Vincent Neiger LIP6, Sorbonne Université, France

designing fast Guruswami-Sudan decoders using univariate polynomial matrix algorithms

CAIPI symposium @ Bordeaux November 9, 2023

outline

computer algebra

Reed-Solomon decoding

polynomial matrices

efficient list decoding

outline

computer algebra

- ▶ efficient algorithms and software
- ▶ for matrices over a field
- ▶ for univariate polynomials

Reed-Solomon decoding

polynomial matrices

efficient list decoding

dern Computer Algebra 🔄 🖬

Euclid's GCD -300

Gaussian elimination 179

Newton's method 1669

	F searcher(s)	Principal Discoveries	of Efficient Methods of Co	mputing the D	ET.	Fourth Edition
	earcher(s)					🛆 Springe
	(Parcher(s)	Dete	1 and 1	Number of	AnnHanston	
Res		Date	Sequence Lengths	DF1 values	Application	
C. I	F. Gauss [10]	1805	Any composite integer	All	Interpolation of orbits of celestial bodies	
F. C	Carlini [28]	1828	12	-	Harmonic analysis of barometric pressure	FFT 1805 '65
A. 9	Smith [25]	1846	4, 8, 16, 32	5 or 9	Correcting deviations in compasses on ships	11111000, 00
J. D). Everett [23]	1860	12	5	Modeling underground temperature deviations	
C .	Runge [7]	1903	2 ⁿ k	All	Harmonic analysis of functions	
К. 9	Stumpff [16]	1939	2"k, 3"k	All	Harmonic analysis of functions	
Dar	nielson and anczos [5]	1942	2"	All	X-ray diffraction in crystals	
L.H	I. Thomas [13]	1948	Any integer with relatively prime factors	All	Harmonic analysis of functions	
I. J.	Good [3]	1958	Any integer with relatively prime factors	All	Harmonic analysis of functions	
Coo	oley and ukey [1]	1965	Any composite integer	All	Harmonic analysis of functions	Karatsuba '62
S. V	Winograd [14]	1976	Any integer with relatively prime factors	All	Use of complexity theory for harmonic analysis	

Fuclid's GCD -300 Newton's method 1669 Gaussian elimination 179 Principal Discoveries of Efficient Methods of Computing the DFT Number of Researcher(s) Sequence Lengths **DFT Values** Application Date C. F. Gauss [10] 1805 Any composite integer Ali Interpolation of orbits of celestial bodies F. Carlini [28] 1828 12 Harmonic analysis of -FFT 1805, '65 barometric pressure A. Smith [25] 1846 4.8.16.32 5 or 9 Correcting deviations in compasses on ships I. D. Everett [23] 1860 12 5 Modeling underground temperature deviations C. Runge [7] 1903 2nk All Harmonic analysis of functions K. Stumpff [16] 2"k. 3"k 1939 All Harmonic analysis of functions Danielson and 1942 2" All X-ray diffraction in Lanczos [5] crystals L. H. Thomas [13] 1948 All Harmonic analysis of Any integer with relatively prime factors functions Any integer with I. I. Good [3] 1958 All Harmonic analysis of relatively prime factors functions Karatsuba '62 Cooley and 1965 Any composite integer Harmonic analysis of All Tukey [1] functions S. Winograd [14] 1976 Any integer with All Use of complexity theory relatively prime factors for harmonic analysis

error correcting codes

cryptographic protocols

XXth-XXIst centuries : digital data & interconnected networks integrity – confidentiality

discrete structures : exact and intensive computations

error correcting codes

cryptographic protocols

XXth-XXlst centuries : digital data & interconnected networks integrity – confidentiality

discrete structures : exact and intensive computations

- ▶ matrices of large size, with sparsity or structure
- ▶ polynomials and polynomial matrices in one variable
- polynomials in several variables

goal of computer algebra

fast algorithms: complexity & efficient implementations

reduce to efficient building blocks

- MatMul: matrix multiplication
- ▶ PolMul: polynomial multiplication

measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field \mathbb{K}

low complexity boundlow execution time

low memory usage, power consumption, ...

prime field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ field extension $\mathbb{F}_p[x]/\langle f(x)\rangle$ rational numbers \mathbb{Q}

measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field $\mathbb K$

low complexity boundlow execution time

low memory usage, power consumption, ...

prime field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ field extension $\mathbb{F}_p[x]/\langle f(x)\rangle$ rational numbers \mathbb{Q}

algebraic complexity bounds

- \rightsquigarrow count number of operations in $\mathbb K$
 - standard complexity model for algebraic computations
 - \bullet accurate for finite fields $\mathbb{K} = \mathbb{F}_p$
 - $\ref{eq: product of the state of the state$

measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field $\mathbb K$

low complexity boundlow execution time

low memory usage, power consumption, ...

prime field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ field extension $\mathbb{F}_p[x]/\langle f(x)\rangle$ rational numbers \mathbb{Q}

practical performance

 \rightsquigarrow measure software running time

this talk:

- ${\scriptstyle \blacktriangleright}$ working over $\mathbb{K}=\mathbb{F}_p$ with word-size prime p
- ► Intel Core i7-7600U @ 2.80GHz, no multithreading

matrices: multiplication

$$\mathbf{M} = \begin{bmatrix} 28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28 \end{bmatrix} \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text{ matrix over } \mathbb{K} \text{ (here } \mathbb{F}_{97} \text{)}$$

fundamental operations on $m\times m$ matrices:

- ${\scriptstyle \bullet} \, \text{addition} \text{ is "quadratic"} \colon O(m^2) \text{ operations in } \mathbb{K}$
- naive multiplication is cubic: $O(m^3)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

matrices: multiplication

$$\mathbf{M} = \begin{bmatrix} 28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28 \end{bmatrix} \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text{ matrix over } \mathbb{K} \text{ (here } \mathbb{F}_{97} \text{)}$$

fundamental operations on $m\times m$ matrices:

- \blacktriangleright addition is "quadratic": $O(m^2)$ operations in $\mathbb K$
- naive multiplication is cubic: $O(m^3)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

bonus: some notes

biblio: https://www.sciencedirect.com/science/article/pii/S0747717113000631

- explicit reductions between inversion & MatMul & variants of Gaussian elimination / echelon form computation
- ► constants in the O(·) complexities when using classical matrix multiplication (w = 3) or Strassen's algorithm

"not closed": it is open, but

- there is a randomized algorithm for Frobenius form computation which has complexity O(MatMul) ~> http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf
- recent developments for the characteristic polynomial gives new insight concerning core operations typically used in Frobenius form algorithms

polynomials: multiplication

 $p = 87x^7 + 74x^6 + 60x^5 + 46x^4 + 16x^3 + 41x^2 + 86x + 69$

 $p\in \mathbb{K}[x]_{<8} \quad \longrightarrow \text{univariate polynomial in } x \text{ of degree} <8 \text{ over } \mathbb{K}$

fundamental operations on polynomials of degree < d:

- $\scriptstyle \bullet$ addition and Horner's evaluation are linear: O(d)
- naive multiplication is quadratic: $O(d^2)$

 $[\mathsf{Karatsuba'62}] \qquad \mathsf{M}(d) \in \mathsf{O}(d^{1.58})$

breakthrough: subquadratic polynomial multiplication

polynomials: multiplication

 $p = 87x^7 + 74x^6 + 60x^5 + 46x^4 + 16x^3 + 41x^2 + 86x + 69$

 $p\in \mathbb{K}[x]_{<8} \quad \longrightarrow \text{univariate polynomial in } x \text{ of degree} <8 \text{ over } \mathbb{K}$

fundamental operations on polynomials of degree < d:

- $\scriptstyle \bullet$ addition and Horner's evaluation are linear: O(d)
- naive multiplication is quadratic: $O(d^2)$

 $[\mathsf{Karatsuba'62}] \qquad \mathsf{M}(d) \in \mathsf{O}(d^{1.58})$

breakthrough: subquadratic polynomial multiplication

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

- change of representation by evaluation-interpolation
- \blacktriangleright used in practice as soon as $d\approx 100$
- FFT techniques using (virtual) roots of unity

note: $M(d) \in O(d \log(d))$ if provided a "good" root of unity

most problems have quasi-linear complexity

thanks to reductions to PolMul

- addition f + g, multiplication f * g
- division with remainder f = qg + r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

most problems have quasi-linear complexity

thanks to reductions to PolMul

$O(\mathsf{M}(d))$

- \blacktriangleright addition f+g, multiplication $f\ast g$
- \blacktriangleright division with remainder f=qg+r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

most problems have quasi-linear complexity

thanks to reductions to PolMul

O(M(d))

- \blacktriangleright addition f+g, multiplication $f\ast g$
- \blacktriangleright division with remainder f=qg+r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

$O(\mathsf{M}(d) \mathsf{log}(d))$

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

most problems have quasi-linear complexity

thanks to reductions to PolMul

O(M(d))

- \blacktriangleright addition f+g, multiplication $f\ast g$
- \blacktriangleright division with remainder f=qg+r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

$O(\mathsf{M}(d) \mathsf{log}(d))$

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

bonus: some notes

interpolation and multipoint eval. in $O(\ensuremath{\text{PolMul}})$ "not closed":

- remains open for an arbitrary set of points, with no assumption, but:
- by design, solved for FFT points (powers of some root of unity)
- more generally, solved for points forming a geometric sequence https://www.sciencedirect.com/science/article/pii/S0885064X05000026
- in many applications of interpolation/evaluation, one can choose the points, in which case O(PolMul) is feasible

polynomial multiplication in $O(d \log(d))$ "not closed":

- remains open over an arbitrary field, concerning algebraic complexity
- solved when the field possesses suitable roots of unity for FFT
- method of choice in practice (using several primes and CRT if needed) when working over prime finite fields Z/pZ
- recent progress in the bit complexity model https://www.sciencedirect.com/science/article/pii/S0885064X19300378 https://dl.acm.org/doi/abs/10.1145/3505584

<pre>sage: M.degree_matrix(shifts-[-1,2], row_wise-False) [6 - 2 - 1] [5 - 2 - 2] mermite_form(include_zero_rows=True, transformation=False) Return the Hermite form of this matrix. The Hermite form is also normalized, i.e., the pivot polynomials are monic. INPUT:</pre>	<pre>1/ 0100 the length up to be beast with 5 Vectory rem_order(order); 100 101 102 103 104 105 105 105 105 105 105 105 105</pre>
matrices soft	ware polynomials
<pre>sage: H.ccx = GF(7)[] sage: A = matrix(H, 2; 3; [x, 1, 2*x, x, 1*x, 2]) sage: A = matrix(H, 2; 3; [x, 1, 2*x, 1*x, 2]) sage: A = matrix[e_form(transformation=True) [</pre>	<pre>187</pre>

See also: is_hermite().

is_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.

