (n))$

encoding/decoding efficiency: basic remarks

encoding $\quad w(x) \mapsto\left(w\left(\alpha_{1}\right), \ldots, w\left(\alpha_{n}\right)\right)$

- naive: n times Horner evaluation $O(k)$
- fast: $\frac{n}{k}$ times k-point evaluation $O\left(\frac{n}{k} M(k) \log (k)\right) \subseteq O(M(n) \log (n))$ points in geometric sequence \Rightarrow no log factor [Aho-Steiglitz-Ullman'75] [Bostan-Schost 2005]

encoding/decoding efficiency: basic remarks

encoding $\quad w(x) \mapsto\left(w\left(\alpha_{1}\right), \ldots, w\left(\alpha_{n}\right)\right)$

- naive: n times Horner evaluation $O(k)$
- fast: $\frac{n}{k}$ times k-point evaluation $\quad O\left(\frac{n}{k} M(k) \log (k)\right) \subseteq O(M(n) \log (n))$ points in geometric sequence \Rightarrow no log factor [Aho-Steiglitz-Ullman'75] [Bostan-Schost 2005]

naive decoding

- infinitely lucky decoder: there was no error \rightsquigarrow Lagrange interpolation in $\mathrm{O}(\mathrm{M}(\mathrm{n}) \log (\mathrm{n}))$

- very lucky decoder: at most 1 error, unknown position \rightsquigarrow trial and error, worst case $\mathrm{O}(\mathrm{nM}(\mathrm{n}) \log (\mathrm{n}))$
- lucky decoder: at most 2 errors, unknown positions \rightsquigarrow trial and error, worst case $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{M}(\mathrm{n}) \log (\mathrm{n})\right) \quad \because: \dot{\text { i }}$
- ordinary decoder: at most e errors, unknown positions \rightsquigarrow life is tough, complexity exponential in e
next slides $=$ one can be both ordinary and

linear key equations and "rational interpolation" decoding

known interpolant $R(x)$
such that $R\left(\alpha_{i}\right)=\beta_{i}$

$$
\begin{aligned}
& \text { unknown error-locator } \\
& \begin{aligned}
\Lambda(x)=\prod_{i \mid \text { error }}\left(x-\alpha_{i}\right)
\end{aligned} \\
& \Rightarrow \operatorname{deg}(\Lambda) \leqslant e
\end{aligned}
$$

key equations: $\Lambda\left(\alpha_{i}\right) R\left(\alpha_{i}\right)=\Lambda\left(\alpha_{i}\right) w\left(\alpha_{i}\right)$ for $1 \leqslant i \leqslant n$
multivariate, non-linear, polynomial system: a priori difficult (n equations of degree 2 in the $k+1+e$ coefficients of w and Λ)

approach: linearization

introducing the new unknown $\mu=\Lambda w$ of degree $\leqslant k+e$

linear key equations and "rational interpolation" decoding

known interpolant $R(x)$
such that $R\left(\alpha_{i}\right)=\beta_{i}$
unknown error-locator

$$
\begin{array}{r}
\Lambda(x)=\prod_{i \mid \text { error }}\left(x-\alpha_{i}\right) \\
\quad \Rightarrow \operatorname{deg}(\Lambda) \leqslant e
\end{array}
$$

key equations: $\Lambda\left(\alpha_{i}\right) R\left(\alpha_{i}\right)=\Lambda\left(\alpha_{i}\right) w\left(\alpha_{i}\right)$ for $1 \leqslant i \leqslant n$
multivariate, non-linear, polynomial system: a priori difficult (n equations of degree 2 in the $k+1+e$ coefficients of w and Λ)

approach: linearization

introducing the new unknown $\mu=\Lambda w$ of degree $\leqslant k+e$

linear system with n equations and $k+1+2 e$ unknowns $(k+1+2 e \leqslant n)$:

- Gaussian elimination $\mathrm{O}\left(\mathrm{n}^{3}\right) \rightarrow \mathrm{O}\left(\mathrm{n}^{\omega}\right) \quad$ [Bunch-Hopcroft'74] [Ibarra-Moran-Hui'82]
- $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow \mathrm{O}(\mathrm{M}(\mathrm{n}) \log (\mathrm{n}))$ exploiting the Vandermonde-like structure
[Morf'74] [Bitmead-Anderson'80] [Pan'90] [Olshevsky-Shokrollahi'99]
- $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow \mathrm{O}(\mathrm{M}(\mathrm{n}) \log (\mathrm{n}))$ via vector rational interpolation
[Beckermann'92] [van Barel-Bultheel'92] [Beckermann-Labahn'94,'97] [Kötter-Vardy 2003]

univariate key equation and "rational reconstruction" decoding

known interpolant $R(x)$
such that $R\left(\alpha_{i}\right)=\beta_{i}$
unknown error-locator

$$
\begin{array}{r}
\Lambda(x)=\prod_{i \mid \operatorname{error}}\left(x-\alpha_{i}\right) \\
\operatorname{deg}(\Lambda) \leqslant e
\end{array}
$$

unknown linearizer

$$
\begin{aligned}
\mu(x)= & \Lambda(x) w(x) \\
& \operatorname{deg}(\mu) \leqslant e+k
\end{aligned}
$$

$$
\Lambda\left(\alpha_{i}\right) R\left(\alpha_{i}\right)=\underset{\widehat{\Downarrow}}{\mu}\left(\alpha_{i}\right) \text { for } 1 \leqslant i \leqslant n
$$

$$
\Lambda(x) R(x)=\mu(x) \bmod \left(x-\alpha_{i}\right) \text { for } 1 \leqslant i \leqslant n
$$

[Welch-Berlekamp'86]

$$
G(x)=\prod_{1 \leqslant i \leqslant n}\left(x-\alpha_{i}\right) \text {, degree } n
$$

univariate key equation: $\Lambda(x) R(x)=\mu(x) \bmod G(x)$

[^1]
univariate key equation and "rational reconstruction" decoding

known interpolant $R(x)$
such that $R\left(\alpha_{i}\right)=\beta_{i}$

> unknown error-locator

$$
\begin{array}{r}
\Lambda(x)=\prod_{i \mid \operatorname{error}}\left(x-\alpha_{i}\right) \\
\operatorname{deg}(\Lambda) \leqslant e
\end{array}
$$

unknown linearizer

$$
\mu(x)=\Lambda(x) w(x)
$$

$$
\operatorname{deg}(\mu) \leqslant e+k
$$

$$
\Lambda\left(\alpha_{i}\right) R\left(\alpha_{i}\right)=\mu\left(\alpha_{i}\right) \text { for } 1 \leqslant i \leqslant n
$$

$$
\Lambda(x) R(x)=\mu(x) \bmod \left(x-\alpha_{i}\right) \text { for } 1 \leqslant i \leqslant n
$$

[Welch-Berlekamp'86]

$$
G(x)=\prod_{1 \leqslant i \leqslant n}\left(x-\alpha_{i}\right) \text {, degree } n
$$