// update all rows of appbas and residual in indices_nonzero exce at_lzz_pX_approximant.cpp 13

open-source mathematics software system Python/Cython high-performance exact linear algebra LinBox – fflas-ffpack $C/C++$ high-performance polynomials (and more) NTL & FLINT $C/C++$	 choice of algorithms data structures and storage cache efficiency SIMD vectorization instructions multithreading, GPU programming
matrices soft	ware polynomials
<pre>sage: Hcc- = GF(7)[] sage: A = matrix(H, 2, 3, 1k, 1, 2*x, x, 1*x, 2]) sage: A = matrix(H, 2, 3, 1k, 1, 2*x, x, 1*x, 2]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 2*x, 2*x, 2, 4*x]) sage: A = matrix(H, 2, 3, 1, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1, 1, 1) sage: A = matrix(H, 2, 3, 1) sage:</pre>	<pre>137</pre>
See also: is_hemite(). s_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.	208 // if indices_nonzero is empty, const_residual is already zero, there 219 if (not indices_nonzero.empty()) 211 (212 // update all rows of appbas and residual in indices nonzero exce

open-source mathematics software system Python/Cython high-performance exact linear algebra LinBox – fflas-ffpack $C/C++$ high-performance polynomials (and more) NTL & FLINT $C/C++$			 choice of algorithms data structures and storage cache efficiency SIMD vectorization instructions multithreading, GPU programming 			ant ba trix) r t ring in _index r all j
	matrices	soft	ware	polynomials		
sage: Mxx = GF(7)[] sage: A = matrix(M, 2, sage: A.hermite form(1) [x] 2 [0 x 5*x + sage: A.hermite_form(t) [x] 2*x] 11	what y with fflas-ffp	y ou can com p ack	bute in about 1	second with NTL	d::max_element(rem_o	
0 x 5*x + 2], [6 ▶ PLUQ ^{(M,} 2, 3, [x, → PLUQ ^{(M,} 2, 3, [x,	m = 3800	1.00s	► PolMul	$d=7 imes10^{6}$	1.03s	
► LinSys	$\mathfrak{m}=3800$	zero_rows=True); H, U 1.00s	► Division	$d=4\times 10^{6}$	0.96s	
► MatMul	m = 3000	0.97s	► XGCD	$d=2\times 10^5$	0.99s	
► Inverse	m = 2800	1.01s	► MinPoly	$d=2\times 10^5$	1.10s	
See CharPoly	m = 2000	1.09s de zero vectors=True)	► MPeval	$d = 1 \times 10^4$	1.01s Wal is already zero,	

src/mat_lzz_pX_approximant.c

Return a boolean indicating whether this matrix is in Hermite form

outline

computer algebra

- ▶ efficient algorithms and software
- ▶ for matrices over a field
- ▶ for univariate polynomials

Reed-Solomon decoding

polynomial matrices

efficient list decoding

outline

computer algebra

- \blacktriangleright efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials

Reed-Solomon decoding

- $\scriptstyle \bullet \mbox{ context}$ and unique decoding problem
- ▶ key equations and how to solve them
- correcting more errors?

polynomial matrices

efficient list decoding

error-correcting codes

goal:

reliable data transmission over unreliable communication channel modern development pioneered by Hamming (1940s), Shannon (1948)

strategy:

add redundancy to the message add redundancy to the message add redundancy to the message

$$\begin{array}{c} \text{intended word} & \longrightarrow & \text{code word} \\ (w_0, \dots, w_k) & \longrightarrow & (c_1, \dots, c_n) \\ & \text{with} \ \frac{k+1}{n} \leqslant 1 \end{array}$$

(drawing: courtesy of Johan Nielsen→Rosenkilde)

encoding: adding redundancy

transmission over unreliable channel

noise \Rightarrow transmission errors:

- $\textbf{ number of errors}\leqslant e, \text{ meaning } \#\{i \mid w(\alpha_i)\neq \beta_i\}\leqslant e \qquad (\text{Hamming distance})$
- possible received words = balls of radius e centered on the code words

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- . $(\alpha_1, \dots, \alpha_n) = \text{encoding points}$. $(\beta_1, \dots, \beta_n) = \text{received word}$
- . n e = agreement

well-defined:

- . existence of w?
- . uniqueness of w?

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- $\begin{array}{l} . \ (\alpha_1,\ldots,\alpha_n) = \text{encoding points} \\ . \ (\beta_1,\ldots,\beta_n) = \text{received word} \end{array}$
- . n e = agreement

well-defined:

. existence of w?

. uniqueness of w?

n = 5, k = 4

- e = 0: Lagrange interpolation
- e = 1: no error detection!

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- . $(\alpha_1, \dots, \alpha_n) = \text{encoding points}$. $(\beta_1, \dots, \beta_n) = \text{received word}$
- . n e = agreement

well-defined:

- . existence of w?
- . uniqueness of w?

n = 5, k = 3

- e = 0: Lagrange interpolant exists!
- e = 1: up to 5 possible solutions...
 - \rightarrow error is detected, not corrected

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- $\begin{array}{l} . \ (\alpha_1,\ldots,\alpha_n) = \text{encoding points} \\ . \ (\beta_1,\ldots,\beta_n) = \text{received word} \end{array}$
- . n e = agreement

well-defined:

- . existence of w?
- . uniqueness of w?

n = 5, k = 3

- e = 0: Lagrange interpolant exists!
- e = 1: up to 5 possible solutions...
 - \rightarrow error is detected, not corrected

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- . $(\alpha_1, \ldots, \alpha_n) = encoding points$
- . $(\beta_1, \ldots, \beta_n) = received word$
- . n e = agreement

well-defined:

. existence of w? by construction \bigstar . uniqueness of w? a priori \clubsuit ... yet, guaranteed **if** no overlap between the balls of possible received words \bigstar

- n = 5, k = 3
- e = 0: Lagrange interpolant exists!
- e = 1: up to 5 possible solutions...
 - \rightarrow error is detected, not corrected

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- $(\alpha_1, \ldots, \alpha_n) =$ encoding points
- . $(\beta_1, \ldots, \beta_n) = \text{received word}$
- . n e = agreement

well-defined:

. existence of *w*? by construction \bigstar . uniqueness of *w*? a priori \clubsuit ... yet, guaranteed **if** no overlap between the balls of possible received words \bigstar $\bullet = code word$ = received word

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- $(\alpha_1,\ldots,\alpha_n) =$ encoding points
- . $(\beta_1, \ldots, \beta_n) = \text{received word}$
- . n e = agreement

well-defined:

. existence of *w*? by construction \oint . uniqueness of *w*? a priori \P ... yet, guaranteed **if** no overlap between the balls of possible received words \oint

> unique decoding bound: $2e < d_{min}$

decoding:

find the polynomial w(x) of degree $\leq k$ such that $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leq e$

- $(\alpha_1,\ldots,\alpha_n) =$ encoding points
- . (β_1,\ldots,β_n) = received word
- . n e = agreement

well-defined:

. existence of *w*? by construction \oint . uniqueness of *w*? a priori \P ... yet, guaranteed **if** no overlap between the balls of possible received words \oint

> unique decoding bound: $2e < d_{min}$

Reed-Solomon case: $e < \frac{n-k}{2}$

bonus: minimum distance for Reed-Solomon codes

• for $v \neq w$ polynomials of degree $\leq k$ over the base field K. $(v(\alpha_1), \ldots, v(\alpha_n))$ and $(w(\alpha_1), \ldots, w(\alpha_n))$ agree at $\leq k$ positions \Rightarrow distance at least n - k between two code words

• for v = 0 and $w = (x - \alpha_1) \cdots (x - \alpha_k)$, the code words are $(0, \ldots, 0)$ and $(0, \ldots, 0, w(\alpha_{k+1}), \ldots, w(\alpha_n))$ \Rightarrow two code words at distance exactly n - k

 \implies minimum distance $d_{min} = n - k$ (for dimension reasons, this is the best one can hope for)

in this case, unique decoding condition: $e < \frac{n-k}{2}$

summary: unique decoding problem

input:

- $\blacktriangleright \, \alpha_1, \ldots, \, \alpha_n$ the n distinct evaluation points in $\mathbb{K},$
- \mathbf{k} the degree bound, e the error-correction radius,
- $\begin{array}{l} \bullet \left(\beta_1,\ldots,\beta_n\right) \text{ the received word in } \mathbb{K}^n \\ \textit{unique decoding requirement: } e < \frac{n-k}{2} \\ \textit{output: the polynomial } w(x) \text{ in } \mathbb{K}[x] \text{ such that} \\ & \deg(w) \leqslant k \quad \text{and} \quad \#\{i \mid w(\alpha_i) \neq \beta_i\} \leqslant e \\ \end{array}$

summary: unique decoding problem

input:

- $\blacktriangleright \, \alpha_1, \ldots, \, \alpha_n$ the n distinct evaluation points in $\mathbb{K},$
- \mathbf{k} the degree bound, e the error-correction radius,

$$\begin{array}{l} \bullet (\beta_1, \ldots, \beta_n) \text{ the received word in } \mathbb{K}^n \\ \textit{unique decoding requirement: } e < \frac{n-k}{2} \\ \textit{output: the polynomial } w(x) \text{ in } \mathbb{K}[x] \text{ such that} \\ & \deg(w) \leqslant k \quad \text{and} \quad \#\{i \mid w(\alpha_i) \neq \beta_i\} \leqslant e \end{array}$$

multiple viewpoints + fruitful interactions: [coding theory]/[computer algebra]

Inear recurrence generator – Toeplitz linear system – Padé approximation
 [Berlekamp'68] [Massey'69] [Brent-Gustavson-Yun'80] [Beckermann-Labahn'94]

modified extended GCD – rational function reconstruction
 [Sugiyama-Kasahara-Hirasawa-Namekawa'75] [Welch-Berlekamp'86]
 [Knuth'70] [Schönhage'71] [Moenck'73] [Brent-Gustavson-Yun'80]

Vandermonde-like linear system – vector rational interpolation
 [Olshevsky-Shokrollahi'99] [Kötter-Vardy 2003]
 [Morf'74] [Bitmead-Anderson'80] [Pan'90] [van Barel-Bultheel'92] [Beckermann-Labahn'97]

one target complexity: $O(n^3) \rightarrow O(n^2) \rightarrow O(M(n) \log(n))$

encoding/decoding efficiency: basic remarks

encoding $w(x) \mapsto (w(\alpha_1), \dots, w(\alpha_n))$

- naive: n times Horner evaluation O(k) O(nk)
- ► fast: $\frac{n}{k}$ times k-point evaluation $O(\frac{n}{k}M(k)\log(k)) \subseteq O(M(n)\log(n))$

points in geometric sequence \Rightarrow no log factor [Aho-Steiglitz-Ullman'75] [Bostan-Schost 2005]

encoding/decoding efficiency: basic remarks

encoding $w(x) \mapsto (w(\alpha_1), \dots, w(\alpha_n))$

naive: n times Horner evaluation O(k)
 fast: $\frac{n}{k}$ times k-point evaluation
 O($\frac{n}{k}$ M(k) log(k)) ⊆ O(M(n) log(n))

points in geometric sequence \Rightarrow no log factor [Aho-Steiglitz-Ullman'75] [Bostan-Schost 2005]

naive decoding

- ▶ infinitely lucky decoder: there was no error
 → Lagrange interpolation in O(M(n) log(n))
- ▶ very lucky decoder: at most 1 error, unknown position \rightsquigarrow trial and error, worst case $O(nM(n)\log(n))$ \bigcirc \bigcirc
- ► lucky decoder: at most 2 errors, unknown positions \rightsquigarrow trial and error, worst case $O(n^2M(n)\log(n))$
- ordinary decoder: at most e errors, unknown positions \rightsquigarrow life is tough, complexity exponential in e

next slides = one can be both ordinary and 50

linear key equations and "rational interpolation" decoding

known interpolant R(x)such that $R(\alpha_i) = \beta_i$ $\begin{array}{l} \text{unknown error-locator} \\ \Lambda(x) = \prod_{i \mid \text{error}} (x - \alpha_i) \end{array}$