univariate key equation: $\Lambda(x) R(x)=\mu(x) \bmod G(x)$

approach: rational reconstruction
 $$
\left\{\begin{array}{l} \wedge R=\mu \bmod G \\ \operatorname{deg}(\Lambda) \leqslant e, \quad \operatorname{deg}(\mu)<n-e, \quad \Lambda \text { monic } \end{array}\right.
$$
 ```note: e+k<n-e```

- unique rational solution $\frac{\mu}{\Lambda}$, which has to be $\frac{\Lambda w}{\Lambda}=w$
- solved by XGCD algorithm stopped at suitable iteration $O\left(n^{2}\right)$
[Sugiyama-Kasahara-Hirasawa-Namekawa'75] [Modern Computer Algebra, v.z.Gathen-Gerhard, 2003]
- fast XGCD algorithms can be adapted $\rightarrow O(M(n) \log (n))$ [Knuth'70] [Schönhage'71] [Moenck'73] [Gustavson-Yun'79][Brent-Gustavson-Yun'80]

classical key equation and "Padé approximation" decoding

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Lambda R=\mu \bmod G=\mu+\nu G \text { with } \operatorname{deg}(\Lambda) \leqslant e, \Lambda \text { monic } \\
\operatorname{deg}(\mu) \leqslant \operatorname{deg}(\Lambda)+k, \quad \operatorname{deg}(\nu) \leqslant \operatorname{deg}(\Lambda)-1
\end{array}\right. \\
& \text { reverse w.r.t. } x^{n-1+\operatorname{deg}(\Lambda)} \\
& \left\{\bar{\Lambda} \overline{\mathrm{R}}=\bar{\mu} x^{n-k-1}+\bar{v} \overline{\mathrm{G}}=\overline{\mathrm{v}} \overline{\mathrm{G}} \bmod x^{n-k-1} \quad \text { with } \operatorname{deg}(\bar{\Lambda}) \leqslant e, \bar{\Lambda}(0)=1\right. \\
& \operatorname{deg}(\bar{\mu}) \leqslant \operatorname{deg}(\bar{\Lambda})+k, \quad \operatorname{deg}(\bar{v}) \leqslant \operatorname{deg}(\bar{\Lambda})-1 \\
& \downarrow \mathrm{~S}=\overline{\mathrm{R}} / \overline{\mathrm{G}} \bmod x^{\mathrm{n}-\mathrm{k}-1} \quad \text { (Newton iteration) } \\
& \text { approach: linear recurrence } \\
& \bar{\Lambda} S=\bar{v} \bmod x^{n-k-1} \\
& \operatorname{deg}(\bar{\Lambda}) \leqslant e, \quad \operatorname{deg}(\bar{v})<e, \quad \bar{\Lambda}(0)=1
\end{aligned}
$$

classical key equation and "Padé approximation" decoding

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\begin{array}{l}
\Lambda R=\mu \bmod G=\mu+\nu G \\
\operatorname{deg}(\mu) \leqslant \operatorname{deg}(\Lambda)+k, \\
\operatorname{deg}(v) \leqslant \operatorname{deg}(\Lambda)-1
\end{array} \\
\\
\uparrow \text { reverse w.r.t. } x^{n-1+\operatorname{deg}(\Lambda)}
\end{array}\right. \\
\left\{\begin{array}{l}
\bar{\Lambda} \bar{R}=\bar{\mu} x^{n-k-1}+\bar{v} \bar{G}=\bar{v} \bar{G} \bmod x^{n-k-1} \quad \text { with } \operatorname{deg}(\bar{\Lambda}) \leqslant e, \bar{\Lambda}(0)=1 \\
\operatorname{deg}(\bar{\mu}) \leqslant \operatorname{deg}(\bar{\Lambda})+k, \operatorname{deg}(\bar{v}) \leqslant \operatorname{deg}(\bar{\Lambda})-1
\end{array}\right. \\
\\
\downarrow S=\bar{R} / \bar{G} \bmod x^{n-k-1} \quad \text { (Newton iteration) }
\end{array}\right\}
$$

- unique rational solution $\bar{v} / \bar{\Lambda}$, which yields Λ
- coefficients of S : linearly recurrent sequence generated by $\bar{\Lambda}$
\rightsquigarrow specific algorithms in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ [Berlekamp'68] [Massey'69]
\rightsquigarrow in fact equivalent to the XGCD approach $O\left(n^{2}\right) \rightarrow O(M(n) \log (n))$
[Sugiyama et al.'75] [Brent-Gustavson-Yun'80] [Dornstetter'84]
- find $\bar{\Lambda}$ by homogeneous Toeplitz linear system $\quad O\left(n^{2}\right) \rightarrow O(M(n) \log (n))$
- use direct Padé approximation $\quad O\left(n^{2}\right) \rightarrow O(M(n) \log (n))$ [Padé 1894] [Sergeyev'86][van Barel-Bultheel'91][Beckermann-Labahn'94]

non-unique decoding

how to decode more errors?

. transmission with $\leqslant e$ errors
. where $e \geqslant d_{\text {min }} / 2$

- = code word
- = received word

how to decode more errors?

. transmission with $\leqslant e$ errors
. where $e \geqslant d_{\text {min }} / 2$

well-defined?

. existence of w : 16 , by construction
. uniqueness of w : \boldsymbol{q}, possibly several code words at the same distance
. closest code word not necessarily the sent code word!

non-unique decoding

how to decode more errors?

. transmission with $\leqslant e$ errors
. where $e \geqslant d_{\text {min }} / 2$

well-defined?

. existence of w : 16 , by construction
. uniqueness of w : \boldsymbol{q}, possibly several code words at the same distance
. closest code word not necessarily the sent code word!

list-decoding:
 return a list of all code words at distance $\leqslant e$

[Elias'50s]

list decoding problem

for convenience, we use the agreement parameter $\mathrm{t}=\mathrm{n}-\mathrm{e}$: $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e \quad \Leftrightarrow \quad \#\left\{i \mid w\left(\alpha_{i}\right)=\beta_{i}\right\} \geqslant t$
input:
$-\alpha_{1}, \ldots, \alpha_{n}$ the n distinct evaluation points in \mathbb{K},

- k the degree bound, $t=n-e$ the agreement,
- $\left(\beta_{1}, \ldots, \beta_{n}\right)$ the received word in \mathbb{K}^{n}
list decoding requirement: $\mathrm{t}^{2}>\mathrm{kn}$ [Guruswami-Sudan'99]
output: all polynomials $\mathcal{w}(x)$ in $\mathbb{K}[x]$ such that $\operatorname{deg}(w) \leqslant k \quad$ and $\quad \#\left\{i \mid w\left(\alpha_{i}\right)=\beta_{i}\right\} \geqslant t$

outline

computer algebra

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- context and unique decoding problem
- key equations and how to solve them
- correcting more errors?
polynomial matrices
efficient list decoding

outline

computer algebra

Reed-Solomon decoding
polynomial matrices

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- context and unique decoding problem
- key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- core algorithms \& shifted normal forms
- fast divide and conquer interpolation

introduction to vector interpolation

\Downarrow earlier in the talk \Downarrow
$O(M(d))$
$\mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

- addition $\mathrm{f}+\mathrm{g}$, multiplication $\mathrm{f} * \mathrm{~g}$
- division with remainder $f=q g+r$
- truncated inverse $f^{-1} \bmod x^{d}$
- extended GCD $\mathrm{fu}+\mathrm{g} v=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$
- multipoint eval. $\mathrm{f} \mapsto \mathrm{f}\left(\alpha_{1}\right), \ldots, f\left(\alpha_{\mathrm{d}}\right)$
- interpolation $f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right) \mapsto f$
- Padé approximation $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod \mathrm{x}^{\mathrm{d}}$
- minpoly of linearly recurrent sequence
\Downarrow next in the talk \Downarrow

Padé approximation, sequence minpoly, extended GCD $\mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$ operations in \mathbb{K}

matrix versions of these problems
$\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$ operations in \mathbb{K}
or a tiny bit more for matrix-GCD

introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series $f(x)$ at precision d, given degree constraints $d_{1}, d_{2}>0$,
\rightarrow compute polynomials $(p(x), q(x))$ of degrees $<\left(d_{1}, d_{2}\right)$
and such that $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod x^{\mathrm{d}}$
strong links with linearly recurrent sequences

introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series $f(x)$ at precision d, given degree constraints $d_{1}, d_{2}>0$,
\rightarrow compute polynomials $(p(x), q(x))$ of degrees $<\left(d_{1}, d_{2}\right)$
and such that $f=\frac{p}{q} \bmod x^{d}$
strong links with linearly recurrent sequences

Cauchy interpolation:

given $G(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{K}[x]$,
for pairwise distinct $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$, given degree constraints $d_{1}, d_{2}>0$, \rightarrow compute polynomials $(\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}))$ of degrees $<\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$
and such that $f=\frac{p}{q} \bmod G(x)$

introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series $f(x)$ at precision d, given degree constraints $d_{1}, d_{2}>0$,
\rightarrow compute polynomials $(p(x), q(x))$ of degrees $<\left(d_{1}, d_{2}\right)$
and such that $f=\frac{p}{q} \bmod x^{d}$
strong links with linearly recurrent sequences

Cauchy interpolation:

given $\mathrm{G}(\mathrm{x})=\left(\mathrm{x}-\alpha_{1}\right) \cdots\left(x-\alpha_{\mathrm{d}}\right) \in \mathbb{K}[x]$,
for pairwise distinct $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$, given degree constraints $d_{1}, d_{2}>0$,
\rightarrow compute polynomials $(\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x}))$ of degrees $<\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$
and such that $f=\frac{p}{q} \bmod G(x)$

- degree constraints specified by the context
- usual choices have $\mathrm{d}_{1}+\mathrm{d}_{2} \approx \mathrm{~d}$ and existence of a solution

introduction to vector interpolation

approximation and structured linear system

$$
\begin{aligned}
& \mathbb{K}=\mathbb{F}_{7} \\
& f=2 x^{7}+2 x^{6}+5 x^{4}+2 x^{2}+4 \\
& d=8, d_{1}=3, d_{2}=6 \\
& \rightarrow \text { look for }(p, q) \text { of degree }<(3,6) \text { such that } f=\frac{p}{q} \bmod x^{8}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
\mathrm{q} & \mathrm{p}
\end{array}\right]\left[\begin{array}{c}
\mathrm{f} \\
-1
\end{array}\right] \quad=0 \bmod x^{8}
$$

introduction to vector interpolation

approximation and structured linear system

$$
\begin{aligned}
& \mathbb{K}=\mathbb{F}_{7} \\
& f=2 x^{7}+2 x^{6}+5 x^{4}+2 x^{2}+4 \\
& d=8, d_{1}=3, d_{2}=6 \\
& \rightarrow \text { look for }(p, q) \text { of degree }<(3,6) \text { such that } f=\frac{p}{q} \bmod x^{8}
\end{aligned}
$$

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
q & p
\end{array}\right]\left[\begin{array}{c}
f \\
-1
\end{array}\right]} \\
{\left[\begin{array}{lllllllll}
q_{0} & q_{1} & q_{2} & q_{3} & q_{4} & 1 & 1 & p_{0} & p_{1}
\end{array} p_{2}\right.}
\end{array}\right]\left[\begin{array}{cccccccc}
4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\
& 4 & 0 & 2 & 0 & 5 & 0 & 2 \\
& 4 & 0 & 2 & 0 & 5 & 0 \\
& & 4 & 0 & 2 & 0 & 5 \\
& & & 4 & 0 & 2 & 0 \\
-6 & & & & 4 & 0 & 2 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 6 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=0
$$

introduction to vector interpolation

approximation and structured linear system

$$
\begin{aligned}
& \mathbb{K}=\mathbb{F}_{7} \\
& f=2 x^{7}+2 x^{6}+5 x^{4}+2 x^{2}+4 \\
& d=8, d_{1}=3, d_{2}=6 \\
& \rightarrow \text { look for }(p, q) \text { of degree }<(3,6) \text { such that } f=\frac{p}{q} \bmod x^{8}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
q & p
\end{array}\right]\left[\begin{array}{c}
f \\
-1
\end{array}\right] \quad=0 \bmod x^{8}
$$

$$
\left[\begin{array}{llllll|lll}
q_{0} & q_{1} & q_{2} & q_{3} & q_{4} & 1 \mid p_{0} & p_{1} & p_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\
& 4 & 0 & 2 & 0 & 5 & 0 & 2 \\
& & 4 & 0 & 2 & 0 & 5 & 0 \\
& & & 4 & 0 & 2 & 0 & 5 \\
& & & 4 & 0 & 2 & 0 \\
-6 & & & & & & 4 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 \\
& & 0 & 0 & 0 & 0 & 0
\end{array}\right]=0
$$

Sur la généralisation des fractions continues algébriques;

Par M. H. Padé,

Docteur ès Sciences mathématiques, Professeur au lycée de Lille.
[1894, Journal de mathématiques pures et appliquées] INTRODUCTION.
M. Hermite s'est, dans un travail récemment paru ('), occupé de la généralisation des fractions continues algébriques. La question est de déterminer les polynomes $X_{1}, X_{2}, \ldots, X_{n}$, de degrés $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, qui satisfont à l'équation

$$
S_{1} X_{1}+S_{2} X_{2}+\ldots+S_{n} X_{n}=S x_{1}^{\mu_{1}+\mu_{2}+\ldots+\mu_{n}+n-1}
$$

$S_{1}, S_{2}, \ldots, S_{n}$ étant des séries entières données, et S une série également entière. Ou plutôt, il s'agit d'obtenir un algorithme qui permette le calcul de proche en proche de ces systèmes de n polynomes, et qui soit analogue à l'algorithme par lequel le numérateur et le dénominateur d'une réduite d'une fraction continue se déduisent des numérateurs et dénominateurs des réduites précédentes. D'élégantes considè-

introduction to vector interpolation

approximation and interpolation: the vector case

Hermite-Padé approximation

[Hermite 1893, Padé 1894]
input:

- polynomials $f_{1}, \ldots, f_{m} \in \mathbb{K}[x]$
- precision $d \in \mathbb{Z}_{>0}$
- degree bounds $d_{1}, \ldots, d_{m} \in \mathbb{Z}_{>0}$
output:
polynomials $p_{1}, \ldots, p_{m} \in \mathbb{K}[x]$ such that
- $p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod x^{d}$
- $\operatorname{deg}\left(p_{i}\right)<d_{i}$ for all i
(Padé approximation: particular case $m=2$ and $f_{2}=-1$)

introduction to vector interpolation

approximation and interpolation: the vector case

M-Padé approximation / vector rational interpolation

[Cauchy 1821, Mahler 1968]
input:

- polynomials $f_{1}, \ldots, f_{m} \in \mathbb{K}[x]$
- pairwise distinct points $\alpha_{1}, \ldots, \alpha_{\mathrm{d}} \in \mathbb{K}$
- degree bounds $d_{1}, \ldots, d_{m} \in \mathbb{Z}_{>0}$
output:
polynomials $p_{1}, \ldots, p_{m} \in \mathbb{K}[x]$ such that
- $p_{1}\left(\alpha_{i}\right) f_{1}\left(\alpha_{i}\right)+\cdots+p_{m}\left(\alpha_{i}\right) f_{m}\left(\alpha_{i}\right)=0$ for all $1 \leqslant i \leqslant d$
- $\operatorname{deg}\left(p_{i}\right)<d_{i}$ for all i
(rational interpolation: particular case $m=2$ and $f_{2}=-1$)

introduction to vector interpolation

approximation and interpolation: the vector case

in this talk: modular equation and fast algebraic algorithms

[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard 2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]
input:

- polynomials $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}} \in \mathbb{K}[x]$
- field elements $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$
- degree bounds $d_{1}, \ldots, d_{m} \in \mathbb{Z}_{>0}$
\rightsquigarrow not necessarily distinct
\rightsquigarrow general "shift" $\mathbf{s} \in \mathbb{Z}^{m}$
output:
polynomials $p_{1}, \ldots, p_{m} \in \mathbb{K}[x]$ such that
- $p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod \prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)$
- $\operatorname{deg}\left(p_{i}\right)<d_{i}$ for all i
\rightsquigarrow minimal s-row degree
(Hermite-Padé: $\alpha_{1}=\cdots=\alpha_{d}=0$; interpolation: pairwise distinct points)

introduction to vector interpolation

interpolation and structured linear system
application of vector rational interpolation:
given pairwise distinct points $\left\{\left(\alpha_{i}, \beta_{i}\right), 1 \leqslant i \leqslant 8\right\}$
$=\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\}$,
compute a bivariate polynomial $\mathrm{Q}(\mathrm{x}, \mathrm{y}) \in \mathbb{K}[\mathrm{x}, \mathrm{y}]$
such that $Q\left(\alpha_{i}, \beta_{i}\right)=0$ for $1 \leqslant i \leqslant 8$
$\left.\begin{array}{l}\mathrm{G}(\mathrm{x})=(x-24) \cdots(x-59) \\ \mathrm{R}(\mathrm{x})=\text { Lagrange interpolant }\end{array}\right\} \longrightarrow$ solutions $=$ ideal $\langle G(x), y-R(x)\rangle$
solutions of smaller x-degree: $Q(x, y)=Q_{0}(x)+Q_{1}(x) y+Q_{2}(x) y^{2}$

$$
\mathrm{Q}(x, \mathrm{R}(x))=\left[\begin{array}{lll}
\mathrm{Q}_{0} & \mathrm{Q}_{1} & \mathrm{Q}_{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
R \\
R^{2}
\end{array}\right]=0 \bmod G(x)
$$

- instance of univariate rational vector interpolation
- with a structured input equation (powers of $R \bmod G$)

introduction to vector interpolation

interpolation and structured linear system
application of vector rational interpolation:
given pairwise distinct points $\left\{\left(\alpha_{i}, \beta_{i}\right), 1 \leqslant i \leqslant 8\right\}$
$=\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\}$,
compute a bivariate polynomial $\mathrm{Q}(\mathrm{x}, \mathrm{y}) \in \mathbb{K}[\mathrm{x}, \mathrm{y}]$
such that $Q\left(\alpha_{i}, \beta_{i}\right)=0$ for $1 \leqslant i \leqslant 8$
add degree constraints: seek $Q(x, y)$ of the form $\mathrm{q}_{00}+\mathrm{q}_{01} x+\mathrm{q}_{02} \mathrm{x}^{2}+\mathrm{q}_{03} \mathrm{x}^{3}+\mathrm{q}_{04} \mathrm{x}^{4}+\left(\mathrm{q}_{10}+\mathrm{q}_{11} x+\mathrm{q}_{12} \mathrm{x}^{2}\right) \mathrm{y}+\mathrm{q}_{20} \mathrm{y}^{2}:$

- \mathbb{K}-linear system
- two levels of structure

$$
Q(x, y)=\left(2 x^{4}+56 x^{3}+42 x^{2}+48 x+15\right)+\left(72 x^{2}+12 x+30\right) y+y^{2}
$$

introduction to vector interpolation

polynomial matrices enter the arena
why polynomial matrices here?

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{M}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[x]^{m} \mid p_{1} f_{1}+\cdots+p_{\mathfrak{m}} f_{\mathfrak{m}}=0 \bmod G\right\} \\
\text { recall } G(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

introduction to vector interpolation

polynomial matrices enter the arena
why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{M}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[x]^{m} \mid p_{1} f_{1}+\cdots+p_{\mathfrak{m}} f_{m}=0 \bmod G\right\} \\
\text { recall } G(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

\mathcal{M} is a "free $\mathbb{K}[x]$-module of rank m ", meaning:

- stable under $\mathbb{K}[x]$-linear combinations
- admits a basis consisting of m elements
- basis $=\mathbb{K}[x]$-linear independence + generates all solutions

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{M}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[x]^{m} \mid p_{1} f_{1}+\cdots+p_{\mathfrak{m}} f_{m}=0 \bmod G\right\} \\
\text { recall } G(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

\mathcal{M} is a "free $\mathbb{K}[x]$-module of rank m ", meaning:

- stable under $\mathbb{K}[x]$-linear combinations
- admits a basis consisting of m elements
- basis $=\mathbb{K}[x]$-linear independence + generates all solutions
- $\mathcal{M} \subset \mathbb{K}[x]^{m} \Rightarrow \mathcal{M}$ has rank $\leqslant m$
- $G(x) \mathbb{K}[x]^{m} \subset \mathcal{M} \Rightarrow \mathcal{M}$ has rank $\geqslant m$
remark: solutions are not considered modulo G e.g. $(G, 0, \ldots, 0)$ is in \mathcal{M} and may appear in a basis

introduction to vector interpolation

polynomial matrices enter the arena

> why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{M}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[\chi]^{m} \mid p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod G\right\} \\
\text { recall } G(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