 $\Rightarrow \mathsf{deg}(\Lambda) \leqslant e$

key equations: $\Lambda(\alpha_i)R(\alpha_i) = \Lambda(\alpha_i)w(\alpha_i)$ for $1 \le i \le n$

multivariate, non-linear, polynomial system: a priori difficult (n equations of degree 2 in the k + 1 + e coefficients of w and Λ)

approach: linearization

introducing the new unknown $\mu = \Lambda w$ of degree $\leqslant k + e$

linear key equations and "rational interpolation" decoding

known interpolant R(x)such that $R(\alpha_i) = \beta_i$ unknown error-locator $\Lambda(x) = \prod_{i \mid error} (x - \alpha_i)$

 $\Rightarrow \mathsf{deg}(\Lambda) \leqslant e$

key equations: $\Lambda(\alpha_i)R(\alpha_i) = \Lambda(\alpha_i)w(\alpha_i)$ for $1 \le i \le n$

multivariate, non-linear, polynomial system: a priori difficult (n equations of degree 2 in the k + 1 + e coefficients of w and Λ)

approach: linearization

introducing the new unknown $\mu = \Lambda w$ of degree $\leq k + e$

linear system with n equations and k + 1 + 2e unknowns $(k + 1 + 2e \leq n)$:

- \blacktriangleright Gaussian elimination $O(n^3) \rightarrow O(n^\omega)~$ [Bunch-Hopcroft'74] [Ibarra-Moran-Hui'82]
- ► $O(n^2) \rightarrow O(M(n) \log(n))$ exploiting the Vandermonde-like structure [Morf'74] [Bitmead-Anderson'80] [Pan'90] [Olshevsky-Shokrollahi'99]

► $O(n^2) \rightarrow O(M(n) \log(n))$ via vector rational interpolation [Beckermann'92] [van Barel-Bultheel'92] [Beckermann-Labahn'94,'97] [Kötter-Vardy 2003]

univariate key equation and "rational reconstruction" decoding

known interpolant R(x)unknown error-locator unknown linearizer $\Lambda(\mathbf{x}) = \prod_{i \mid error} (\mathbf{x} - \alpha_i)$ such that $R(\alpha_i) = \beta_i$ $\mu(\mathbf{x}) = \mathbf{\Lambda}(\mathbf{x}) \mathbf{w}(\mathbf{x})$ $deg(u) \le e + k$ $deg(\Lambda) \leq e$ $\Lambda(\alpha_i) \mathbf{R}(\alpha_i) = \mu(\alpha_i)$ for $1 \leq i \leq n$ $\Lambda(x)R(x) = \mu(x) \mod^{\Psi} (x - \alpha_i) \text{ for } 1 \leq i \leq n$ $G(x) = \prod_{1 \leq i \leq n} (x - \alpha_i)$, degree n [Welch-Berlekamp'86] univariate key equation: $\Lambda(x)R(x) = \mu(x) \mod G(x)$ $\begin{cases} \Lambda R = \mu \mod G \\ \deg(\Lambda) \leqslant e, \ \deg(\mu) < n - e, \ \Lambda \ \text{monic} \end{cases}$ approach: rational reconstruction

note: e + k < n - e

univariate key equation and "rational reconstruction" decoding

known interpolant R(x)unknown error-locator unknown linearizer $\Lambda(\mathbf{x}) = \prod_{i \mid error} (\mathbf{x} - \alpha_i)$ such that $R(\alpha_i) = \beta_i$ $\mu(x) = \Lambda(x)w(x)$ $deg(\mu) \le e + k$ $deg(\Lambda) \leq e$ $\Lambda(\alpha_i)R(\alpha_i) \ = \ \mu(\alpha_i) \text{ for } 1 \leqslant i \leqslant n$ $\bigwedge(x) R(x) = \mu(x) \mod (x - \alpha_i) \text{ for } 1 \leq i \leq n$ $G(x) = \prod_{1 \le i \le n} (x - \alpha_i)$, degree n [Welch-Berlekamp'86] univariate key equation: $\Lambda(x)R(x) = \mu(x) \mod G(x)$ $\begin{cases} \overline{\Lambda R = \mu \mod G} \\ \deg(\Lambda) \leq e, \ \deg(\mu) < n - e, \ \Lambda \ \text{monic} \end{cases}$ approach: rational reconstruction note: e + k < n - e• unique rational solution $\frac{\mu}{\Lambda}$, which has to be $\frac{\Lambda w}{\Lambda} = w$

 \blacktriangleright solved by XGCD algorithm stopped at suitable iteration $O(n^2)$ [Sugiyama-Kasahara-Hirasawa-Namekawa'75] [Modern Computer Algebra, v.z.Gathen-Gerhard, 2003]

 $\begin{array}{l} \textbf{ fast XGCD algorithms can be adapted} \rightarrow O(M(n) \log(n)) \\ [Knuth'70] [Schönhage'71] [Moenck'73] [Gustavson-Yun'79][Brent-Gustavson-Yun'80] \end{array}$

classical key equation and "Padé approximation" decoding

$$\begin{cases} \Lambda R = \mu \mod G = \mu + \nu G & \text{with } \deg(\Lambda) \leqslant e, \Lambda \text{ monic} \\ \deg(\mu) \leqslant \deg(\Lambda) + k, & \deg(\nu) \leqslant \deg(\Lambda) - 1 \\ & & \downarrow \text{reverse w.r.t. } x^{n-1+\deg(\Lambda)} \\ \begin{cases} \bar{\Lambda}\bar{R} = \bar{\mu}x^{n-k-1} + \bar{\nu}\bar{G} = \bar{\nu}\bar{G} \mod x^{n-k-1} & \text{with } \deg(\bar{\Lambda}) \leqslant e, \bar{\Lambda}(0) = 1 \\ \deg(\bar{\mu}) \leqslant \deg(\bar{\Lambda}) + k, & \deg(\bar{\nu}) \leqslant \deg(\bar{\Lambda}) - 1 \\ & \downarrow S = \bar{R}/\bar{G} \mod x^{n-k-1} & \text{(Newton iteration)} \end{cases} \end{cases}$$

$$\text{approach: linear recurrence} \qquad \begin{cases} \bar{\Lambda}S = \bar{\nu} \mod x^{n-k-1} \\ \deg(\bar{\lambda}) \leqslant e, & \deg(\bar{\nu}) < e, & \bar{\Lambda}(0) = 1 \end{cases}$$

classical key equation and "Padé approximation" decoding

$$\begin{cases} \Lambda R = \mu \mod G = \mu + \nu G & \text{with } \deg(\Lambda) \leqslant e, \Lambda \text{ monic} \\ \deg(\mu) \leqslant \deg(\Lambda) + k, & \deg(\nu) \leqslant \deg(\Lambda) - 1 \\ & & \downarrow \text{ reverse w.r.t. } x^{n-1 + \deg(\Lambda)} \\ \begin{cases} \bar{\Lambda}\bar{R} = \bar{\mu}x^{n-k-1} + \bar{\nu}\bar{G} = \bar{\nu}\bar{G} \mod x^{n-k-1} & \text{with } \deg(\bar{\Lambda}) \leqslant e, \bar{\Lambda}(0) = 1 \\ \deg(\bar{\mu}) \leqslant \deg(\bar{\Lambda}) + k, & \deg(\bar{\nu}) \leqslant \deg(\bar{\Lambda}) - 1 \\ & \downarrow S = \bar{R}/\bar{G} \mod x^{n-k-1} & \text{(Newton iteration)} \end{cases} \\ \end{cases}$$
approach: linear recurrence
$$\begin{cases} \bar{\Lambda}S = \bar{\nu} \mod x^{n-k-1} \\ \deg(\bar{\lambda}) \leqslant e, & \deg(\bar{\nu}) < e, & \bar{\Lambda}(0) = 1 \end{cases}$$

- unique rational solution $\bar{\nu}/\bar{\Lambda}$, which yields Λ
- coefficients of S: linearly recurrent sequence generated by Λ
- \rightsquigarrow specific algorithms in $O(n^2)$ [Berlekamp'68] [Massey'69]
- \rightsquigarrow in fact equivalent to the XGCD approach $O(n^2) \rightarrow O(M(n) \log(n))$ [Sugiyama et al.'75] [Brent-Gustavson-Yun'80] [Dornstetter'84]
- Find Ā by homogeneous Toeplitz linear system $O(n^2) \rightarrow O(M(n) \log(n))$ use direct Padé approximation $O(n^2) \rightarrow O(M(n) \log(n))$
- ▶ use direct Padé approximation $O(n^2) \rightarrow O(M(n) \log(n))$ [Padé 1894] [Sergeyev'86][van Barel-Bultheel'91][Beckermann-Labahn'94]

non-unique decoding

how to decode more errors?

- . transmission with $\leqslant e$ errors
- . where $e \geqslant d_{\text{min}}/2$

non-unique decoding

how to decode more errors?

. transmission with $\leqslant e$ errors

. where $e \ge d_{\min}/2$

well-defined?

. existence of *w*: *i*, by construction
. uniqueness of *w*: *i*, possibly several code words at the same distance

. closest code word not necessarily the sent code word!

non-unique decoding

how to decode more errors?

. transmission with $\leqslant e$ errors

. where $e \ge d_{min}/2$

well-defined?

. existence of *w*: →, by construction
. uniqueness of *w*: →, possibly several code words at the same distance

. closest code word not necessarily the sent code word!

[Elias'50s]

list decoding problem

for convenience, we use the agreement parameter t = n - e: $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leqslant e \quad \Leftrightarrow \quad \#\{i \mid w(\alpha_i) = \beta_i\} \geqslant t$

input:

- $\alpha_1, \ldots, \alpha_n$ the n distinct evaluation points in \mathbb{K} ,
- k the degree bound, t = n e the agreement,
- ${\scriptstyle \blacktriangleright}\,(\beta_1,\ldots,\beta_n)$ the received word in \mathbb{K}^n

list decoding requirement: $t^2 > kn$ [Guruswami-Sudan'99]

output: all polynomials w(x) in $\mathbb{K}[x]$ such that

 $\mathsf{deg}({\boldsymbol{w}}) \leqslant k \qquad \mathsf{and} \qquad \#\{i \mid {\boldsymbol{w}}(\alpha_i) = \beta_i\} \geqslant t$

outline

computer algebra

- \blacktriangleright efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials

Reed-Solomon decoding

- ${\scriptstyle \blacktriangleright}$ context and unique decoding problem
- ▶ key equations and how to solve them
- correcting more errors?

polynomial matrices

efficient list decoding

outline

computer algebra

Reed-Solomon decoding

polynomial matrices

 \blacktriangleright efficient algorithms and software

- for matrices over a field
- ▶ for univariate polynomials
- ▶ context and unique decoding problem
- ▶ key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- ► core algorithms & shifted normal forms
- ▶ fast divide and conquer interpolation

efficient list decoding

introduction to vector interpolation

V canner in the tark y	∜	earl	ier	in	the	talk	1
------------------------	---	------	-----	----	-----	------	---

O(M(d))

- \blacktriangleright addition f + g, multiplication f * g
- division with remainder f = qg + r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

 $O(\mathsf{M}(d) \mathsf{log}(d))$

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{a} \mod x^d$
- minpoly of linearly recurrent sequence

\Downarrow next in the talk \Downarrow

Padé approximation, sequence minpoly, extended GCD $O(\mathsf{M}(d) \mathsf{log}(d)) \text{ operations in } \mathbb{K}$

matrix versions of these problems

 $O(m^{\omega}\mathsf{M}(d)\mathsf{log}(d))$ operations in $\mathbb K$

or a tiny bit more for matrix-GCD
rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d, given degree constraints $d_1, d_2 > 0, \\ \rightarrow \text{ compute polynomials } (p(x), q(x)) \text{ of degrees} < (d_1, d_2) \\ \text{and such that } f = \frac{p}{q} \mod x^d$

strong links with linearly recurrent sequences

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d, given degree constraints $d_1, d_2 > 0,$ \rightarrow compute polynomials (p(x), q(x)) of degrees $<(d_1, d_2)$ and such that $f=\frac{p}{q} \mbox{ mod } x^d$

strong links with linearly recurrent sequences

Cauchy interpolation:

given $G(x) = (x - \alpha_1) \cdots (x - \alpha_d) \in \mathbb{K}[x]$, for pairwise distinct $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$, given degree constraints $d_1, d_2 > 0$, \rightarrow compute polynomials (p(x), q(x)) of degrees $< (d_1, d_2)$ and such that $f = \frac{p}{q} \mod G(x)$ rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d, given degree constraints $d_1, d_2 > 0,$ \rightarrow compute polynomials (p(x), q(x)) of degrees $<(d_1, d_2)$ and such that $f=\frac{p}{q} \mbox{ mod } x^d$

strong links with linearly recurrent sequences

Cauchy interpolation:

given $G(x) = (x - \alpha_1) \cdots (x - \alpha_d) \in \mathbb{K}[x]$, for pairwise distinct $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$, given degree constraints $d_1, d_2 > 0$, \rightarrow compute polynomials (p(x), q(x)) of degrees $< (d_1, d_2)$ and such that $f = \frac{p}{q} \mod G(x)$

degree constraints specified by the context

 ${\scriptstyle \bullet}$ usual choices have $d_1+d_2\approx d$ and existence of a solution

approximation and structured linear system

$$\begin{split} \mathbb{K} &= \mathbb{F}_7 \\ f &= 2x^7 + 2x^6 + 5x^4 + 2x^2 + 4 \\ d &= 8, d_1 = 3, d_2 = 6 \\ &\to \text{look for } (p, q) \text{ of degree} < (3, 6) \text{ such that } f = \frac{p}{a} \mod x^8 \end{split}$$

$$\begin{bmatrix} q & p \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0 \mod x^8$$

approximation and structured linear system

$$\begin{split} \mathbb{K} &= \mathbb{F}_{7} \\ f &= 2x^{7} + 2x^{6} + 5x^{4} + 2x^{2} + 4 \\ d &= 8, d_{1} = 3, d_{2} = 6 \\ \rightarrow \text{look for } (p, q) \text{ of degree} < (3, 6) \text{ such that } f = \frac{p}{a} \mod x^{8} \end{split}$$

$$\begin{bmatrix} q & p \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0 \mod x^{8}$$

$$\begin{bmatrix} q & q \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0$$

approximation and structured linear system

$$\begin{split} &\mathbb{K} = \mathbb{F}_7 \\ &f = 2x^7 + 2x^6 + 5x^4 + 2x^2 + 4 \\ &d = 8, d_1 = 3, d_2 = 6 \\ &\to \text{look for } (p,q) \text{ of degree} < (3,6) \text{ such that } f = \frac{p}{a} \mod x^8 \end{split}$$

$$\begin{bmatrix} q & p \end{bmatrix} \begin{bmatrix} f \\ -1 \end{bmatrix} = 0 \mod x^{8}$$

$$\begin{bmatrix} q & q & 1 \end{bmatrix} \begin{bmatrix} q & p & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 0 \\ 5 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0$$

Sur la généralisation des fractions continues algébriques; PAR M. H. PADÉ.

Docteur ès Sciences mathématiques, Professeur au lycée de Lille.

[1894, Journal de mathématiques pures et appliquées] INTRODUCTION.

M. Hermite s'est, dans un travail récemment paru ('), occupé de la généralisation des fractions continues algébriques. La question est de déterminer les polynomes $X_1, X_2, ..., X_n$, de degrés $\mu_1, \mu_2, ..., \mu_n$, qui satisfont à l'équation

$$S_1X_1 + S_2X_2 + \ldots + S_nX_n = Sx^{\mu_1 + \mu_2 + \ldots + \mu_n + n-1},$$

 S_1, S_2, \ldots, S_n étant des séries entières données, et S une série également entière. Ou plutôt, il s'agit d'obtenir un algorithme qui permette le calcul de proche en proche de ces systèmes de *n* polynomes, et qui soit analogue à l'algorithme par lequel le numérateur et le dénominateur d'une réduite d'une fraction continue se déduisent des numérateurs et dénominateurs des réduites précédentes. D'élégantes considéapproximation and interpolation: the vector case

Hermite-Padé approximation

[Hermite 1893, Padé 1894]

input:

- ${\scriptstyle \bullet}$ polynomials $f_1,\ldots,f_m\in \mathbb{K}[x]$
- ${\scriptstyle \bullet} \mbox{ precision } d \in \mathbb{Z}_{>0}$
- ${\scriptstyle \bullet} \mbox{ degree bounds } d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

output:

polynomials $p_1,\ldots,p_{\mathfrak{m}}\in\mathbb{K}[x]$ such that

$$\bullet p_1 f_1 + \dots + p_m f_m = 0 \mod x^d$$

 ${\scriptstyle \bullet } \mathsf{deg}(p_{\mathfrak{i}}) < d_{\mathfrak{i}} \text{ for all } \mathfrak{i}$

(Padé approximation: particular case m=2 and $f_2=-1$)

approximation and interpolation: the vector case

M-Padé approximation / vector rational interpolation

[Cauchy 1821, Mahler 1968]

input:

- ${\scriptstyle \bullet}$ polynomials $f_1,\ldots,f_m\in \mathbb{K}[x]$
- ${\scriptstyle \blacktriangleright}$ pairwise distinct points $\alpha_1,\ldots,\alpha_d\in\mathbb{K}$
- ${\scriptstyle \bullet} \mbox{ degree bounds } d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

output:

polynomials $p_1,\ldots,p_m\in\mathbb{K}[x]$ such that

- $\centerdot \, p_1(\alpha_i)f_1(\alpha_i) + \dots + p_m(\alpha_i)f_m(\alpha_i) = 0 \text{ for all } 1 \leqslant i \leqslant d$
- ${\scriptstyle \bullet } \mathsf{deg}(p_{\mathfrak{i}}) < d_{\mathfrak{i}} \text{ for all } \mathfrak{i}$

(rational interpolation: particular case m=2 and $f_2=-1$)

approximation and interpolation: the vector case

in this talk: modular equation and fast algebraic algorithms

[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard 2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

- ${\scriptstyle \blacktriangleright}$ polynomials $f_1,\ldots,f_m\in \mathbb{K}[x]$
- ${\scriptstyle \bullet} \mbox{ field elements } \alpha_1, \ldots, \alpha_d \in \mathbb{K}$
- ${\scriptstyle \bullet} \mbox{ degree bounds } d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

 $\stackrel{}{\leadsto} \text{ not necessarily distinct} \\ \stackrel{}{\leadsto} \text{general "shift" } s \in \mathbb{Z}^m$

output:

polynomials $p_1,\ldots,p_{\mathfrak{m}}\in\mathbb{K}[x]$ such that

- ${\scriptstyle \bullet} \, p_1 f_1 + \dots + p_{\mathfrak{m}} f_{\mathfrak{m}} = 0 \mbox{ mod } \prod_{1 \leqslant \mathfrak{i} \leqslant d} (x \alpha_{\mathfrak{i}})$

(Hermite-Padé: $\alpha_1 = \cdots = \alpha_d = 0$; interpolation: pairwise distinct points)

interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points $\{(\alpha_i, \beta_i), 1 \leqslant i \leqslant 8\} = \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\},$ compute a bivariate polynomial $Q(x, y) \in \mathbb{K}[x, y]$ such that $Q(\alpha_i, \beta_i) = 0$ for $1 \leqslant i \leqslant 8$

 $\left. \begin{array}{l} G(x) = (x-24) \cdots (x-59) \\ R(x) = \text{Lagrange interpolant} \end{array} \right\} \longrightarrow \text{solutions} = \text{ideal } \langle G(x), y - R(x) \rangle \end{array}$

solutions of smaller x-degree: $Q(x,y) = Q_0(x) + Q_1(x)y + Q_2(x)y^2$

$$Q(x, R(x)) = \begin{bmatrix} Q_0 & Q_1 & Q_2 \end{bmatrix} \begin{vmatrix} 1 \\ R \\ R^2 \end{vmatrix} = 0 \text{ mod } G(x)$$

- ▶ instance of univariate rational vector interpolation
- \bullet with a structured input equation (powers of R mod G)

interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points $\{(\alpha_i, \beta_i), 1 \leqslant i \leqslant 8\} = \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\},$ compute a bivariate polynomial $Q(x, y) \in \mathbb{K}[x, y]$ such that $Q(\alpha_i, \beta_i) = 0$ for $1 \leqslant i \leqslant 8$

polynomial matrices enter the arena

why polynomial matrices here?

polynomial matrices enter the arena

why polynomial matrices here?

omitting degree constraints, the set of solutions is $\mathcal{M} = \{(p_1, \dots, p_m) \in \mathbb{K}[x]^m \mid p_1 f_1 + \dots + p_m f_m = 0 \text{ mod } G\}$ recall $G(x) = \prod_{1 \le i \le d} (x - \alpha_i)$ polynomial matrices enter the arena

why polynomial matrices here?

 ${\mathfrak M}$ is a "free ${\mathbb K}[x]\text{-module}$ of rank ${\mathfrak m}$ ", meaning:

- \blacktriangleright stable under $\mathbb{K}[x]$ -linear combinations
- $\scriptstyle \bullet$ admits a basis consisting of m elements
- ${\scriptstyle \bullet} \mbox{ basis} = \mathbb{K}[x]\mbox{-linear independence} + \mbox{ generates all solutions}$

polynomial matrices enter the arena

why polynomial matrices here?