```
basis of solutions:
- square nonsingular matrix P in }\mathbb{K}[x\mp@subsup{]}{}{m\timesm
- each row of P}\mathrm{ is a solution
- any solution is a }\mathbb{K}[x]\mathrm{ -combination uP,u}\in\mathbb{K}[x]\mp@subsup{]}{}{1\timesm
```

i.e. \mathcal{M} is the $\mathbb{K}[x]$-row space of \mathbf{P}

introduction to vector interpolation

polynomial matrices enter the arena

> why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{M}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[\chi]^{m} \mid p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod G\right\} \\
\text { recall } G(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

```
basis of solutions:
- square nonsingular matrix P in }\mathbb{K}[x\mp@subsup{]}{}{m\timesm
- each row of P}\mathrm{ is a solution
- any solution is a }\mathbb{K}[x]\mathrm{ -combination uP, u}\in\mathbb{K}[x\mp@subsup{]}{}{1\timesm
```

i.e. \mathcal{M} is the $\mathbb{K}[x]$-row space of \mathbf{P}
fact: $\operatorname{det}(\mathbf{P})$ is a divisor of $G(x)$

introduction to vector interpolation

polynomial matrices enter the arena

> why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{M}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[\chi]^{m} \mid p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod G\right\} \\
\text { recall } G(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

```
basis of solutions:
- square nonsingular matrix P in }\mathbb{K}[x\mp@subsup{]}{}{m\timesm
- each row of P}\mathrm{ is a solution
- any solution is a }\mathbb{K}[x]\mathrm{ -combination uP,u}\in\mathbb{K}[x]\mp@subsup{]}{}{1\timesm
```

i.e. \mathcal{M} is the $\mathbb{K}[x]$-row space of \mathbf{P}

$$
\text { fact: } \operatorname{det}(\mathbf{P}) \text { is a divisor of } G(x)
$$

fact: any other basis is $\mathbf{U P}$ for $\mathbf{U} \in \mathbb{K}[x]^{m \times m}$ with $\operatorname{det}(\mathbf{U}) \in \mathbb{K} \backslash\{0\}$

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{M}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[\chi]^{m} \mid p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod G\right\} \\
\text { recall } G(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

```
basis of solutions:
-square nonsingular matrix P in }\mathbb{K}[x\mp@subsup{]}{}{m\timesm
- each row of P}\mathrm{ is a solution
- any solution is a }\mathbb{K}[x]\mathrm{ -combination uP,u}\in\mathbb{K}[x]\mp@subsup{]}{}{1\timesm
```

$$
\text { i.e. } \mathcal{M} \text { is the } \mathbb{K}[x] \text {-row space of } \mathbf{P}
$$

computing a basis of \mathcal{M} with "minimal degrees"

- has many more applications than a single small-degree solution
- is in most cases the fastest known strategy anyway(!)
\rightsquigarrow degree minimality ensured via shifted reduced forms

polynomial matrices: multiplication

$\mathbf{A}=\left[\begin{array}{ccc}3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\ 5 & 5 x^{2}+3 x+1 & 5 x+3 \\ 3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1\end{array}\right] \in \mathbb{K}[x]^{3 \times 3}$
3×3 matrix of degree 3 with entries in $\mathbb{K}[x]=\mathbb{F}_{7}[x]$
operations on $\mathbb{K}[x]_{<d}^{m \times m}$

- combination of matrix and polynomial computations
- addition in $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)$, naive multiplication in $\mathrm{O}\left(\mathrm{m}^{3} \mathrm{~d}^{2}\right)$
[Cantor-Kaltofen'91]
multiplication in $\mathrm{O}\left(m^{\omega} \mathrm{d} \log (\mathrm{d})+\mathrm{m}^{2} \mathrm{~d} \log (\mathrm{~d}) \log \log (\mathrm{d})\right)$

$$
\in \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \subset \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)
$$

2×2 matrices in XGCD, Padé approximation, Berlekamp-Massey, Toeplitz linear systems...
$\rightsquigarrow \mathrm{m} \times \mathrm{m}$ matrix versions of these problems

- some problems\&techniques shared with matrices over \mathbb{K}
- some problems\&techniques specific to entries in $\mathbb{K}[x]$

polynomial matrices: multiplication

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right] \in \mathbb{K}[x]^{3 \times 3} \begin{gathered}
\\
\begin{array}{c}
3 \times 3 \text { matrix of degree } 3 \\
\text { with entries in } \mathbb{K}[x]=\mathbb{F}_{7}[x]
\end{array}
\end{gathered}
$$

operations on $\mathbb{K}[x]_{<d}^{m \times m}$

- combination of matrix and polynomial computations
- addition in $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)$, naive multiplication in $\mathrm{O}\left(\mathrm{m}^{3} \mathrm{~d}^{2}\right)$
[Cantor-Kaltofen'91]
multiplication in $\mathrm{O}\left(m^{\omega} \mathrm{d} \log (\mathrm{d})+\mathrm{m}^{2} \mathrm{~d} \log (\mathrm{~d}) \log \log (\mathrm{d})\right)$

$$
\in \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \subset \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)
$$

applying univariate polynomial techniques directly:

- Newton truncated inversion, matrix-QuoRem
- inversion \& determinant by evaluation-interpolation
- vector rational approximation \& interpolation ??? applying matrix techniques directly: echelonization is exponential time

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d

$$
\begin{array}{ll}
\text { of degree d } \\
\text { of "average" degree } \frac{D}{m} & \rightarrow \mathrm{O}^{\sim}\left(m^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(m^{\omega} \frac{D}{m}\right)
\end{array}
$$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$
univariate specific operations
- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
-syzygies / modular equations
transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d

$$
\begin{array}{ll}
\text { of degree d } \\
\text { of "average" degree } \frac{D}{m} & \rightarrow \mathrm{O}^{\sim}\left(m^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(m^{\omega} \frac{D}{m}\right)
\end{array}
$$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$
univariate specific operations
- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
-syzygies / modular equations
transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d

$$
\begin{array}{ll}
\text { of degree d } \\
\text { of "average" degree } \frac{D}{m} & \rightarrow \mathrm{O}^{\sim}\left(m^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(m^{\omega} \frac{D}{m}\right)
\end{array}
$$

classical matrix operations univariate specific operations

- multiplication \rightarrow truncated inverse, QuoRem
- kernel, system solving
- rank, determinant
- inversion $\quad \mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$

transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
-diagonalization: Smith form

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d

$$
\begin{array}{ll}
\text { of degree } \mathrm{d} \\
\text { of "average" degree } \frac{D}{m} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{D}{m}\right)
\end{array}
$$

classical matrix operations

univariate specific operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$

transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
-diagonalization: Smith form

Hermite and Popov forms

working over $\mathbb{K}=\mathbb{Z} / 7 \mathbb{Z}$
$\mathbf{A}=\left[\begin{array}{ccc}3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\ 5 & 5 x^{2}+3 x+1 & 5 x+3 \\ 3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1\end{array}\right]$
using elementary row operations, transform \mathbf{A} into...

Hermite form $\mathbf{H}=\left[\begin{array}{ccc}x^{6}+6 x^{4}+x^{3}+x+4 & 0 & 0 \\ 5 x^{5}+5 x^{4}+6 x^{3}+2 x^{2}+6 x+3 & x & 0 \\ 3 x^{4}+5 x^{3}+4 x^{2}+6 x+1 & 5 & 1\end{array}\right]$

Popov form $\mathbf{P}=\left[\begin{array}{ccc}x^{3}+5 x^{2}+4 x+1 & 2 x+4 & 3 x+5 \\ 1 & x^{2}+2 x+3 & x+2 \\ 3 x+2 & 4 x & x^{2}\end{array}\right]$

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times \mathfrak{m}}$

elementary row transformations

Hermite form [Hermite, 1851]

- triangular
- column normalized
$\left[\begin{array}{llll}\mathbf{1 6} & & & \\ 15 & \mathbf{0} & & \\ 15 & & 0 & \\ 15 & & & 0\end{array}\right]\left[\begin{array}{llll}4 & & & \\ 3 & 7 & & \\ 1 & 5 & 3 & \\ 3 & 6 & 1 & 2\end{array}\right]$

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Popov form [Popov, 1972]

- minimal row degrees
- column normalized
invariant: $\mathrm{D}=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=4+7+3+2=7+1+2+6$
- average column degree is $\frac{D}{m}$
target cost: $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{m}}\right)$
- size of object is $m D+m^{2}=m^{2}\left(\frac{D}{m}+1\right)$

Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized
$\left[\begin{array}{llll}16 & & & \\ 15 & \mathbf{0} & & \\ 15 & & 0 & \\ 15 & & & 0\end{array}\right]\left[\begin{array}{llll}4 & & & \\ 3 & \mathbf{7} & & \\ 1 & 5 & \mathbf{3} & \\ 3 & 6 & 1 & 2\end{array}\right] \quad\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}7 & 0 & 1 & 5 \\ 0 & 1 & & 0 \\ 6 & & \mathbf{2} & \\ 6 & 1 & \mathbf{6}\end{array}\right]$
[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:

arbitrary degree constraints + no column normalization
\approx minimal, non-reduced, \prec-Gröbner basis

shifted forms

shift: integer tuple $\boldsymbol{s}=\left(s_{1}, \ldots, s_{m}\right)$ acting as column weights \rightarrow connects Popov and Hermite forms

$\begin{aligned} \mathbf{s}= & (0,0,0,0) \\ & \text { Popov } \end{aligned}$	$\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right]$	$\left[\begin{array}{llll}\mathbf{7} & 0 & 1 & 5 \\ 0 & \mathbf{1} & & 0 \\ 6 & 0 & \mathbf{2} & \\ 6\end{array}\right]$
$\begin{gathered} \mathbf{s}=(0,2,4,6) \\ \mathbf{s} \text {-Popov } \end{gathered}$	$\left[\begin{array}{llll}\mathbf{7} & 4 & 2 & 0 \\ 6 & 5 & 2 & 0 \\ 6 & 4 & 3 & 0 \\ 6 & 4 & 2 & 1\end{array}\right]$	$\left[\begin{array}{llll}8 & 5 & 1 & \\ 7 & \mathbf{6} & 1 & \\ 0 & & 2 & \\ 0 & 1 & & 0\end{array}\right]$
$\begin{gathered} \mathbf{s}=\underset{\text { Hermite }}{(0, \mathrm{D}, 2 \mathrm{D}, 3 \mathrm{D})} \\ \text { He } \end{gathered}$	$\left[\begin{array}{llll}\mathbf{1 6} & & & \\ 15 & \mathbf{0} & & \\ 15 & & \mathbf{0} & \\ 15 & & & 0\end{array}\right]$	$\left[\begin{array}{llll}4 & & & \\ 3 & 7 & & \\ 1 & 5 & 3 & \\ 3 & 6 & 1 & 2\end{array}\right]$

- normal form, average column degree D / m
- shifts arise naturally in algorithms (approximants, kernel, ...)
-they allow one to specify non-uniform degree constraints

from normal forms to relations

$$
\left\{\begin{array}{ccc}
p_{1} f_{11}+\cdots+p_{m} f_{1 m} & = & 0 \bmod g_{1} \\
\vdots & \vdots & \vdots \\
p_{1} f_{n 1}+\cdots+p_{m} f_{n m} & = & 0 \bmod g_{n}
\end{array}\right.
$$

reconstruction as relations

high-order lifting
[Storjohann, 2003]
[Giorgi-Jeannerod--
normal form computation


```
sage: M.degree matrix(shifts=[-1,2], row wise=False)
```

$\left[\begin{array}{lll}0 & -2 & -1\end{array}\right]$
hermite_form(include_zero_rows=True, transformation=False)

Return the Hermite form of this matrix.
The Hermite form is also normalized, i.e., the pivot polynomials are monic.
INPUT:

- include_zero_rows - boolean (default: True); if False, the zero rows in the outputt 1 deleted
- transformation - boolean (default: False); if True, return the transformation mat

OUTPUT:

VecLong rem_order(order);
// tindices of columns/orders that remain to be dealt with Veclong rem_index(cdim);
std::iota(rem_index.begin(), ren_index.end(), 0);
// all along the algorthm, shift = shifted row degrees of approximant // (initially, input shift = shifted row degree of the identity matrix)

Whtle (not rem_order.empty())

1** Invariant

* - appbas is a shtft-ordered weak Popov approximant basts for (pmat, reached_order) where doneorder is the tuple such that \rightarrow-->eached_order[j] + ren_order[j] == order[j] for J appeartng -->reached_order[j] == order[j] for j not appearing in rem_index shift $==$ the "input shift"-row degree of appbas

software development for polynomial matrices

```
sage: M.<x> = GF(7)[]
sage: }A=\mathrm{ natrix(M,
sage: A. hermite form(')
[[\begin{array}{clll}{[\begin{array}{lll}{[}\end{array})}&{x}&{1}&{2*x]}\end{array}]
sage: A.hermite forn(transformation=True)
# x llllll
sage: A}=\mathrm{ natrix(M, 2, 3, lx, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite form(transformation=True, include zero rows=False)
(L X 12txl, IS 41)
sage: H,U=A.hermite forn(transformation=True, include_zero_rowS=True); H,U.
[\begin{array}{llll}{x}&{1}&{2*x] [04}&{4}\end{array}]
sage: U * A == H
True
sage: H,U = A.hermite forn(transformation=True, include zero rows=False)
sage: U A A
x 1 2*x]
sage: U-A == H
True
```


See also: is hermite()