 ${\mathfrak M}$ is a "free ${\mathbb K}[x]\text{-module}$ of rank ${\mathfrak m}$ ", meaning:

- \blacktriangleright stable under $\mathbb{K}[x]$ -linear combinations
- $\scriptstyle \bullet$ admits a basis consisting of m elements
- ${\scriptstyle \bullet} \mbox{ basis} = \mathbb{K}[x]\mbox{-linear independence} + \mbox{ generates all solutions}$

 $\begin{array}{lll} \bullet \ \mathfrak{M} \subset \mathbb{K}[x]^{\mathfrak{m}} \ \Rightarrow \ \mathfrak{M} \ \text{has rank} \leqslant \mathfrak{m} \\ \bullet \ G(x) \mathbb{K}[x]^{\mathfrak{m}} \subset \mathcal{M} \ \Rightarrow \ \mathfrak{M} \ \text{has rank} \geqslant \mathfrak{m} \end{array}$

remark: solutions are not considered modulo G e.g. $(G,0,\ldots,0)$ is in ${\mathcal M}$ and may appear in a basis

polynomial matrices enter the arena

why polynomial matrices here?

omitting degree constraints, the set of solutions is $\mathcal{M} = \{(p_1, \dots, p_m) \in \mathbb{K}[x]^m \mid p_1 f_1 + \dots + p_m f_m = 0 \text{ mod } G\}$ recall $G(x) = \prod_{1 \le i \le d} (x - \alpha_i)$

basis of solutions:

- ▶ square nonsingular matrix **P** in $\mathbb{K}[x]^{m \times m}$
- ${\scriptstyle \blacktriangleright}$ each row of P is a solution
- ${\scriptstyle \bullet}$ any solution is a $\mathbb{K}[x]{\scriptstyle -} \text{combination } \mathbf{u} P, \mathbf{u} \in \mathbb{K}[x]^{1 \times m}$

i.e. ${\mathcal M}$ is the ${\mathbb K}[x]\text{-row}$ space of P

polynomial matrices enter the arena

why polynomial matrices here?

omitting degree constraints, the set of solutions is $\mathcal{M} = \{(p_1, \dots, p_m) \in \mathbb{K}[x]^m \mid p_1 f_1 + \dots + p_m f_m = 0 \text{ mod } G\}$ recall $G(x) = \prod_{1 \le i \le d} (x - \alpha_i)$

basis of solutions:

- ▶ square nonsingular matrix **P** in $\mathbb{K}[x]^{m \times m}$
- ${\scriptstyle \blacktriangleright}$ each row of P is a solution
- ullet any solution is a $\mathbb{K}[x]$ -combination $\mathbf{u}\mathbf{P}, \mathbf{u} \in \mathbb{K}[x]^{1 imes m}$

i.e. ${\mathfrak M}$ is the ${\mathbb K}[x]\text{-row}$ space of P

fact: det(P) is a divisor of $G(\boldsymbol{x})$

polynomial matrices enter the arena

why polynomial matrices here?

omitting degree constraints, the set of solutions is $\mathcal{M} = \{(p_1, \dots, p_m) \in \mathbb{K}[x]^m \mid p_1 f_1 + \dots + p_m f_m = 0 \text{ mod } G\}$ recall $G(x) = \prod_{1 \le i \le d} (x - \alpha_i)$

basis of solutions: • square nonsingular matrix **P** in $\mathbb{K}[x]^{m \times m}$ • each row of **P** is a solution • any solution is a $\mathbb{K}[x]$ -combination $\mathbf{uP}, \mathbf{u} \in \mathbb{K}[x]^{1 \times m}$

i.e. ${\mathfrak M}$ is the ${\mathbb K}[x]\text{-row}$ space of P

fact: $\text{det}(\mathbf{P})$ is a divisor of G(x)

fact: any other basis is UP for $U \in \mathbb{K}[x]^{m \times m}$ with $det(U) \in \mathbb{K} \setminus \{0\}$

polynomial matrices enter the arena

why polynomial matrices here?

omitting degree constraints, the set of solutions is $\mathcal{M} = \{(p_1, \dots, p_m) \in \mathbb{K}[x]^m \mid p_1 f_1 + \dots + p_m f_m = 0 \text{ mod } G\}$ recall $G(x) = \prod_{1 \le i \le d} (x - \alpha_i)$

basis of solutions: • square nonsingular matrix **P** in $\mathbb{K}[x]^{m \times m}$ • each row of **P** is a solution • any solution is a $\mathbb{K}[x]$ -combination $\mathbf{uP}, \mathbf{u} \in \mathbb{K}[x]^{1 \times m}$ i.e. \mathcal{M} is the $\mathbb{K}[x]$ -row space of **P**

computing a basis of ${\mathfrak M}$ with "minimal degrees"

- $\scriptstyle \bullet$ has many more applications than a single small-degree solution
- ▶ is in most cases the fastest known strategy anyway(!)
- \rightsquigarrow degree minimality ensured via shifted reduced forms

polynomial matrices: multiplication

$$\begin{split} \mathbf{A} &= \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix} \in \mathbb{K}[x]^{3\times 3} & \text{matrix of degree 3}\\ & \text{with entries in } \mathbb{K}[x] = \mathbb{F}_7[x] \\ & \text{operations on } \mathbb{K}[x]_{$$

 \rightsquigarrow $m\times m$ matrix versions of these problems

- $\scriptstyle \bullet$ some problems&techniques shared with matrices over $\mathbb K$
- some problems&techniques specific to entries in $\mathbb{K}[x]$

polynomial matrices: multiplication

applying matrix techniques directly: echelonization is exponential time 👗

reductions of most problems to polynomial matrix multiplication

 $\begin{array}{rcl} \text{matrix } \mathfrak{m} \times \mathfrak{m} \text{ of degree } d \\ \text{ of "average" degree } \frac{D}{\mathfrak{m}} & \rightarrow & O^{\sim}(\mathfrak{m}^{\omega} d) \\ & \rightarrow & O^{\sim}(\mathfrak{m}^{\omega} \frac{D}{\mathfrak{m}}) \end{array}$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $O^{(m^3d)}$

univariate specific operations

- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to normal forms

- ▶ echelonization: Hermite form
- ▶ row reduction: Popov form
- diagonalization: Smith form

reductions of most problems to polynomial matrix multiplication

$$\begin{array}{rcl} \text{matrix } m \times m \text{ of degree } d \\ \text{of "average" degree } \frac{D}{m} & \rightarrow & O^{\sim}(m^{\omega}d) \\ \rightarrow & O^{\sim}(m^{\omega}\frac{D}{m}) \end{array}$$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $O^{(m^3d)}$

univariate specific operations

- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to normal forms

- ▶ echelonization: Hermite form
- ► row reduction: Popov form
- diagonalization: Smith form

reductions of most problems to polynomial matrix multiplication

$$\begin{array}{rcl} \text{matrix } m \times m \text{ of degree } d \\ \text{of "average" degree } \frac{D}{m} & \rightarrow & O^{\sim}(m^{\omega}d) \\ \rightarrow & O^{\sim}(m^{\omega}\frac{D}{m}) \end{array}$$

transformation to normal forms

- echelonization: Hermite form
- ► row reduction: Popov form
- diagonalization: Smith form

reductions of most problems to polynomial matrix multiplication

$$\begin{array}{rcl} \text{matrix } m \times m \text{ of degree } d \\ \text{of "average" degree } \frac{D}{m} & \rightarrow & O^{\sim}(m^{\omega}d) \\ \rightarrow & O^{\sim}(m^{\omega}\frac{D}{m}) \end{array}$$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $O^{\sim}(m^3d)$

univariate specific operations

- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to **normal forms** • echelonization: Hermite form

- ► row reduction: Popov form
- diagonalization: Smith form

working over $\mathbb{K}=\mathbb{Z}/7\mathbb{Z}$

$$\mathbf{A} = \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3 \\ 5 & 5x^2+3x+1 & 5x+3 \\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix}$$

using elementary row operations, transform ${\bf A}$ into. . .

$$\begin{bmatrix} x^6 + 6x^4 + x^3 + x + 4 & 0 & 0 \end{bmatrix}$$

Hermite form
$$\mathbf{H} = \begin{bmatrix} 5x^5 + 5x^4 + 6x^3 + 2x^2 + 6x + 3 & x & 0 \\ 3x^4 + 5x^3 + 4x^2 + 6x + 1 & 5 & 1 \end{bmatrix}$$

Popov form
$$\mathbf{P} = \begin{bmatrix} x^3 + 5x^2 + 4x + 1 & 2x + 4 & 3x + 5 \\ 1 & x^2 + 2x + 3 & x + 2 \\ 3x + 2 & 4x & x^2 \end{bmatrix}$$

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:

arbitrary degree constraints + no column normalization

pprox minimal, non-reduced, \prec -Gröbner basis

shifted forms

shift: integer tuple $s = (s_1, \dots, s_m)$ acting as column weights \rightarrow connects Popov and Hermite forms

${f s}=(0,0,0,0)$ Popov	4 3 3 3	3 4 3 3	3 3 4 3	3 3 3 4	[7 0 6	0 1 0	1 2 1	5 0 6
s = (0, 2, 4, 6) s-Popov	7 6 6 6	4 5 4 4	2 2 3 2	0 0 0 1	8 7 0	5 6 1	1 1 2	0
$\mathbf{s} = (0, D, 2D, 3D)$ Hermite	[16 15 15 15	0	0	0	4 3 1 3	7 5 6	3 1	2

- \blacktriangleright normal form, average column degree D/m
- ▶ shifts arise naturally in algorithms (approximants, kernel, ...)
- ▶ they allow one to specify non-uniform degree constraints

from normal forms to relations

	<pre>sage: M.degree_matrix(shifts=[-1,2], row_wise=False) [0 -2 -1] [5 -2 -2]</pre>	
her	mite_form(include_zero_rows=True, transformation=False) Return the Hermite form of this matrix.	
	The Hermite form is also normalized, i.e., the pivot polynomials are monic.	
	INPUT:	
	 include_zero_rows - boolean (default: True); if False, the zero rows in the output deleted transformation - boolean (default: False); if True, return the transformation mat 	
	OUTPUT:	

software development for polynomial matrices

sage: M. <x> = GF(7)[]</x>	- 187 j = std::distance(rem_order.begin(), std::max_element(rem_order.begin())
<pre>seg: A - matrix(M, 2, 3, 1x, 1, 2*x, x, 1*x, 2]) seg: A hermite [cont]</pre>	<pre>is</pre>
sage: U - A == H True	226 }
See also: is_hermite().	
ermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.	210 if (not indice_nonzero.empty()) 211 {// update all rows of appbas and residual in indices nonzero exception indices nonzero exceptides nonzero exceptides nonzero exception indices n

is H

software development for polynomial matrices

	<pre>117</pre>
sage: U * A === H True	205 piv = i; 206 } 207 }
See also: is_hermite() .	
ermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.	<pre>210</pre>

// order that remains to be dealt with VecLong rem_order(order);

high-performance exact linear algebra LinBox – fflas-ffpack C/C++

goal: **optimized basic operations** memory cost, vectorization, multithreading

software development for polynomial matrices

See also: is_hermite(). 43

vectong rem_order(order);
// indices of columns/orders that remain to be dealt o
Vectors rem_index(cdin);

high-performance exact linear algebra LinBox – fflas-ffpack C/C++

goal: **optimized basic operations** memory cost, vectorization, multithreading

software development for polynomial matrices

polynomial matrices: two open questions

deterministic Smith form

- complexity $O^{\sim}(m^{\omega}\frac{D}{m})$ [Storjohann'03]

deterministic algo in $O^{\sim}(m^{\omega}\frac{D}{m})$?

polynomial matrices: two open questions

deterministic Smith form

- complexity $O^{(m^{\omega} \frac{D}{m})}$ [Storjohann'03]

deterministic algo in $O^{\sim}(m^{\omega}\frac{D}{m})$?

algebraic interpolants

= main step of Sudan decoding

 $p_1f_1 + p_2f_2 + \dots + p_mf_m = 0 \mod G$ structured f_i 's $p_1 1 + p_2 R + \dots + p_m R^{m-1} = 0 \mod G$

- most algorithms ignore the structure
- recent progress [Villard'18]
- ▶ restrictive: genericity, specific m & d

how to leverage this structure?