```
long deg = order[rem_index[j]] - rem_order[j];
1) remard the cnafficiente ofi denree den of the column ] of residual
// also keep Erack of which of these are nonzero,
|/ and among the nonzerg ones, which is the first with smallest shift
Vec<zz p> const residual:
const_restdual.Setlength(rdtm);
Veclong indices nonzero;
long ptv = -1;
for (Long i=0; i < rdim; ++i)
E
    const_residual[i] = coeff(residual[i][j],deg);
    if (const_restdual[i] != 0)
    {
        indices nonzero.push back(i.);
        if (piv<0 || shift[i]}< < shift[piv]
        ptv=t;
    }
    // tf indlces nonzero is empty, const residual ts already zero, there
    if (not indtces_nonzero.empty())
```

open-source mathematics software system 5 5ロㄹ Python/Cython
goals: complete, robust, available (more than 60k downloads per month)

Veclong rem_order(order)

VecLong rem_index (cdim);
std::iota(rem_index,begin () , ren_index.end (), 0); I/ atl along the algorthim, shift = shifted row degrees of approximant

+ Invariant:
- appbas is : shift-ordered weak Popov approximant basts for
(nmat rearhai _order) where doneorder is the tuple such that
software development for polynomial matrices

open-source mathematics software system

Python/Cython
goals: complete, robust, available (more than 60k downloads per month)
high-performance exact linear algebra LinBox - fflas-ffpack $\quad C / C++$
goal: optimized basic operations memory cost, vectorization, multithreading

software development for polynomial matrices

open-source mathematics software system

goals: complete, robust, available (more than 60k downloads per month)
high-performance exact linear algebra LinBox - fflas-ffpack $\quad C / C++$
goal: optimized basic operations memory cost, vectorization, multithreading

software development for polynomial matrices

Polynomial Matrix Library C/C++

> 403 files, 59k lines of code, including 17k lines of comments
> https://github.com/vneiger/pml
> [Hyun-Neiger-Schost'19]

- current version based on NTL
- work-in-progress version based on FLINT
- welcome comments, suggestions, contributions
"hey, this doesn't work!"
"yo, plans for implementing this?"
"how to decode RS codes with PML?"
wide range of algorithms
efficiency $=$ state of the art
kernel, high-order lifting, system solving, reduced form...

polynomial matrices: two open questions

deterministic Smith form

$$
\left[\begin{array}{rl}
{[\mathbf{A}}
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
\mathrm{s}_{1} & & & \\
& s_{2} & & \\
& & \ddots & \\
& & & \\
& & s_{\mathrm{m}}
\end{array}\right] \quad \begin{aligned}
& \text { - complexity } \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right) \text { [Storjohann'03] } \\
& \\
& \\
& s_{i+1} \text { divides } \mathrm{s}_{\mathrm{i}}
\end{aligned} \quad \begin{aligned}
& \text { requires large field } \mathbb{K}
\end{aligned}
$$

polynomial matrices: two open questions

deterministic Smith form

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad \mathbf{s}=(0,2,4,6), \quad$ base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=1$
point: $24,31,15,32,83,27,20,59$

shift

$\left[\begin{array}{llll}0 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 \\ 95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 \\ 34 & 47 & 47 & 1 & 85 & 45 & 75 & 50\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

$$
\text { parameters: } \quad d=8 \quad m=4 \quad s=(0,2,4,6), \quad \text { base field } \mathbb{F}_{97}
$$

$$
\text { input: }(24,31,15,32,83,27,20,59) \text { and } \mathbf{F}=\left[\begin{array}{llll}
1 & R & R^{2} & R^{3}
\end{array}\right]^{\top}
$$

iteration: $\mathfrak{i}=1$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}{[0} & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 \\ 95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 \\ 34 & 47 & 47 & 1 & 85 & 45 & 75 & 50\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

$$
\text { parameters: } \quad d=8 \quad m=4 \quad s=(0,2,4,6), \quad \text { base field } \mathbb{F}_{97}
$$

$$
\text { input: }(24,31,15,32,83,27,20,59) \text { and } \mathbf{F}=\left[\begin{array}{llll}
1 & R & R^{2} & R^{3}
\end{array}\right]^{\top}
$$

iteration: $\mathfrak{i}=1$
point: $24,31,15,32,83,27,20,59$
shift
basis $\left[\begin{array}{c}1 \\ 17 \\ 2 \\ 63\end{array}\right.$
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\ 0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\ 0 & 13 & 13 & 64 & 51 & 11 & 41 & 16\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

$$
\text { parameters: } \quad d=8 \quad m=4 \quad s=(0,2,4,6), \quad \text { base field } \mathbb{F}_{97}
$$

$$
\text { input: }(24,31,15,32,83,27,20,59) \text { and } \mathbf{F}=\left[\begin{array}{llll}
1 & R & R^{2} & R^{3}
\end{array}\right]^{\top}
$$

iteration: $i=1$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}1 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{c}x+73 \\ 17 \\ 2 \\ 63\end{array}\right.$
$\left.\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{cccccccc}0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\ 0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\ 0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\ 0 & 13 & 13 & 64 & 51 & 11 & 41 & 16\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6), \quad$ base field \mathbb{F}_{97}
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=2$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}1 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{c}x+73 \\ 17 \\ 2 \\ 63\end{array}\right.$
$\left.\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\left[\begin{array}{cccccccc}
0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\
0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\
0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\
0 & 13 & 13 & 64 & 51 & 11 & 41 & 16
\end{array}\right]
$$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=2$
point: $24,31,15,32,83,27,20,59$

shift

$\left[\begin{array}{llll}1 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{r}x+73 \\ x+90 \\ 56 x+16 \\ 12 x+66\end{array}\right.$
$\left.\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\ 0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\ 0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\ 0 & 0 & 2 & 63 & 80 & 47 & 90 & 48\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=2$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}2 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{2}+42 x+65 & 0 & 0 & 0 \\ x+90 & 1 & 0 & 0 \\ 56 x+16 & 0 & 1 & 0 \\ 12 x+66 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\ 0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\ 0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\ 0 & 0 & 2 & 63 & 80 & 47 & 90 & 48\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97}
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=3$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}2 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{2}+42 x+65 & 0 & 0 & 0 \\ x+90 & 1 & 0 & 0 \\ 56 x+16 & 0 & 1 & 0 \\ 12 x+66 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\ 0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\ 0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\ 0 & 0 & 2 & 63 & 80 & 47 & 90 & 48\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=3$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}3 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{clll}x^{3}+27 x^{2}+17 x+92 & 0 & 0 & 0 \\ 54 x^{2}+38 x+11 & 1 & 0 & 0 \\ 17 x^{2}+91 x+54 & 0 & 1 & 0 \\ 66 x^{2}+68 x+88 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\ 0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\ 0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\ 0 & 0 & 0 & 9 & 32 & 31 & 84 & 29\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & R & R^{2}\end{array} R^{3}\right]^{\top}$
iteration: $\mathfrak{i}=4$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}3 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{clll}x^{3}+27 x^{2}+17 x+92 & 0 & 0 & 0 \\ 54 x^{2}+38 x+11 & 1 & 0 & 0 \\ 17 x^{2}+91 x+54 & 0 & 1 & 0 \\ 66 x^{2}+68 x+88 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\ 0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\ 0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\ 0 & 0 & 0 & 9 & 32 & 31 & 84 & 29\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=4$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}3 & 3 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{3}+31 x^{2}+27 x+3 & 36 & 0 & 0 \\ 54 x^{3}+56 x^{2}+56 x+36 & x+65 & 0 & 0 \\ 56 x^{2}+43 x+35 & 60 & 1 & 0 \\ 52 x^{2}+33 x+60 & 68 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 95 & 50 & 66 & 0 \\ 0 & 0 & 0 & 0 & 54 & 0 & 19 & 58 \\ 0 & 0 & 0 & 0 & 4 & 45 & 79 & 95 \\ 0 & 0 & 0 & 0 & 7 & 31 & 41 & 17\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=5$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}4 & 3 & 4 & 6\end{array}\right]$
basis $\quad\left[\begin{array}{c}x^{4}+45 x^{3}+73 x^{2}+90 x+42 \\ 81 x^{3}+20 x^{2}+9 x+20 \\ 2 x^{3}+21 x^{2}+41 \\ 52 x^{3}+15 x^{2}+79 x+22\end{array}\right.$
$\left.\begin{array}{ccc}36 x+19 & 0 & 0 \\ x+67 & 0 & 0 \\ 35 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 13 & 13 & 0 \\ 0 & 0 & 0 & 0 & 0 & 89 & 55 & 58 \\ 0 & 0 & 0 & 0 & 0 & 48 & 17 & 95 \\ 0 & 0 & 0 & 0 & 0 & 12 & 78 & 17\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=6$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}4 & 4 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{4}+19 x^{3}+57 x^{2}+44 x+26 & 74 x+43 & 0 & 0 \\ 81 x^{4}+64 x^{3}+51 x^{2}+68 x+42 & x^{2}+40 x+34 & 0 & 0 \\ 3 x^{3}+44 x^{2}+54 x+64 & 6 x+49 & 1 & 0 \\ 28 x^{3}+45 x^{2}+44 x+52 & 50 x+52 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 66 & 70 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & 0 & 0 & 0 & 56 & 55 \\ 0 & 0 & 0 & 0 & 0 & 0 & 15 & 7\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=7$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}5 & 4 & 4 & 6\end{array}\right]$
basis $\quad\left[\begin{array}{c}x^{5}+96 x^{4}+65 x^{3}+68 x^{2}+19 x+62 \\ 6 x^{4}+94 x^{3}+44 x^{2}+66 x+32 \\ 55 x^{4}+78 x^{3}+75 x^{2}+49 x+39 \\ 13 x^{4}+81 x^{3}+10 x^{2}+34 x+2\end{array}\right.$
$\left.\begin{array}{ccc}74 x^{2}+18 x+13 & 0 & 0 \\ x^{2}+19 x+10 & 0 & 0 \\ 2 x+86 & 1 & 0 \\ 42 x+29 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 44\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=8$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}5 & 5 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{5}+12 x^{4}+10 x^{3}+34 x^{2}+65 x+2 & 60 x^{2}+43 x+67 & 0 & 0 \\ 6 x^{5}+31 x^{4}+27 x^{3}+89 x^{2}+18 x+52 & x^{3}+57 x^{2}+53 x+89 & 0 & 0 \\ 2 x^{4}+56 x^{3}+42 x^{2}+48 x+15 & 72 x^{2}+12 x+30 & 1 & 0 \\ 40 x^{4}+19 x^{3}+14 x^{2}+40 x+49 & 53 x^{2}+79 x+74 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6), \quad$ base field \mathbb{F}_{97} input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{llll}1 & R & R^{2} & R^{3}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=8$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}5 & 5 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{5}+12 x^{4}+10 x^{3}+34 x^{2}+65 x+2 & 60 x^{2}+43 x+67 & 0 & 0 \\ 6 x^{5}+31 x^{4}+27 x^{3}+89 x^{2}+18 x+52 & x^{3}+57 x^{2}+53 x+89 & 0 & 0 \\ 2 x^{4}+56 x^{3}+42 x^{2}+48 x+15 & 72 x^{2}+12 x+30 & 1 & 0 \\ 40 x^{4}+19 x^{3}+14 x^{2}+40 x+49 & 53 x^{2}+79 x+74 & 0 & 1\end{array}\right]$

$$
Q(x, y)=\left(2 x^{4}+56 x^{3}+42 x^{2}+48 x+15\right)+\left(72 x^{2}+12 x+30\right) y+y^{2}
$$

values
$\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
input: vector $\mathbf{F}=\left[\begin{array}{c}{ }^{f_{1}} \\ \vdots \\ f_{m}\end{array}\right]$, points $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$, shift $\boldsymbol{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{Z}^{m}$

1. $\mathbf{P}=\left[\begin{array}{c}-\mathbf{p}_{1}- \\ \vdots \\ -\mathbf{p}_{m}-\end{array}\right]=$ identity matrix in $\mathbb{K}[x]^{m \times m}$
2. for i from 1 to d :
a. choose pivot π with smallest s_{π} such that $f_{\pi}\left(\alpha_{i}\right) \neq 0$ update pivot shift $s_{\pi}=s_{\pi}+1$
b. constant elimination: for $j \neq \pi$ do $\mathbf{p}_{j} \leftarrow \mathbf{p}_{j}-\frac{f_{j}\left(\alpha_{i}\right)}{f_{\pi}\left(\alpha_{i}\right)} \mathbf{p}_{\pi}$ polynomial elimination: $\mathbf{p}_{\pi} \leftarrow\left(x-\alpha_{i}\right) \mathbf{p}_{\pi}$
c. compute residual equation: for $j \neq \pi$ do $f_{j} \leftarrow f_{j}-\frac{f_{j}\left(\alpha_{i}\right)}{f_{\pi}\left(\alpha_{i}\right)} f_{\pi}$

$$
f_{\pi} \leftarrow\left(x-\alpha_{i}\right) f_{\pi}
$$

after i iterations: \mathbf{P} is an \boldsymbol{s}-reduced basis of solutions for $\left(\alpha_{1}, \ldots, \alpha_{i}\right)$

fast divide and conquer interpolation

iterative algorithm: complexity aspects

at step i, \mathbf{P} and \mathbf{F} are left multiplied by $\mathbf{E}_{i}=\left[\begin{array}{ccc}\mathbf{I}_{\pi-1} & \boldsymbol{\lambda}_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & x-\alpha & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\lambda}_{\mathbf{2}} & \mathbf{I}_{\mathrm{m}-\pi}\end{array}\right]$ where $\lambda_{1} \in \mathbb{K}^{(\pi-1) \times 1}$ and $\lambda_{2} \in \mathbb{K}^{(m-\pi) \times 1}$ are constant

fast divide and conquer interpolation

iterative algorithm: complexity aspects

at step i, \mathbf{P} and \mathbf{F} are left multiplied by $\mathbf{E}_{i}=\left[\begin{array}{ccc}\mathbf{I}_{\pi-1} & \boldsymbol{\lambda}_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & x-\alpha & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\lambda}_{\mathbf{2}} & \mathbf{I}_{\mathrm{m}-\pi}\end{array}\right]$ where $\lambda_{1} \in \mathbb{K}^{(\pi-1) \times 1}$ and $\lambda_{\mathbf{2}} \in \mathbb{K}^{(\mathfrak{m}-\pi) \times 1}$ are constant

complexity $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}^{2}\right)$:

- iteration with d steps
- each step: evaluation of $\mathbf{F}+$ multiplications $\mathbf{E}_{\mathrm{i}} \mathbf{F}$ and $\mathbf{E}_{\mathrm{i}} \mathbf{P}$
- at any stage \mathbf{P} has degree $\leqslant \mathrm{d}$ and dimensions $m \times m$
- at any stage \mathbf{F} has degree $<2 \mathrm{~d}$ and dimensions $\mathrm{m} \times 1$ one gets $\mathrm{O}\left(\mathrm{md}^{2}\right)$ with either:
. normalizing at each step + finer analysis . "balanced" input shift + finer analysis (shifts in RS list-decoding are balanced)

fast divide and conquer interpolation

iterative algorithm: complexity aspects

at step i, \mathbf{P} and \mathbf{F} are left multiplied by $\mathbf{E}_{i}=\left[\begin{array}{ccc}\mathbf{I}_{\pi-1} & \boldsymbol{\lambda}_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & x-\alpha & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\lambda}_{\mathbf{2}} & \mathbf{I}_{\mathrm{m}-\pi}\end{array}\right]$ where $\lambda_{1} \in \mathbb{K}^{(\pi-1) \times 1}$ and $\lambda_{\mathbf{2}} \in \mathbb{K}^{(\mathfrak{m}-\pi) \times 1}$ are constant

complexity $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}^{2}\right)$:

- iteration with d steps
- each step: evaluation of $\mathbf{F}+$ multiplications $\mathbf{E}_{\mathrm{i}} \mathbf{F}$ and $\mathbf{E}_{\mathrm{i}} \mathbf{P}$
- at any stage \mathbf{P} has degree $\leqslant \mathrm{d}$ and dimensions $\mathrm{m} \times \mathrm{m}$
- at any stage \mathbf{F} has degree $<2 \mathrm{~d}$ and dimensions $\mathrm{m} \times 1$ one gets $\mathrm{O}\left(\mathrm{md}^{2}\right)$ with either: . normalizing at each step + finer analysis . "balanced" input shift + finer analysis (shifts in RS list-decoding are balanced)

correctness:

- the main task is to prove the base case ($\mathrm{d}=1$, single point)
- then, correctness follows from the "basis multiplication theorem"

fast divide and conquer interpolation

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

- compute a first basis \mathbf{P}_{1} for a subproblem
- update the input instance to get the second subproblem
- compute a second basis \mathbf{P}_{2} for this second subproblem
- the output basis of solutions is $\mathbf{P}_{2} \mathbf{P}_{1}$
we want $\mathbf{P}_{2} \mathbf{P}_{1}$ shifted reduced
$\mathbf{P}_{2} \mathbf{P}_{1}$ reduced not implied by " \mathbf{P}_{1} reduced and \mathbf{P}_{2} reduced"

fast divide and conquer interpolation

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

- compute a first basis \mathbf{P}_{1} for a subproblem
- update the input instance to get the second subproblem
- compute a second basis \mathbf{P}_{2} for this second subproblem
- the output basis of solutions is $\mathbf{P}_{2} \mathbf{P}_{1}$
we want $\mathbf{P}_{2} \mathbf{P}_{1}$ shifted reduced
$\mathbf{P}_{2} \mathbf{P}_{1}$ reduced not implied by " \mathbf{P}_{1} reduced and \mathbf{P}_{2} reduced"

theorem:

(\mathbf{P}_{1} is s-reduced and \mathbf{P}_{2} is t-reduced") $\Rightarrow \mathbf{P}_{2} \mathbf{P}_{1}$ is s-reduced where t is a shift trivially computed from \mathbf{s} and $\mathbf{P}_{1} \quad\left(\mathbf{t}=\operatorname{rdeg}_{s}\left(\mathbf{P}_{1}\right)\right)$

fast divide and conquer interpolation

bonus: detailed statement and proof

let $\mathcal{M} \subseteq \mathcal{M}_{1}$ be two $\mathbb{K}[x]$-submodules of $\mathbb{K}[x]^{m}$ of rank m, let $\mathbf{P}_{1} \in \mathbb{K}[x]^{m \times m}$ be a basis of \mathcal{M}_{1}, let $\mathbf{s} \in \mathbb{Z}^{\mathrm{m}}$ and $\mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$,

- the rank of the module $\mathcal{M}_{2}=\left\{\boldsymbol{\lambda} \in \mathbb{K}[x]^{1 \times m} \mid \lambda \mathbf{P}_{1} \in \mathcal{M}\right\}$ is m and for any basis $\mathbf{P}_{2} \in \mathbb{K}[x]^{m \times m}$ of \mathcal{M}_{2}, the product $\mathbf{P}_{2} \mathbf{P}_{1}$ is a basis of \mathcal{M}
- if \mathbf{P}_{1} is \boldsymbol{s}-reduced and \mathbf{P}_{2} is \mathbf{t}-reduced, then $\mathbf{P}_{2} \mathbf{P}_{1}$ is \boldsymbol{s}-reduced

fast divide and conquer interpolation

bonus: detailed statement and proof

let $\mathcal{M} \subseteq \mathcal{M}_{1}$ be two $\mathbb{K}[x]$-submodules of $\mathbb{K}[x]^{m}$ of rank m, let $\mathbf{P}_{1} \in \mathbb{K}[x]^{m \times m}$ be a basis of \mathcal{M}_{1}, let $\mathbf{s} \in \mathbb{Z}^{\mathrm{m}}$ and $\mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$,

- the rank of the module $\mathcal{M}_{2}=\left\{\boldsymbol{\lambda} \in \mathbb{K}[x]^{1 \times m} \mid \lambda \mathbf{P}_{1} \in \mathcal{M}\right\}$ is m and for any basis $\mathbf{P}_{2} \in \mathbb{K}[x]^{m \times m}$ of \mathcal{M}_{2}, the product $\mathbf{P}_{2} \mathbf{P}_{1}$ is a basis of \mathcal{M}
- if \mathbf{P}_{1} is \boldsymbol{s}-reduced and \mathbf{P}_{2} is \mathbf{t}-reduced, then $\mathbf{P}_{2} \mathbf{P}_{1}$ is \boldsymbol{s}-reduced

Let $\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times \mathfrak{m}}$ denote the adjugate of \mathbf{P}_{1}. Then, we have $\mathbf{A} \mathbf{P}_{1}=\operatorname{det}\left(\mathbf{P}_{1}\right) \mathbf{I}_{\mathfrak{m}}$. Thus, $\mathbf{p A P} \mathbf{P}_{1}=\operatorname{det}\left(\mathbf{P}_{1}\right) \mathbf{p} \in \mathcal{M}$ for all $\mathbf{p} \in \mathcal{M}$, and therefore $\mathcal{M} \mathbf{A} \subseteq \mathcal{M}_{2}$. Now, the nonsingularity of \mathbf{A} ensures that $\mathcal{M} \mathbf{A}$ has rank m; this implies that \mathcal{N}_{2} has rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix $\mathbf{P}_{2} \mathbf{P}_{1}$ is nonsingular since $\operatorname{det}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right) \neq 0$. Now let $\mathbf{p} \in \mathcal{M}$; we want to prove that \mathbf{p} is a $\mathbb{K}[x]$-linear combination of the rows of $\mathbf{P}_{2} \mathbf{P}_{1}$. First, $\mathbf{p} \in \mathcal{M}_{1}$, so there exists $\boldsymbol{\lambda} \in$ $\mathbb{K}[x]^{1 \times m}$ such that $\mathbf{p}=\lambda \mathbf{P}_{1}$. But then $\boldsymbol{\lambda} \in \mathcal{M}_{2}$, and thus there exists $\boldsymbol{\mu} \in \mathbb{K}[x]^{1 \times m}$ such that $\boldsymbol{\lambda}=\mu \mathbf{P}_{2}$. This yields the combination $\mathbf{p}=\mu \mathbf{P}_{2} \mathbf{P}_{1}$.

fast divide and conquer interpolation

bonus: detailed statement and proof

let $\mathcal{M} \subseteq \mathcal{M}_{1}$ be two $\mathbb{K}[x]$-submodules of $\mathbb{K}[x]^{m}$ of rank m, let $\mathbf{P}_{1} \in \mathbb{K}[x]^{m \times m}$ be a basis of \mathcal{M}_{1}, let $\mathbf{s} \in \mathbb{Z}^{\mathrm{m}}$ and $\mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$,

- the rank of the module $\mathcal{M}_{2}=\left\{\boldsymbol{\lambda} \in \mathbb{K}[x]^{1 \times m} \mid \lambda \mathbf{P}_{1} \in \mathcal{M}\right\}$ is m and for any basis $\mathbf{P}_{2} \in \mathbb{K}[x]^{m \times m}$ of \mathcal{M}_{2}, the product $\mathbf{P}_{2} \mathbf{P}_{1}$ is a basis of \mathcal{M}
- if \mathbf{P}_{1} is \mathbf{s}-reduced and \mathbf{P}_{2} is t-reduced, then $\mathbf{P}_{2} \mathbf{P}_{1}$ is \boldsymbol{s}-reduced

Let $\mathbf{d}=\operatorname{rdeg}_{\mathfrak{t}}\left(\mathbf{P}_{2}\right)$; we have $\mathbf{d}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right)$ by the predictable degree property. Using $\mathbf{X}^{-d} \mathbf{P}_{2} \mathbf{P}_{1} \mathbf{X}^{\mathbf{s}}=\mathbf{X}^{-\mathrm{d}} \mathbf{P}_{2} \mathbf{X}^{\mathbf{t}} \mathbf{X}^{-\mathbf{t}} \mathbf{P}_{1} \mathbf{X}^{\mathbf{s}}$, we obtain that $\operatorname{Im}_{\mathbf{s}}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right)=$ $\operatorname{lm}_{t}\left(\mathbf{P}_{2}\right) \operatorname{lm}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$. By assumption, $\operatorname{lm}_{t}\left(\mathbf{P}_{2}\right)$ and $\operatorname{Im}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$ are invertible, and therefore $\operatorname{lm}_{\mathbf{s}}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right)$ is invertible as well; thus $\mathbf{P}_{2} \mathbf{P}_{1}$ is \mathbf{s}-reduced.

fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: $\mathbf{F},\left(\alpha_{1}, \ldots, \alpha_{d}\right), \mathbf{s}$
output: \mathbf{P}

- if $d \leqslant$ threshold: call iterative algorithm
- else:
a. $\mathrm{G}_{1} \leftarrow\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\lfloor\mathrm{d} / 2\rfloor}\right) ; \mathrm{G}_{2} \leftarrow\left(x-\alpha_{\lfloor\mathrm{d} / 2\rfloor+1}\right) \cdots\left(x-\alpha_{\mathrm{d}}\right)$
b. $\mathbf{P}_{1} \leftarrow$ recursive call on \mathbf{F} rem $\mathrm{G}_{1},\left(\alpha_{1}, \ldots, \alpha_{\lfloor\mathrm{d} / 2\rfloor}\right)$, \mathbf{s}
c. updated shift: $\mathbf{t} \leftarrow \mathrm{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$
d. residual equation: $\mathbf{F} \leftarrow \frac{1}{\mathrm{G}_{1}} \mathbf{P}_{1} \mathbf{F}$
e. $\mathbf{P}_{2} \leftarrow$ recursive call \mathbf{F} rem $\mathrm{G}_{2},\left(\alpha_{\lfloor\mathrm{d} / 2\rfloor+1}, \ldots, \alpha_{\mathrm{d}}\right)$, \mathbf{t}
f. return the product $\mathbf{P}_{2} \mathbf{P}_{1}$

fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: $\mathbf{F},\left(\alpha_{1}, \ldots, \alpha_{d}\right), \mathbf{s}$
output: \mathbf{P}

- if $\mathrm{d} \leqslant$ threshold: call iterative algorithm
- else:
a. $\mathrm{G}_{1} \leftarrow\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\lfloor d / 2\rfloor}\right) ; \mathrm{G}_{2} \leftarrow\left(x-\alpha_{\lfloor\mathrm{d} / 2\rfloor+1}\right) \cdots\left(x-\alpha_{\mathrm{d}}\right)$
b. $\mathbf{P}_{1} \leftarrow$ recursive call on \mathbf{F} rem $\mathrm{G}_{1},\left(\alpha_{1}, \ldots, \alpha_{\lfloor d / 2\rfloor}\right)$, \mathbf{s}
c. updated shift: $\mathbf{t} \leftarrow \operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$
d. residual equation: $\mathbf{F} \leftarrow \frac{1}{\mathrm{G}_{1}} \mathbf{P}_{1} \mathbf{F}$
e. $\mathbf{P}_{2} \leftarrow$ recursive call \mathbf{F} rem $\mathrm{G}_{2},\left(\alpha_{\lfloor\mathrm{d} / 2\rfloor+1}, \ldots, \alpha_{\mathrm{d}}\right), \mathbf{t}$
f. return the product $\mathbf{P}_{2} \mathbf{P}_{1}$

correctness:

- correctness of base case
- then, direct consequence of the "basis multiplication theorem"
- residual: $\left\{\mathbf{p} \mid \mathbf{p} \mathbf{P}_{1} \mathbf{F}=0 \bmod \mathrm{G}\right\}=\left\{\mathbf{p} \left\lvert\, \mathbf{p}\left(\frac{1}{\mathrm{G}_{1}} \mathbf{P}_{1} \mathbf{F}\right)=0 \bmod \mathrm{G}_{2}\right.\right\}$

fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: $\mathbf{F},\left(\alpha_{1}, \ldots, \alpha_{d}\right), \mathbf{s}$
output: \mathbf{P}

- if $d \leqslant$ threshold: call iterative algorithm
- else:
a. $\mathrm{G}_{1} \leftarrow\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\lfloor d / 2\rfloor}\right) ; \mathrm{G}_{2} \leftarrow\left(x-\alpha_{\lfloor\mathrm{d} / 2\rfloor+1}\right) \cdots\left(x-\alpha_{\mathrm{d}}\right)$
b. $\mathbf{P}_{1} \leftarrow$ recursive call on \mathbf{F} rem $\mathrm{G}_{1},\left(\alpha_{1}, \ldots, \alpha_{\lfloor d / 2\rfloor}\right)$, \mathbf{s}
c. updated shift: $\mathbf{t} \leftarrow \operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$
d. residual equation: $\mathbf{F} \leftarrow \frac{1}{\mathrm{G}_{1}} \mathbf{P}_{1} \mathbf{F}$
e. $\mathbf{P}_{2} \leftarrow$ recursive call \mathbf{F} rem $\mathrm{G}_{2},\left(\alpha_{\lfloor\mathrm{d} / 2\rfloor+1}, \ldots, \alpha_{\mathrm{d}}\right), \mathbf{t}$
f. return the product $\mathbf{P}_{2} \mathbf{P}_{1}$

complexity $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$:

- if $\omega=2$, quasi-linear in worst-case output size
- most expensive step in the recursion is the product $\mathbf{P}_{2} \mathbf{P}_{1}$
- equation $\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right)$

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

$$
\text { output: } \operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}
$$

complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- \mathbf{F} rem M_{1} and \mathbf{F} rem M_{2}
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
- two recursive calls

$$
\begin{gathered}
O\left(m^{2} M(d)\right) \\
O(m M(d)) \\
O\left(m^{\omega} M(d)\right) \\
2 \mathcal{C}(m,\lfloor d / 2\rceil)
\end{gathered}
$$

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

$$
\text { output: } \operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}
$$

complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{\mathrm{M}_{1}} \mathbf{P}_{1} \mathbf{F} \quad \mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{d})\right)$
- \mathbf{F} rem M_{1} and \mathbf{F} rem M_{2}
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
- two recursive calls

$$
\begin{array}{r}
\mathrm{O}\left(\mathrm{~m}^{2} \mathrm{M}(\mathrm{~d})\right) \\
\mathrm{O}(\mathrm{mM}(\mathrm{~d})) \\
\mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \\
2 \mathrm{C}(\mathrm{~m},\lfloor\mathrm{~d} / 2\rceil)
\end{array}
$$

$\left\{\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right)\right.$ d base cases, each one costs $\mathrm{O}(\mathrm{m})$

$$
\Rightarrow \quad \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d}) \log (\mathrm{d})\right)
$$

unrolling: $m^{\omega}\left(M(d)+2 M\left(\frac{d}{2}\right)+4 M\left(\frac{d}{4}\right)+\cdots+\frac{d}{2} M(2)\right)+d m$

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- \mathbf{F} rem M_{1} and \mathbf{F} rem M_{2}
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
- two recursive calls
output: $\operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}$
$\mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{d})\right)$
$\mathrm{O}(\mathrm{mM}(\mathrm{d}))$
$O\left(m^{\omega} M(d)\right)$
$2 \mathcal{C}(m,\lfloor d / 2\rceil)$
output: $\operatorname{deg}(\mathbf{P}) \approx\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil$
$\mathrm{s}=\mathbf{0}$ and generic F :
$\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}\left(\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil\right)\right)$
unchanged
$\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}\left(\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil\right)\right)$
unchanged
- partial linearization
$\left\{\mathcal{C}(\mathrm{m}, \mathrm{d})=\mathcal{C}(\mathrm{m},\lfloor\mathrm{d} / 2\rfloor)+\mathcal{C}(\mathrm{m},\lceil\mathrm{d} / 2\rceil)+\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d})\right)\right.$
d base cases, each one costs $\mathrm{O}(\mathrm{m})$

$$
\Rightarrow \quad \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d}) \log (\mathrm{d})\right)
$$

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- \mathbf{F} rem M_{1} and \mathbf{F} rem M_{2}
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
-two recursive calls
output: $\operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}$
$\mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{d})\right)$
$\mathrm{O}(\mathrm{mM}(\mathrm{d}))$
$O\left(m^{\omega} M(d)\right)$
$2 \mathcal{C}(m,\lfloor d / 2\rceil)$
output: $\operatorname{deg}(\mathbf{P}) \approx\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil$
$s=0$ and generic F :
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
- partial linearization
- base case for $\mathrm{d} \approx \mathrm{m}$,
$\left\{\begin{array}{l}\left\{\begin{array}{l}\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right) \quad \text { costs } O\left(m^{\omega}\right) \\ d \text { base cases, each one costs } O(m) \\ \\ \Rightarrow O\left(m^{\omega} M(d) \log (d)\right) \quad O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right) \log \left(\left\lceil\frac{d}{m}\right\rceil\right)\right)\end{array}\right.\end{array}\right.$

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- \mathbf{F} rem M_{1} and \mathbf{F} rem M_{2}
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
- two recursive calls
output: $\operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}$
$\mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{d})\right)$
$\mathrm{O}(\mathrm{mM}(\mathrm{d}))$
$\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d})\right)$
$2 \mathcal{C}(m,\lfloor d / 2\rceil)$
output: $\operatorname{deg}(\mathbf{P}) \approx\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil$
$\mathrm{S}=0$ and generic F :
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
- partial linearization
- base case for $\mathrm{d} \approx \mathrm{m}$,
$\left\{\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right)\right.$ costs $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
d base cases, each one costs $\mathrm{O}(\mathrm{m})$

$$
\Rightarrow \quad \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d}) \log (\mathrm{d})\right) \quad \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}\left(\left\lceil\frac{\mathrm{~d}}{\mathrm{~m}}\right\rceil\right) \log \left(\left\lceil\frac{\mathrm{d}}{\mathrm{~m}}\right\rceil\right)\right)
$$

m	n	d	PM-BASIS	PM-BASIS with linearization
4	1	65536	1.6693	$\mathbf{1 . 2 6 8 9 1}$
16	1	16384	1.8535	$\mathbf{0 . 8 9 6 5 2}$
64	1	2048	2.2865	$\mathbf{0 . 1 4 3 6 2}$
256	1	1024	36.620	$\mathbf{0 . 2 0 6 6 0}$

fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $n>1$
- [Giorgi-Jeannerod-Villard 2003] achieved $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$ for $\mathbf{F} \bmod x^{d}$, with $n \geqslant 1$ and $n \in O(m)$
- for $\mathbf{s}=\mathbf{0}$ and generic $\mathbf{F}: \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega}\left\lceil\frac{\mathrm{nd}}{\mathrm{m}}\right\rceil\right)$ [Lecerf, ca 2001, unpublished]

fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $n>1$
- [Giorgi-Jeannerod-Villard 2003] achieved $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$ for $\mathbf{F} \bmod x^{d}$, with $n \geqslant 1$ and $n \in O(m)$
- for $\mathbf{s}=\mathbf{0}$ and generic $\mathbf{F}: \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega}\left\lceil\frac{\mathrm{nd}}{\mathrm{m}}\right\rceil\right)$ [Lecerf, ca 2001, unpublished]
- more recently: $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega-1} n d\right)$ for $\mathbf{F} \bmod x^{d}$
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020] \rightsquigarrow any s, no genericity assumption, returns the canonical s-Popov basis

fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $n>1$
- [Giorgi-Jeannerod-Villard 2003] achieved $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$ for $\mathbf{F} \bmod x^{d}$, with $n \geqslant 1$ and $n \in O(m)$
- for $\mathbf{s}=\mathbf{0}$ and generic $\mathbf{F}: \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega}\left\lceil\frac{\mathrm{nd}}{\mathrm{m}}\right\rceil\right)$ [Lecerf, ca 2001, unpublished]
- more recently: $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega-1} n \mathrm{n}\right)$ for $\mathbf{F} \bmod x^{\mathrm{d}}$
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
\rightsquigarrow any s, no genericity assumption, returns the canonical s-Popov basis
- F mod G and general modular matrix equations in similar complexity [Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]
\rightsquigarrow any s, no genericity assumption, returns the canonical s-Popov basis

outline

computer algebra

Reed-Solomon decoding
polynomial matrices

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- context and unique decoding problem
- key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- core algorithms \& shifted normal forms
- fast divide and conquer interpolation

outline

computer algebra

Reed-Solomon decoding

polynomial matrices
efficient list decoding

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- context and unique decoding problem
- key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- core algorithms \& shifted normal forms
- fast divide and conquer interpolation
- the Guruswami-Sudan algorithm
- via structured systems or basis reduction
- a word on extensions

list decoding problem

for convenience, we use the agreement parameter $\mathrm{t}=\mathrm{n}-\mathrm{e}$: $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant e \quad \Leftrightarrow \quad \#\left\{i \mid w\left(\alpha_{i}\right)=\beta_{i}\right\} \geqslant t$
input:
$-\alpha_{1}, \ldots, \alpha_{n}$ the n distinct evaluation points in \mathbb{K},

- k the degree bound, $t=n-e$ the agreement,
- $\left(\beta_{1}, \ldots, \beta_{n}\right)$ the received word in \mathbb{K}^{n}
list decoding requirement: $\mathrm{t}^{2}>\mathrm{kn}$ [Guruswami-Sudan'99]
output: all polynomials $\mathcal{w}(x)$ in $\mathbb{K}[x]$ such that $\operatorname{deg}(w) \leqslant k \quad$ and $\quad \#\left\{i \mid w\left(\alpha_{i}\right)=\beta_{i}\right\} \geqslant t$

list decoding problem

for convenience, we use the agreement parameter $\mathrm{t}=\mathrm{n}-\mathrm{e}$: $\#\left\{i \mid w\left(\alpha_{i}\right) \neq \beta_{i}\right\} \leqslant \mathrm{e} \Leftrightarrow \#\left\{i \mid \mathcal{w}\left(\alpha_{\mathrm{i}}\right)=\beta_{\mathrm{i}}\right\} \geqslant \mathrm{t}$
input:
$-\alpha_{1}, \ldots, \alpha_{n}$ the n distinct evaluation points in \mathbb{K},

- k the degree bound, $\mathrm{t}=\mathrm{n}-\mathrm{e}$ the agreement,
- $\left(\beta_{1}, \ldots, \beta_{n}\right)$ the received word in \mathbb{K}^{n}
list decoding requirement: $\mathrm{t}^{2}>\mathrm{kn} \quad$ [Guruswami-Sudan'99]
output: all polynomials $\mathcal{w}(x)$ in $\mathbb{K}[x]$ such that

$$
\operatorname{deg}(w) \leqslant k \quad \text { and } \quad \#\left\{i \mid w\left(\alpha_{i}\right)=\beta_{i}\right\} \geqslant t
$$

Guruswami-Sudan algorithm:

```
- interpolation step
compute Q(x,y) such that: w(x) solution }=>\textrm{Q}(x,w(x))=
- root-finding step
compute all y-roots of Q(x,y), keep those that are solutions
```


introducing the interpolation+root-finding approach

consider one solution \mathcal{w}_{1} :

key equation:

$$
\Lambda_{1} R=\Lambda_{1} w_{1} \quad \bmod G
$$

where $R\left(\alpha_{i}\right)=\beta_{i}, \quad G(x)=\prod_{1 \leqslant i \leqslant n}\left(x-\alpha_{i}\right) \quad \Lambda_{1}(x)=\prod_{i \mid \text { error }}\left(x-\alpha_{i}\right)$
obstacle: no uniqueness of solution $\frac{\mu_{1}}{\Lambda_{1}}$ for rational reconstruction

$$
\Lambda_{1} \mathrm{R}=\mu_{1} \quad \bmod G
$$

with $\operatorname{deg} \mu_{1} \leqslant e+k$
since $e \geqslant \frac{n-k}{2} \Rightarrow$ (unique decoding bound not satisfied),
possibly $\operatorname{deg}\left(\Lambda_{1}\right)+\operatorname{deg}\left(\Lambda_{1} w_{1}\right) \geqslant n=\operatorname{deg} G$
(more unknowns than equations in the linearized problem)

introducing the interpolation+root-finding approach

note $\Lambda_{1}\left(R-w_{1}\right)=0 \bmod G$, and consider a second solution w_{2} :
"extended" key equation:

$$
\Lambda\left(R-w_{1}\right)\left(R-w_{2}\right)=0 \quad \bmod G
$$

where $\Lambda=\prod_{i \mid \text { error }_{1 \wedge 2}}\left(x-\alpha_{i}\right)=\operatorname{gcd}\left(\Lambda_{1}, \Lambda_{2}\right)$
w_{1} and w_{2} are y-roots of the bivariate polynomial

$$
Q(x, y)=\Lambda\left(y-w_{1}\right)\left(y-w_{2}\right)=\Lambda w_{1} w_{2}-\Lambda\left(w_{1}+w_{2}\right) y+\Lambda y^{2}
$$

\rightsquigarrow similar remark for all ℓ solutions w_{1}, \ldots, w_{ℓ}
properties of $Q(x, y)$:

- degree in y is $\ell=$ number of solutions
- weighted-degree $\operatorname{deg}_{x}\left(\mathrm{Q}\left(x, x^{k} y\right)\right)$ close to ℓk
- $Q\left(\alpha_{i}, \beta_{i}\right)=0$ for every i
(i.e. $Q(x, R)=0 \bmod G$)

the Guruswami-Sudan algorithm

bivariate interpolation with multiplicities:

Input:

n points $\left\{\left(\alpha_{i}, \beta_{i}\right)\right\}_{1 \leqslant i \leqslant n}$ in \mathbb{K}^{2}, with the α_{i} 's distinct
k the degree constraint, t the agreement
ℓ the list-size, s the multiplicity $(s \leqslant \ell)$
Output:
a nonzero polynomial $Q(x, y)$ in $\mathbb{K}[x, y]$ such that
(i) $\quad \operatorname{deg}_{y}(Q) \leqslant \ell$
(ii) $\operatorname{deg}_{x}\left(Q\left(x, x^{k} y\right)<s t\right.$
(iii) $\forall i, Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity s
(list-size condition)
(weighted-degree condition)
(vanishing condition)

the Guruswami-Sudan algorithm

bivariate interpolation with multiplicities:

Input:

n points $\left\{\left(\alpha_{i}, \beta_{i}\right)\right\}_{1 \leqslant i \leqslant n}$ in \mathbb{K}^{2}, with the α_{i} 's distinct
k the degree constraint, t the agreement
ℓ the list-size, s the multiplicity $(s \leqslant \ell)$
Output:
a nonzero polynomial $Q(x, y)$ in $\mathbb{K}[x, y]$ such that
(i) $\quad \operatorname{deg}_{y}(Q) \leqslant \ell$
(ii) $\operatorname{deg}_{x}\left(Q\left(x, x^{k} y\right)<s t\right.$
(iii) $\forall i, Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity s
(list-size condition)
(weighted-degree condition)
(vanishing condition)

- find parameters ℓ and s
- interpolation step
compute $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ such that: $w(x)$ solution $\Rightarrow \mathrm{Q}(x, w(x))=0$
- root-finding step
compute all y-roots of $Q(x, y)$, keep those that are solutions

the Guruswami-Sudan algorithm

(i) $\quad \operatorname{deg}_{y}(Q) \leqslant \ell$
(ii) $\operatorname{deg}_{x}\left(Q\left(x, x^{k} y\right)<s t\right.$
(iii) $\forall i, Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity s
(list-size condition)
(weighted-degree condition)
(vanishing condition)

- find parameters ℓ and s
- interpolation step
compute $Q(x, y)$ such that: $w(x)$ solution $\Rightarrow Q(x, w(x))=0$
- root-finding step
compute all y-roots of $Q(x, y)$, keep those that are solutions

the Guruswami-Sudan algorithm

(i) $\quad \operatorname{deg}_{y}(Q) \leqslant \ell$
(ii) $\operatorname{deg}_{x}\left(Q\left(x, x^{k} y\right)<s t\right.$
(iii) $\forall i, Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity s
(list-size condition)
(weighted-degree condition)
(vanishing condition)

the Guruswami-Sudan algorithm

(i) $\quad \operatorname{deg}_{y}(Q) \leqslant \ell$
(ii) $\operatorname{deg}_{x}\left(Q\left(x, x^{k} y\right)<s t\right.$
(iii) $\forall i, Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity s
(list-size condition)
(weighted-degree condition)
(vanishing condition)

- list-size condition allows to work with polynomial matrices
identification $\mathbb{K}[x, y]_{\operatorname{deg}_{y} \leqslant \ell} \longleftrightarrow \mathbb{K}[x]^{\ell}$
$\mathrm{Q}(\mathrm{x}, \mathrm{y})=\mathrm{Q}_{0}(\mathrm{x})+\mathrm{Q}_{1}(\mathrm{x}) \mathrm{y}+\cdots+\mathrm{Q}_{\ell}(\mathrm{x}) \mathrm{y}^{\ell}$
- weighted-degree condition handled via shifted forms
degree constraints $\operatorname{deg}\left(Q_{j}(x)\right)<s t-j k$ for $j=0, \ldots, \ell$
- find parameters ℓ and s
- interpolation step
compute $\mathrm{Q}(\mathrm{x}, \mathrm{y})$ such that: $w(x)$ solution $\Rightarrow \mathrm{Q}(x, w(x))=0$
- root-finding step
compute all y-roots of $Q(x, y)$, keep those that are solutions

the Guruswami-Sudan algorithm

(i) $\quad \operatorname{deg}_{y}(Q) \leqslant \ell$
(ii) $\operatorname{deg}_{x}\left(Q\left(x, x^{k} y\right)<s t\right.$
(iii) $\forall i, Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity s
(list-size condition)
(weighted-degree condition)
(vanishing condition)

root-finding step:

quasi-linear complexity
[Alekhnovich 2005] [Neiger-Rosenkilde-Schost 2017]
fastest known interpolation step: via univariate relations $\quad \mathrm{O}^{\sim}\left(\ell^{\omega-1} s^{2} n\right)$
[Jeannerod-Neiger-Schost-Villard 2017]

- Sudan case $(s=1)$: vector rational interpolation
- general case: similar problem with s equations,
which have respective moduli $\mathrm{G}^{\mathrm{s}}, \mathrm{G}^{\mathrm{s}-1}, \ldots, \mathrm{G}$