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift			[02	4 6	[]				
basis		1 0 0 0					0 1 0 0		0 0 1 0	0 0 0 1
values	「1 80 95 34	1 73 91 47	1 73 91 47	1 35 61 1	1 66 88 85	1 46 79 45	1 91 36 75	1 64 22 50		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift			[(2	4 6]				
basis	1 (((L))					0 1 0 0		0 0 1 0	0 0 0 1
values	1 80 95 34	1 73 91 47	1 73 91 47	1 35 61 1	1 66 88 85	1 46 79 45	1 91 36 75	1 64 22 50		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift			[02	4 6]				
basis	1	1 17 2 53					0 1 0 0		0 0 1 0	0 0 0 1
values	[1 0 0 0	1 90 93 13	1 90 93 13	1 52 63 64	1 83 90 51	1 63 81 11	1 11 38 41	1 81 24 16		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift			[1 2	4 6]				
basis	x - 1	⊢ 73 L7 2 53					0 1 0 0		0 0 1 0	0 0 0 1
values	0 0 0 0	7 90 93 13	88 90 93 13	8 52 63 64	59 83 90 51	3 63 81 11	93 11 38 41	35 81 24 16		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift			[]	12	4 6]				
basis	x + 1 6	- 73 .7 2 53					0 1 0 0		0 0 1 0	0 0 0 1
values	0 0 0 0	7 90 93 13	88 90 93 13	8 52 63 64	59 83 90 51	3 63 81 11	93 11 38 41	35 81 24 16		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift			[12	4 6]				
basis	x + x + 56x 12x	⊢ 73 ⊢ 90 + 16 + 66					0 1 0 0		0 0 1 0	0 0 0 1
values	0 0 0 0	7 0 0 0	88 81 74 2	8 60 26 63	59 45 96 80	3 66 55 47	93 7 8 90	35 19 44 48		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				[2 2	4 6]				
basis	[$\frac{x^2 + 42}{x + 56x + 12x + 56x + $	2x + 6 - 90 + 16 + 66	5				0 1 0 0		0 0 1 0	0 0 0 1
values		0 0 0 0	0 0 0 0	47 81 74 2	8 60 26 63	61 45 96 80	85 66 55 47	44 7 8 90	10 19 44 48		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				2 2	4 6]				
basis	$x^{2} + 42$ x + 56x - 12x -	x + 6 90 + 16 + 66	5				0 1 0 0		0 0 1 0	0 0 0 1
values	0 0 0 0	0 0 0 0	47 81 74 2	8 60 26 63	61 45 96 80	85 66 55 47	44 7 8 90	10 19 44 48		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				[32	4 6]				
basis	x ³	$+27x^{2}$ $54x^{2} + 17x^{2} + 66x^{2} + 17x^{2}$	+ 17x 38x + 91x + 68x +	+ 92 11 54 88				0 1 0 0		0 0 1 0	0 - 0 0 1
values		0 0 0 0	0 0 0 0	0 0 0 0	39 7 65 9	74 41 66 32	50 0 45 31	26 55 77 84	52 74 20 29		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				[32	4 6	5]				
basis	$x^{3} + \frac{54}{100}$	$-27x^{2}$ $4x^{2} + 7x^{2} $	+ 17x 38x + 91x + 68x +	+ 92 11 54 88				0 1 0 0		0 0 1 0	0 - 0 0 1 _
values		0 0 0 0	0 0 0 0	0 0 0 0	39 7 65 9	74 41 66 32	50 0 45 31	26 55 77 84	52 74 20 29		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift					[3	3 3	4 6]				
basis		x^3 54 x^3 5 5	$+ 31x^{2}$ + 56x $6x^{2}$ + $2x^{2}$ +	$x^{2} + 27x^{2} + 56x^{2} + 56x^{2} + 33x + 33$	x + 3 x + 36 35 60			X	$36 + 65 \\ 60 \\ 68$		0 0 1 0	0 0 0 1
values	$ \left[\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] $					0 0 0 0	95 54 4 7	50 0 45 31	66 19 79 41	0 58 95 17		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				[•	43	4	6]				
basis	$x^4 + 45 \\ 81x^3 \\ 2 \\ 52x^3$	$x^{3} + 7$ + 20x $x^{3} + 2$ + 15x	$3x^{2} + x^{2} + 9x$ $1x^{2} + x^{2} + 79x$ $2x^{2} + 79x$	90x + 20 + 20 + 20 + 20 + 20 + 20 + 20 +		36 >	5x + 19 x + 67 35 0	1	0 0 1 0	0 - 0 0 1	
values		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	13 89 48 12	13 55 17 78	0 58 95 17		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				[•	4 <mark>4</mark>	4 6]				
basis	$\begin{array}{r} x^4 + 19x^3 + 57x^2 + 44x + 26\\ 81x^4 + 64x^3 + 51x^2 + 68x + 42\\ 3x^3 + 44x^2 + 54x + 64\\ 28x^3 + 45x^2 + 44x + 52 \end{array}$						74x + 43x2 + 40x + 346x + 4950x + 52				
values		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	66 3 56 15	70 13 55 7		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				[54	4	6]					
basis	$\begin{bmatrix} x^5 + 96x^4 - 6x^4 + 94x^4 + 94x^4 + 94x^4 + 94x^4 + 7x^4 + 8x^4 + 8$	$+ 65x^3$ $4x^3 + 4$ $8x^3 + 31x^3 + $	$\begin{array}{c} 65x^3 + 68x^2 + 19x + 62\\ x^3 + 44x^2 + 66x + 32\\ xx^3 + 75x^2 + 49x + 39\\ 1x^3 + 10x^2 + 34x + 2 \end{array}$				$74x^{2} + 18x + 13 x^{2} + 19x + 10 2x + 86 42x + 29$				0 0 1 0	0 - 0 0 1
values		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	14 1 25 44			

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

shift				[!	5 <mark>5</mark>	4 6]				
basis	$\begin{bmatrix} x^5 + 12x^4 \\ 6x^5 + 31x^4 \\ 2x^4 + 56 \\ 40x^4 + 1 \end{bmatrix}$	$\begin{array}{r} +10x^3 + 34x^2 + 65x + 2 \\ +27x^3 + 89x^2 + 18x + 52 \\ ix^3 + 42x^2 + 48x + 15 \\ 9x^3 + 14x^2 + 40x + 49 \end{array}$				x ³	$\begin{array}{c} 60x^2 + 43x + 67 \\ x^3 + 57x^2 + 53x + 89 \\ 72x^2 + 12x + 30 \\ 53x^2 + 79x + 74 \end{array}$				
values		0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0		

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field \mathbb{F}_{97} input: (24, 31, 15, 32, 83, 27, 20, 59) and $\mathbf{F} = [1 \ R \ R^2 \ R^3]^T$

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

 $\text{input: vector } \mathbf{F} = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix}, \text{ points } \alpha_1, \dots, \alpha_d \in \mathbb{K}, \text{ shift } \mathbf{s} = (s_1, \dots, s_m) \in \mathbb{Z}^m$

1.
$$\mathbf{P} = \begin{bmatrix} -\mathbf{p}_1 - \\ \vdots \\ -\mathbf{p}_m - \end{bmatrix} = \text{identity matrix in } \mathbb{K}[x]^{m \times m}$$

- 2. for i from 1 to d:
 - a. choose pivot π with smallest s_{π} such that $f_{\pi}(\alpha_i) \neq 0$ update pivot shift $s_{\pi} = s_{\pi} + 1$
 - **b.** constant elimination: for $j \neq \pi$ do $\mathbf{p}_j \leftarrow \mathbf{p}_j \frac{f_j(\alpha_i)}{f_{\pi}(\alpha_i)}\mathbf{p}_{\pi}$ polynomial elimination: $\mathbf{p}_{\pi} \leftarrow (x - \alpha_i)\mathbf{p}_{\pi}$

c. compute residual equation: for
$$j \neq \pi$$
 do $f_j \leftarrow f_j - \frac{f_j(\alpha_i)}{f_{\pi}(\alpha_i)} f_{\pi}$
 $f_{\pi} \leftarrow (x - \alpha_i) f_{\pi}$

after i iterations: **P** is an s-reduced basis of solutions for $(\alpha_1, \ldots, \alpha_i)$

iterative algorithm: complexity aspects

at step i, **P** and **F** are left multiplied by
$$\begin{split} & \mathbf{E}_i = \begin{bmatrix} \mathbf{I}_{\pi - 1} & \lambda_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{x} - \alpha & \mathbf{0} \\ \mathbf{0} & \lambda_2 & \mathbf{I}_{m - \pi} \end{bmatrix} \\ & \text{where } \lambda_1 \in \mathbb{K}^{(\pi - 1) \times 1} \text{ and } \lambda_2 \in \mathbb{K}^{(m - \pi) \times 1} \text{ are constant} \end{split}$$

iterative algorithm: complexity aspects

at step i, **P** and **F** are left multiplied by
$$\begin{split} \mathbf{E}_i &= \begin{bmatrix} \mathbf{I}_{\pi-1} & \lambda_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{x} - \alpha & \mathbf{0} \\ \mathbf{0} & \lambda_2 & \mathbf{I}_{m-\pi} \end{bmatrix} \\ \text{where } \lambda_1 &\in \mathbb{K}^{(\pi-1)\times 1} \text{ and } \lambda_2 \in \mathbb{K}^{(m-\pi)\times 1} \text{ are constant} \end{split}$$

 $\begin{array}{l} \mbox{complexity } O(m^2d^2):\\ \mbox{$\scriptstyle $\tiny i teration with d steps}\\ \mbox{$\scriptstyle $\tiny $each step: evaluation of F + multiplications E_iF and E_iP\\ \mbox{$\scriptstyle $\tiny a any stage P has degree \leqslant d and dimensions $m\times m$\\ \mbox{$\scriptstyle $\tiny a any stage F has degree $<$ $2d$ and dimensions $m\times 1$\\ \mbox{$\scriptstyle $one $gets $O(md^2)$ with either:}\\ \mbox{$\scriptstyle $\scriptstyle $normalizing a teach step $+$ finer analysis} \end{array}$

. "balanced" input shift + finer analysis (shifts in RS list-decoding are balanced)

iterative algorithm: complexity aspects

at step i, **P** and **F** are left multiplied by
$$\begin{split} \mathbf{E}_i &= \begin{bmatrix} I_{\pi-1} & \lambda_1 & 0\\ 0 & x-\alpha & 0\\ 0 & \lambda_2 & I_{m-\pi} \end{bmatrix} \\ \text{where } \lambda_1 \in \mathbb{K}^{(\pi-1)\times 1} \text{ and } \lambda_2 \in \mathbb{K}^{(m-\pi)\times 1} \text{ are constant} \end{split}$$

. "balanced" input shift + finer analysis (shifts in RS list-decoding are balanced)

correctness:

- the main task is to prove the base case (d = 1, single point)
- then, correctness follows from the "basis multiplication theorem"

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication [Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

- ${\scriptstyle \bullet}$ compute a first basis P_1 for a subproblem
- update the input instance to get the second subproblem
- ${\scriptstyle \bullet}$ compute a second basis P_2 for this second subproblem
- the output basis of solutions is P_2P_1

we want P_2P_1 shifted reduced $P_2P_1 \mbox{ reduced not implied by "}P_1 \mbox{ reduced and } P_2 \mbox{ reduced"}$

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication [Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

- ${\scriptstyle \bullet}$ compute a first basis P_1 for a subproblem
- update the input instance to get the second subproblem
- ${\scriptstyle \bullet}$ compute a second basis P_2 for this second subproblem
- the output basis of solutions is P_2P_1

we want P_2P_1 shifted reduced $P_2P_1 \text{ reduced not implied by ``P_1 reduced and P_2 reduced''}$

theorem: (\mathbf{P}_1 is s-reduced and \mathbf{P}_2 is t-reduced") $\Rightarrow \mathbf{P}_2\mathbf{P}_1$ is s-reduced

where t is a shift trivially computed from s and P_1 $(t = \mathsf{rdeg}_s(P_1))$

bonus: detailed statement and proof

let $\mathcal{M}\subseteq \mathcal{M}_1$ be two $\mathbb{K}[x]$ -submodules of $\mathbb{K}[x]^m$ of rank m, let $P_1\in \mathbb{K}[x]^{m\times m}$ be a basis of \mathcal{M}_1 , let $s\in \mathbb{Z}^m$ and $t=\mathsf{rdeg}_s(P_1)$, • the rank of the module $\mathcal{M}_2=\{\lambda\in \mathbb{K}[x]^{1\times m}\mid \lambda P_1\in \mathcal{M}\}$ is m and for any basis $P_2\in \mathbb{K}[x]^{m\times m}$ of \mathcal{M}_2 , the product P_2P_1 is a basis of \mathcal{M} • if P_1 is s-reduced and P_2 is t-reduced, then P_2P_1 is s-reduced

bonus: detailed statement and proof

let
$$\mathcal{M}\subseteq \mathcal{M}_1$$
 be two $\mathbb{K}[x]$ -submodules of $\mathbb{K}[x]^m$ of rank m, let $P_1\in \mathbb{K}[x]^{m\times m}$ be a basis of \mathcal{M}_1 , let $s\in \mathbb{Z}^m$ and $t=\mathsf{rdeg}_s(P_1)$,
• the rank of the module $\mathcal{M}_2=\{\lambda\in \mathbb{K}[x]^{1\times m}\mid \lambda P_1\in \mathcal{M}\}$ is m and for any basis $P_2\in \mathbb{K}[x]^{m\times m}$ of \mathcal{M}_2 , the product P_2P_1 is a basis of \mathcal{M}
• if P_1 is s-reduced and P_2 is t-reduced, then P_2P_1 is s-reduced

Let $A \in \mathbb{K}[x]^{m \times m}$ denote the adjugate of P_1 . Then, we have $AP_1 = \mathsf{det}(P_1)I_m$. Thus, $pAP_1 = \mathsf{det}(P_1)p \in \mathcal{M}$ for all $p \in \mathcal{M}$, and therefore $\mathcal{M}A \subseteq \mathcal{M}_2$. Now, the nonsingularity of A ensures that $\mathcal{M}A$ has rank m; this implies that \mathcal{M}_2 has rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P_2P_1 is nonsingular since $\mathsf{det}(P_2P_1) \neq 0$. Now let $p \in \mathcal{M}$; we want to prove that p is a $\mathbb{K}[x]$ -linear combination of the rows of P_2P_1 . First, $p \in \mathcal{M}_1$, so there exists $\lambda \in \mathbb{K}[x]^{1 \times m}$ such that $p = \lambda P_1$. But then $\lambda \in \mathcal{M}_2$, and thus there exists $\mu \in \mathbb{K}[x]^{1 \times m}$ such that $\lambda = \mu P_2$. This yields the combination $p = \mu P_2 P_1$.

bonus: detailed statement and proof

let $\mathcal{M}\subseteq \mathcal{M}_1$ be two $\mathbb{K}[x]$ -submodules of $\mathbb{K}[x]^m$ of rank m, let $P_1\in \mathbb{K}[x]^{m\times m}$ be a basis of \mathcal{M}_1 , let $s\in \mathbb{Z}^m$ and $t=\mathsf{rdeg}_s(P_1)$, • the rank of the module $\mathcal{M}_2=\{\lambda\in \mathbb{K}[x]^{1\times m}\mid \lambda P_1\in \mathcal{M}\}$ is m and for any basis $P_2\in \mathbb{K}[x]^{m\times m}$ of \mathcal{M}_2 , the product P_2P_1 is a basis of \mathcal{M} • if P_1 is s-reduced and P_2 is t-reduced, then P_2P_1 is s-reduced

Let $d=\mathsf{rdeg}_t(P_2);$ we have $d=\mathsf{rdeg}_s(P_2P_1)$ by the predictable degree property. Using $X^{-d}P_2P_1X^s=X^{-d}P_2X^tX^{-t}P_1X^s$, we obtain that $\mathsf{Im}_s(P_2P_1)=\mathsf{Im}_t(P_2)\mathsf{Im}_s(P_1)$. By assumption, $\mathsf{Im}_t(P_2)$ and $\mathsf{Im}_s(P_1)$ are invertible, and therefore $\mathsf{Im}_s(P_2P_1)$ is invertible as well; thus P_2P_1 is s-reduced.

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: **F**, $(\alpha_1, \ldots, \alpha_d)$, **s** output: P • if $d \leq$ threshold: call iterative algorithm ► else: a. $G_1 \leftarrow (x - \alpha_1) \cdots (x - \alpha_{\lfloor d/2 \rfloor}); G_2 \leftarrow (x - \alpha_{\lfloor d/2 \rfloor + 1}) \cdots (x - \alpha_d)$ **b.** $\mathbf{P}_1 \leftarrow$ recursive call on **F** rem $G_1, (\alpha_1, \ldots, \alpha_{\lfloor d/2 \rfloor}), \mathbf{s}$ **c.** updated shift: $\mathbf{t} \leftarrow \mathsf{rdeg}_{\mathbf{s}}(\mathbf{P}_1)$ **d.** residual equation: $\mathbf{F} \leftarrow \frac{1}{G_1} \mathbf{P}_1 \mathbf{F}$ **e.** $\mathbf{P}_2 \leftarrow$ recursive call **F** rem G_2 , $(\alpha_{|d/2|+1}, \ldots, \alpha_d)$, **t f.** return the product $\mathbf{P}_2\mathbf{P}_1$

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: F, $(\alpha_1, ..., \alpha_d)$, s output: P • if $d \leq \text{threshold: call iterative algorithm}$ • else: a. $G_1 \leftarrow (x - \alpha_1) \cdots (x - \alpha_{\lfloor d/2 \rfloor})$; $G_2 \leftarrow (x - \alpha_{\lfloor d/2 \rfloor + 1}) \cdots (x - \alpha_d)$ b. $P_1 \leftarrow \text{recursive call on } \mathbf{F} \text{ rem } G_1, (\alpha_1, ..., \alpha_{\lfloor d/2 \rfloor}), \mathbf{s}$ c. updated shift: $\mathbf{t} \leftarrow \text{rdeg}_{\mathbf{s}}(\mathbf{P}_1)$ d. residual equation: $\mathbf{F} \leftarrow \frac{1}{G_1} \mathbf{P}_1 \mathbf{F}$ e. $P_2 \leftarrow \text{recursive call } \mathbf{F} \text{ rem } G_2, (\alpha_{\lfloor d/2 \rfloor + 1}, ..., \alpha_d), \mathbf{t}$

f. return the product $\mathbf{P}_2\mathbf{P}_1$

correctness:

- correctness of base case
- then, direct consequence of the "basis multiplication theorem"
- $\bullet \text{ residual: } \{\mathbf{p} \mid \mathbf{pP}_1\mathbf{F} = 0 \text{ mod } G\} = \{\mathbf{p} \mid \mathbf{p}(\frac{1}{G_1}\mathbf{P}_1\mathbf{F}) = 0 \text{ mod } G_2\}$

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: **F**, $(\alpha_1, \ldots, \alpha_d)$, **s** output: P • if $d \leq$ threshold: call iterative algorithm ► else: a. $G_1 \leftarrow (x - \alpha_1) \cdots (x - \alpha_{\lfloor d/2 \rfloor}); G_2 \leftarrow (x - \alpha_{\lfloor d/2 \rfloor + 1}) \cdots (x - \alpha_d)$ **b.** $\mathbf{P}_1 \leftarrow$ recursive call on **F** rem $G_1, (\alpha_1, \ldots, \alpha_{\lfloor d/2 \rfloor}), \mathbf{s}$ **c.** updated shift: $\mathbf{t} \leftarrow \mathsf{rdeg}_{\mathbf{s}}(\mathbf{P}_1)$ **d.** residual equation: $\mathbf{F} \leftarrow \frac{1}{G_1} \mathbf{P}_1 \mathbf{F}$ **e.** $\mathbf{P}_2 \leftarrow$ recursive call **F** rem G_2 , $(\alpha_{|d/2|+1}, \ldots, \alpha_d)$, **t f.** return the product $\mathbf{P}_2\mathbf{P}_1$

complexity $O(m^{\omega}M(d)\log(d))$:

- \bullet if $\omega = 2$, quasi-linear in worst-case output size
- ${\scriptstyle \bullet}$ most expensive step in the recursion is the product P_2P_1
- $\bullet \text{ equation } \mathbb{C}(\mathfrak{m}, d) = \mathbb{C}(\mathfrak{m}, \lfloor d/2 \rfloor) + \mathbb{C}(\mathfrak{m}, \lceil d/2 \rceil) + O(\mathfrak{m}^{\omega} \mathsf{M}(d))$

divide and conquer: complexity aspects

 $\mathsf{input:}\;\mathsf{deg}(F) < d$

output: $\deg(\mathbf{P}) \leqslant d$

complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$
- \mathbf{F} rem M_1 and $\hat{\mathbf{F}}$ rem M_2
- product P_2P_1
- ► two recursive calls

 $\begin{array}{c} O(\mathfrak{m}^2 \mathsf{M}(d)) \\ O(\mathfrak{m} \mathsf{M}(d)) \\ O(\mathfrak{m}^\omega \mathsf{M}(d)) \\ 2 \mathfrak{C}(\mathfrak{m}, \lfloor d/2 \rceil) \end{array}$

divide and conquer: complexity aspects

 $\begin{array}{ll} \mathsf{input:} \deg(F) < d & \mathsf{output:} \deg(P) \leqslant d \\ \hline \textbf{complexity of each step:} \\ \bullet \mathsf{residual} \ F \leftarrow \frac{1}{M_1} P_1 F & O(m^2 \mathsf{M}(d)) \\ \bullet \ F \mathsf{rem} \ M_1 \ \mathsf{and} \ F \mathsf{rem} \ M_2 & O(\mathsf{mM}(d)) \\ \bullet \mathsf{product} \ P_2 P_1 & O(\mathsf{m}^\omega \mathsf{M}(d)) \\ \bullet \mathsf{two} \ \mathsf{recursive} \ \mathsf{calls} & 2 \mathscr{C}(\mathsf{m}, \lfloor d/2 \rfloor) \end{array}$

$$\begin{split} & \mathfrak{C}(\mathfrak{m},d) = \mathfrak{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathfrak{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\omega}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$

 $\Rightarrow O(m^{\omega}M(d)\log(d))$

unrolling: $\mathfrak{m}^{\omega}\left(\mathsf{M}(d) + 2\mathsf{M}(\frac{d}{2}) + 4\mathsf{M}(\frac{d}{4}) + \dots + \frac{d}{2}\mathsf{M}(2)\right) + d\mathfrak{m}$

divide and conquer: complexity aspects

$$\begin{split} & \mathcal{C}(\mathfrak{m},d) = \mathcal{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathcal{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\varpi}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$