```
- find parameters l and s
> interpolation step
compute Q (x, y) such that: w(x) solution }=>\textrm{Q}(x,w(x))=
> root-finding step
compute all y-roots of Q(x,y), keep those that are solutions
```


alternative approach: structured linear algebra

features common to all algorithms:

- use $(i)+(i i)$ to fix the linear unknowns:

$$
Q=\sum_{0 \leqslant j \leqslant \ell} \sum_{0 \leqslant i<s t-j k} q_{i, j} i^{i} y^{j}
$$

- same number of linear unknowns: $(\ell+1) s t-\frac{\ell(\ell+1)}{2} k$
- same number of linear equations: $\frac{s(s+1)}{2} n$
- call a structured linear system solver

alternative approach: structured linear algebra

features common to all algorithms:

- use $(i)+(i i)$ to fix the linear unknowns:

$$
Q=\sum_{0 \leqslant j \leqslant \ell} \sum_{0 \leqslant i<s t-j k} q_{i, j} i^{i} y^{j}
$$

- same number of linear unknowns: $(\ell+1) s t-\frac{\ell(\ell+1)}{2} k$
- same number of linear equations: $\frac{s(s+1)}{2} n$
- call a structured linear system solver

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{Q}_{0}(x) & \mathrm{Q}_{1}(x)
\end{array}\right]\left[\begin{array}{c}
2 x^{7}+2 x^{6}+5 x^{4}+2 x^{2}+4 \\
-1
\end{array}\right]=0 \bmod x^{8}}
\end{aligned}
$$

alternative approach: structured linear algebra

features common to all algorithms:

- use $(i)+(i i)$ to fix the linear unknowns:

$$
Q=\sum_{0 \leqslant j \leqslant \ell} \sum_{0 \leqslant i<s t-j k} q_{i, j} x^{i} y^{j}
$$

- same number of linear unknowns: $(\ell+1) s t-\frac{\ell(\ell+1)}{2} k$
- same number of linear equations: $\frac{s(s+1)}{2} n$
- call a structured linear system solver

$$
\begin{aligned}
& \mathrm{Q}(\mathrm{x}, \mathrm{y})=\mathrm{q}_{00}+\mathrm{q}_{01} \mathrm{x}+\mathrm{q}_{02} \mathrm{x}^{2}+\mathrm{q}_{03} \mathrm{x}^{3}+\mathrm{q}_{04} \mathrm{x}^{4}+\left(\mathrm{q}_{10}+\mathrm{q}_{11} x+\mathrm{q}_{12} \mathrm{x}^{2}\right) \mathrm{y}+\mathrm{q}_{20} \mathrm{y}^{2}:
\end{aligned}
$$

alternative approach: structured linear algebra

Vandermonde-like system

$$
\mathrm{O}\left(\ell s^{4} n^{2}\right)
$$

- [Olshevsky-Shokrollahi'99]
- linearize the vanishing condition on each point

alternative approach: structured linear algebra

Vandermonde-like system

$$
\mathrm{O}\left(\ell s^{4} n^{2}\right)
$$

- [Olshevsky-Shokrollahi'99]
- linearize the vanishing condition on each point

```
Mosaic-Hankel system
    O}(l\mp@subsup{s}{}{4}\mp@subsup{n}{}{2}
    - [Roth-Ruckenstein'00] [Zeh-Gentner-Augot 2011]
    - linearize the reversed extended key equation
    * uses an adapted [Feng-Tzeng'91] solver
```


alternative approach: structured linear algebra

Vandermonde-like system

$O\left(l s^{4} n^{2}\right)$

- [Olshevsky-Shokrollahi'99]
- linearize the vanishing condition on each point

```
Mosaic-Hankel system O(\ells}\mp@subsup{\mp@code{4}}{}{2}
- [Roth-Ruckenstein'00] [Zeh-Gentner-Augot 2011]
- linearize the reversed extended key equation
- uses an adapted [Feng-Tzeng'91] solver
```

Toeplitz-like system

- [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]
- linearize the extended key equation
- uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

alternative approach: basis reduction

features common to all algorithms:

- use (i) to fix the polynomial unknowns:

$$
\mathrm{Q}=\sum_{0 \leqslant j \leqslant \ell} \mathrm{Q}_{\mathrm{j}}(\mathrm{x}) \mathrm{y}^{j} \quad \longleftrightarrow \quad\left[\mathrm{Q}_{0}(\mathrm{x}) \cdots \mathrm{Q}_{\ell}(\mathrm{x})\right]
$$

- consider same interpolant $\mathbb{K}[x]$-module:

$$
\{\mathrm{Q} \mid(\mathfrak{i})+(\mathfrak{i i i})\}=\left\{\sum_{0 \leqslant j \leqslant \ell} \mathrm{Q}_{\mathfrak{j}}(\mathrm{x}) \boldsymbol{y}^{j} \mid \mathrm{Q}\left(\alpha_{i}, \beta_{i}\right)=0 \text { with mult. } s\right\}
$$

- use (iii) to derive a basis of the module:

$$
\{Q \mid(i)+(i i i)\}=\left\langle p_{0}(x, y), p_{1}(x, y), \ldots, p_{\ell}(x, y)\right\rangle
$$

- call a $\mathbb{K}[x]$-module basis reduction algorithm, using a shift to satisfy the weighted-degree condition (ii)

alternative approach: basis reduction

features common to all algorithms:

- use (i) to fix the polynomial unknowns:

$$
\mathrm{Q}=\sum_{0 \leqslant j \leqslant \ell} \mathrm{Q}_{\mathrm{j}}(\mathrm{x}) \mathrm{y}^{j} \quad \longleftrightarrow \quad\left[\mathrm{Q}_{0}(\mathrm{x}) \cdots \mathrm{Q}_{\ell}(\mathrm{x})\right]
$$

- consider same interpolant $\mathbb{K}[x]$-module:

$$
\{Q \mid(i)+(i i i)\}=\left\{\sum_{0 \leqslant j \leqslant \ell} Q_{j}(x) y^{j} \mid Q\left(\alpha_{i}, \beta_{i}\right)=0 \text { with mult. } s\right\}
$$

- use (iii) to derive a basis of the module:

$$
\{Q \mid(i)+(i i i)\}=\left\langle p_{0}(x, y), p_{1}(x, y), \ldots, p_{\ell}(x, y)\right\rangle
$$

- call a $\mathbb{K}[x]$-module basis reduction algorithm, using a shift to satisfy the weighted-degree condition (ii)

$$
\left.\begin{array}{rl}
\mathrm{G} & \longrightarrow \\
y-\mathrm{x} & \longrightarrow \\
\mathrm{y}^{2}(\mathrm{y}-\mathrm{x}-\mathrm{R}) & \longrightarrow \\
\vdots \\
\mathrm{y}^{\ell-1}(\mathrm{y}-\mathrm{x}) & {\left[\begin{array}{cccccc}
\mathrm{G} & 0 & 0 & 0 & \cdots & 0 \\
-\mathrm{R} & 1 & 0 & 0 & \cdots & 0 \\
0 & -\mathrm{R} & 1 & 0 & \cdots & 0 \\
0 & 0 & -R & 1 & \cdots & 0 \\
\vdots & & \ddots & \ddots & \ddots & \\
0 & \cdots & \cdots & 0 & -R & 1
\end{array}\right], ~}
\end{array}\right]
$$

alternative approach: basis reduction

features common to all algorithms:

- use (i) to fix the polynomial unknowns:

$$
\mathrm{Q}=\sum_{0 \leqslant j \leqslant \ell} \mathrm{Q}_{\mathrm{j}}(\mathrm{x}) \mathrm{y}^{j} \quad \longleftrightarrow \quad\left[\mathrm{Q}_{0}(\mathrm{x}) \cdots \mathrm{Q}_{\ell}(\mathrm{x})\right]
$$

- consider same interpolant $\mathbb{K}[x]$-module:

$$
\{Q \mid(i)+(i i i)\}=\left\{\sum_{0 \leqslant j \leqslant \ell} Q_{j}(x) y^{j} \mid Q\left(\alpha_{i}, \beta_{i}\right)=0 \text { with mult. } s\right\}
$$

- use (iii) to derive a basis of the module:

$$
\{Q \mid(i)+(i i i)\}=\left\langle p_{0}(x, y), p_{1}(x, y), \ldots, p_{\ell}(x, y)\right\rangle
$$

- call a $\mathbb{K}[x]$-module basis reduction algorithm, using a shift to satisfy the weighted-degree condition (ii)

$$
\begin{gathered}
\mathrm{G} \longrightarrow \\
\mathrm{y}-\mathrm{R} \longrightarrow \\
\mathrm{y}^{2}-\mathrm{R}^{2} \longrightarrow \\
\mathrm{y}^{3}-\mathrm{R}^{3} \longrightarrow \\
\vdots \\
\mathrm{y}^{\ell}-\mathrm{R}^{\ell} \longrightarrow
\end{gathered}\left[\begin{array}{cccccc}
\mathrm{G} & 0 & 0 & 0 & \cdots & 0 \\
-\mathrm{R} & 1 & 0 & 0 & \cdots & 0 \\
-\mathrm{R}^{2} & 0 & 1 & 0 & \cdots & 0 \\
-\mathrm{R}^{3} & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \ddots & \ddots & \\
-\mathrm{R}^{\ell} & 0 & \cdots & 0 & 0 & 1
\end{array}\right]
$$

alternative approach: basis reduction

basis reduction \approx [Mulders-Storjohann 2003]

- [Reinhard 2003]
- [Lee-O'Sullivan 2008]
- [Trifonov 2010]

$$
\begin{array}{r}
\text { quadratic in } n \\
\mathrm{O}\left(\ell^{3} \mathrm{~m}^{2} \mathrm{n}^{2}\right) \\
\mathrm{O}\left(\ell^{4} \mathrm{mn}^{2}\right) \\
\mathrm{O}\left(\mathrm{~m}^{3} \mathrm{n}^{2}\right)(\text { heuristic })
\end{array}
$$

alternative approach: basis reduction

basis reduction \approx [Mulders-Storjohann 2003]
quadratic in n

- [Reinhard 2003] $\mathrm{O}\left(\ell^{3} \mathrm{~m}^{2} \mathrm{n}^{2}\right)$
- [Lee-O'Sullivan 2008] $\mathrm{O}\left(\ell^{4} m n^{2}\right)$
- [Trifonov 2010]
$\mathrm{O}\left(\mathrm{m}^{3} \mathrm{n}^{2}\right)$ (heuristic)
basis reduction $=$ matrix-half-GCD
- [Alekhnovich 2002+2005]
~linear in n
$\mathrm{O}^{\sim}\left(\ell^{4} \mathrm{~m}^{4} n\right)$
basis reduction $=$ [Giorgi-Jeannerod-Villard 2003]
- [Beelen-Brander 2010]
- [Bernstein 2010]
- [Cohn-Heninger 2011+2015]
~linear in n
$\mathrm{O}^{\sim}\left(\ell^{4} \mathrm{mn}\right)$
$\mathrm{O}^{\sim}\left(\ell^{\omega+1} \mathrm{n}\right)$
$\mathrm{O}^{\sim}\left(\ell^{\omega} \mathrm{mn}\right)$

alternative approach: basis reduction

basis reduction \approx [Mulders-Storjohann 2003]
quadratic in n

- [Reinhard 2003] $\mathrm{O}\left(\ell^{3} \mathrm{~m}^{2} \mathrm{n}^{2}\right)$
- [Lee-O'Sullivan 2008] $\mathrm{O}\left(\ell^{4} \mathrm{mn}^{2}\right)$
- [Trifonov 2010]
$\mathrm{O}\left(\mathrm{m}^{3} \mathrm{n}^{2}\right)$ (heuristic)
basis reduction $=$ matrix-half-GCD
- [Alekhnovich 2002+2005]
~linear in n
$\mathrm{O}^{\sim}\left(\ell^{4} \mathrm{~m}^{4} n\right)$
basis reduction $=$ [Giorgi-Jeannerod-Villard 2003]
- [Beelen-Brander 2010]
- [Bernstein 2010]
- [Cohn-Heninger 2011+2015]
~linear in n
$\mathrm{O}^{\sim}\left(\ell^{4} \mathrm{mn}\right)$
$\mathrm{O}^{\sim}\left(\ell^{\omega+1} n\right)$
$\mathrm{O}^{\sim}\left(\ell^{\omega} \mathrm{mn}\right)$
basis reduction $=$ fastest known
- [Neiger 2016] [Neiger-Vu 2017]
- do not go this way!
\rightsquigarrow here, better call fast vector interpolation directly

generalizations of the interpolation step

summary for [Sudan '97] [Guruswami-Sudan '99]:

- list-decoding of Reed-Solomon codes, extends error-correction bound
compute $\mathrm{Q}(x, y)=\mathrm{Q}_{0}+\mathrm{Q}_{1} y+\cdots+\mathrm{Q}_{\mathrm{m}} y^{\ell}$ such that
- $\left[Q_{0}, \ldots, Q_{\ell}\right]$ has small shifted degree
- $Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity μ for all i

generalizations of the interpolation step

[Kötter-Vardy 2003]
soft-decision decoding of Reed-Solomon codes
$\alpha_{1}, \ldots, \alpha_{n}$ are not pairwise distinct
compute $\mathrm{Q}(\mathrm{x}, \mathrm{y})=\mathrm{Q}_{0}+\mathrm{Q}_{1} \mathrm{y}+\cdots+\mathrm{Q}_{\ell} \mathrm{y}^{\ell}$ such that

- $\left[Q_{0}, \ldots, Q_{\ell}\right]$ has small shifted degree
- $Q\left(\alpha_{i}, \beta_{i}\right)=0$ with multiplicity μ_{i} for all i

generalizations of the interpolation step

[Guruswami-Rudra 2006]
list-decoding of folded Reed-Solomon codes:
further extends the error-correction bound up to the information-theoretic limit
[Devet-Goldberg-Heninger 2012]
Optimally robust Private Information Retrieval
compute $\mathrm{Q}\left(x, y_{1}, \ldots, y_{s}\right)=\sum_{\left(j_{1}, \ldots, j_{s}\right) \in \Gamma} Q_{j_{1}, \ldots, j_{s}} y_{1}^{j_{1}} \cdots y_{s}^{j_{s}}$ such that

- $\left[Q_{j_{1}, \ldots, j_{s}}\right]_{\left(j_{1}, \ldots, j_{s}\right) \in \Gamma}$ has small shifted degree
- $Q\left(\alpha_{i}, \beta_{i 1}, \ldots, \beta_{i s}\right)=0$ with multiplicity μ for all i

generalizations of the interpolation step

[Beelen-Rosenkilde-Solomatov 2022]
[Beelen-Neiger (preprint) 2023]
Guruswami-Sudan algorithm in the algebraic-geometry code setting
up to more precomputations, very similar context:
... also up to many technical details

$$
\mathcal{M}_{\mathrm{s}, \ell, \beta}=\left\{\mathrm{Q}=\sum_{\mathrm{t}=0}^{\ell} z^{\mathrm{t}} \mathrm{Q}_{\mathrm{t}} \in \mathrm{~F}[z] \mid \mathrm{Q}_{\mathrm{t}} \in \Delta(-\mathrm{tG}),\right.
$$

Q has a root of multiplicity at least s at $\left(P_{j}, \beta_{j}\right)$ for all $\left.j\right\}$.

$$
\mathcal{M}_{s, \ell, \beta}=\bigoplus_{t=0}^{s-1}(z-R)^{t} \Delta\left(G_{t}\right) \oplus \bigoplus_{t=s}^{\ell} f_{t}(z)(z-R)^{s} \Delta\left(G_{t}\right) .
$$

summary

computer algebra

Reed-Solomon decoding

polynomial matrices
efficient list decoding

- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- context and unique decoding problem
- key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- core algorithms \& shifted normal forms
- fast divide and conquer interpolation
- the Guruswami-Sudan algorithm
- via structured systems or basis reduction
- a word on extensions

[^0]: sage: $M .\langle x>=G F(7) I$
 sage: $A=$ natrix (M)
 sage: A. hermite form()
 sage: A.hermite form(trans formation=True)
 sage: $A=$ natrix $(M$
 sage: A.hermite form(transformation=True, include zero_rows=False)
 sage: $H, U=$ A.hermite_forn(transformation=True, include_zero_rows=True); H, U
 \qquad
 sage: $H, U=A . h e r n i t e$ forn(transformation=True, include_zero_rows=False)
 sage: $U+A$
 $\left.1 x \cdot 2^{*} x\right\}$
 sage: $U^{1}-A=H$

 See also: is hermite

[^1]: approach: rational reconstruction

 $$
 \left\{\begin{array}{l}
 \Lambda R=\mu \bmod G \\
 \operatorname{deg}(\Lambda) \leqslant e, \quad \operatorname{deg}(\mu)<n-e, \quad \Lambda \text { monic }
 \end{array}\right.
 $$

 $$
 \text { note: } e+k<n-e
 $$