 $\Rightarrow O(m^{\omega}M(d)\log(d))$

divide and conquer: complexity aspects

output: deg(**P**) $\approx \left\lceil \frac{d}{m} \right\rceil$ input: $deg(\mathbf{F}) < d$ output: $deg(\mathbf{P}) \leq d$ s = 0 and generic F: complexity of each step: • residual $\mathbf{F} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$ $O(m^2M(d))$ $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{\mathfrak{m}} \rceil))$ • **F** rem M_1 and **F** rem M_2 O(mM(d))unchanged $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{m} \rceil))$ • product $\mathbf{P}_2\mathbf{P}_1$ $O(m^{\omega}M(d))$ two recursive calls 2C(m, |d/2])unchanged partial linearization • base case for $d \approx m$. costs $O(m^{\omega})$
$$\begin{split} & \mathbb{C}(\mathfrak{m},d) = \mathbb{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathbb{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\varpi}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$
 $\Rightarrow O(m^{\omega}M(d)\log(d))$ $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{\mathfrak{m}} \rceil) \log(\lceil \frac{d}{\mathfrak{m}} \rceil))$
divide and conquer: complexity aspects

output: deg(**P**) $\approx \left\lceil \frac{d}{m} \right\rceil$ input: $deg(\mathbf{F}) < d$ output: $deg(\mathbf{P}) \leq d$ s = 0 and generic F: complexity of each step: • residual $\mathbf{F} \leftarrow \frac{1}{M_1} \mathbf{P}_1 \mathbf{F}$ $O(m^2M(d))$ $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{\mathfrak{m}} \rceil))$ • **F** rem M_1 and \mathbf{F} rem M_2 O(mM(d))unchanged $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{m} \rceil))$ • product $\mathbf{P}_2\mathbf{P}_1$ $O(m^{\omega}M(d))$ two recursive calls 2C(m, |d/2])unchanged partial linearization • base case for $d \approx m$, costs $O(m^{\omega})$
$$\begin{split} & \mathbb{C}(\mathfrak{m},d) = \mathbb{C}(\mathfrak{m},\lfloor d/2 \rfloor) + \mathbb{C}(\mathfrak{m},\lceil d/2 \rceil) + O(\mathfrak{m}^{\varpi}\mathsf{M}(d)) \\ & d \text{ base cases, each one costs } O(\mathfrak{m}) \end{split}$$
 $\Rightarrow O(m^{\omega}M(d)\log(d))$ $O(\mathfrak{m}^{\omega} M(\lceil \frac{d}{\mathfrak{m}} \rceil) \log(\lceil \frac{d}{\mathfrak{m}} \rceil))$

m	n	d	PM-BASIS	PM-BASIS with linearization
4	1	65536	1.6693	1.26891
16	1	16384	1.8535	0.89652
64	1	2048	2.2865	0.14362
256	1	1024	36.620	0.20660

vector rational interpolation: recent progress

overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $F\in\mathbb{K}[x]^{m\times n}$ with n>1
- $\label{eq:constraint} \begin{array}{l} \mbox{{\bf F} Giorgi-Jeannerod-Villard 2003] achieved } O(\mathfrak{m}^{\omega}\mathsf{M}(d)\mathsf{log}(d)) \\ \mbox{for } \mathbf{F} \mbox{ mod } x^d, \mbox{ with } \mathfrak{n} \geqslant 1 \mbox{ and } \mathfrak{n} \in O(\mathfrak{m}) \end{array}$
- ▶ for s = 0 and generic \mathbf{F} : O[~]($m^{\omega} \lceil \frac{nd}{m} \rceil$) [Lecerf, ca 2001, unpublished]

vector rational interpolation: recent progress

overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $F\in\mathbb{K}[x]^{m\times n}$ with n>1
- $\label{eq:constraint} \begin{array}{l} \mbox{{\bf F} Giorgi-Jeannerod-Villard 2003] achieved } O(\mathfrak{m}^{\omega}\mathsf{M}(d)\mathsf{log}(d)) \\ \mbox{for } \mathbf{F} \mbox{ mod } x^d, \mbox{ with } \mathfrak{n} \geqslant 1 \mbox{ and } \mathfrak{n} \in O(\mathfrak{m}) \end{array}$
- ▶ for s = 0 and generic \mathbf{F} : O[~]($\mathfrak{m}^{\omega} \lceil \frac{\mathfrak{nd}}{\mathfrak{m}} \rceil$) [Lecerf, ca 2001, unpublished]
- ► more recently: $O''(m^{\omega-1}nd)$ for $\mathbf{F} \mod x^d$ [Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020] \rightsquigarrow any \mathbf{s} , no genericity assumption, returns the canonical \mathbf{s} -Popov basis

vector rational interpolation: recent progress

overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $F\in\mathbb{K}[x]^{m\times n}$ with n>1
- $\label{eq:constraint} \begin{array}{l} \mbox{{\bf F} Giorgi-Jeannerod-Villard 2003] achieved } O(\mathfrak{m}^{\omega}\mathsf{M}(d)\mathsf{log}(d)) \\ \mbox{for } \mathbf{F} \mbox{ mod } x^d, \mbox{ with } \mathfrak{n} \geqslant 1 \mbox{ and } \mathfrak{n} \in O(\mathfrak{m}) \end{array}$
- ▶ for s = 0 and generic \mathbf{F} : O[~]($\mathfrak{m}^{\omega} \lceil \frac{\mathfrak{nd}}{\mathfrak{m}} \rceil$) [Lecerf, ca 2001, unpublished]

• more recently: $O^{(m^{\omega-1}nd)}$ for $\mathbf{F} \mod x^d$ [Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020] \rightsquigarrow any \mathbf{s} , no genericity assumption, returns the canonical \mathbf{s} -Popov basis

 ▶ F mod G and general modular matrix equations in similar complexity [Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017] [Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]
 → any s, no genericity assumption, returns the canonical s-Popov basis

outline

computer algebra

Reed-Solomon decoding

polynomial matrices

 \blacktriangleright efficient algorithms and software

- for matrices over a field
- ▶ for univariate polynomials
- ▶ context and unique decoding problem
- ▶ key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- ► core algorithms & shifted normal forms
- ▶ fast divide and conquer interpolation

efficient list decoding

outline

computer algebra

Reed-Solomon decoding

polynomial matrices

efficient list decoding

- ▶ efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- ▶ context and unique decoding problem
- ▶ key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- ▶ core algorithms & shifted normal forms
- ▶ fast divide and conquer interpolation
- ▶ the Guruswami-Sudan algorithm
- ▶ via structured systems or basis reduction
- a word on extensions

list decoding problem

for convenience, we use the agreement parameter t = n - e: $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leqslant e \quad \Leftrightarrow \quad \#\{i \mid w(\alpha_i) = \beta_i\} \geqslant t$

input:

- $\alpha_1, \ldots, \alpha_n$ the n distinct evaluation points in \mathbb{K} ,
- k the degree bound, t = n e the agreement,
- ${\scriptstyle \blacktriangleright}\,(\beta_1,\ldots,\beta_n)$ the received word in \mathbb{K}^n

list decoding requirement: $t^2 > kn$ [Guruswami-Sudan'99]

output: all polynomials w(x) in $\mathbb{K}[x]$ such that

 $\mathsf{deg}({\boldsymbol{w}}) \leqslant k \qquad \mathsf{and} \qquad \#\{i \mid {\boldsymbol{w}}(\alpha_i) = \beta_i\} \geqslant t$

list decoding problem

for convenience, we use the agreement parameter t = n - e: $\#\{i \mid w(\alpha_i) \neq \beta_i\} \leqslant e \quad \Leftrightarrow \quad \#\{i \mid w(\alpha_i) = \beta_i\} \geqslant t$

input:

- $\alpha_1, \ldots, \alpha_n$ the n distinct evaluation points in \mathbb{K} ,
- k the degree bound, t = n e the agreement,
- ${\scriptstyle \blacktriangleright}\,(\beta_1,\ldots,\beta_n)$ the received word in \mathbb{K}^n

list decoding requirement: $t^2 > kn$ [Guruswami-Sudan'99]

output: all polynomials w(x) in $\mathbb{K}[x]$ such that

 $\mathsf{deg}(\boldsymbol{w}) \leqslant k \qquad \mathsf{and} \qquad \#\{i \mid \boldsymbol{w}(\alpha_i) = \beta_i\} \geqslant t$

Guruswami-Sudan algorithm:

▶ interpolation step compute Q(x, y) such that: w(x) solution $\Rightarrow Q(x, w(x)) = 0$ ▶ root-finding step compute all y-roots of Q(x, y), keep those that are solutions

introducing the interpolation+root-finding approach

consider **one** solution w_1 :

key equation:

 $\Lambda_1 R = \Lambda_1 w_1 \mod G$

where $R(\alpha_i)=\beta_i, \quad G(x)=\prod_{1\leqslant i\leqslant n}(x-\alpha_i) \quad \Lambda_1(x)=\prod_{i\,|\, \text{error}_1}(x-\alpha_i)$

obstacle: no uniqueness of solution $\frac{\mu_1}{\Lambda_1}$ for rational reconstruction

 $\Lambda_1 R = \mu_1 \mod G$

with deg $\mu_1 \leqslant e + k$

since $e \ge \frac{n-k}{2} \Rightarrow$ (unique decoding bound not satisfied), possibly deg $(\Lambda_1) + deg(\Lambda_1 w_1) \ge n = deg G$ (more unknowns than equations in the linearized problem)

introducing the interpolation+root-finding approach

note $\Lambda_1(\mathbf{R} - w_1) = 0 \mod \mathbf{G}$, and consider **a second** solution w_2 :

"extended" key equation:

$$\Lambda(\mathbf{R} - \mathbf{w}_1)(\mathbf{R} - \mathbf{w}_2) = 0 \mod \mathbf{G}$$

where
$$\Lambda = \prod_{i \ | \ \text{error}_{1 \wedge 2}} (x - \alpha_i) = \text{gcd}(\Lambda_1, \Lambda_2)$$

 w_1 and w_2 are y-roots of the bivariate polynomial

$$Q(x, y) = \Lambda(y - w_1)(y - w_2) = \Lambda w_1 w_2 - \Lambda(w_1 + w_2)y + \Lambda y^2$$

 \rightsquigarrow similar remark for all ℓ solutions w_1, \ldots, w_ℓ

 $\begin{array}{l} \textbf{properties of } Q(x,y): \\ \bullet \mbox{ degree in } y \mbox{ is } \ell = \mbox{ number of solutions} \\ \bullet \mbox{ weighted-degree } \mbox{ deg}_x(Q(x,x^ky)) \mbox{ close to } \ell k \\ \bullet \mbox{ } Q(\alpha_i,\beta_i) = 0 \mbox{ for every } i \mbox{ (i.e. } Q(x,R) = 0 \mbox{ mod } G) \end{array}$

bivariate interpolation with multiplicities:

Input:

n points $\{(\alpha_i, \beta_i)\}_{1 \le i \le n}$ in \mathbb{K}^2 , with the α_i 's distinct k the degree constraint, t the agreement ℓ the list-size, s the multiplicity ($s \le \ell$)

Output:

a nonzero polynomial Q(x,y) in $\mathbb{K}[x,y]$ such that

(i)	$deg_{y}(Q) \leqslant \ell$	(list-size condition)
(ii)	$\deg_{\mathbf{x}}(\mathbf{Q}(\mathbf{x},\mathbf{x}^{\mathbf{k}}\mathbf{y}) < \mathbf{st}$	(weighted-degree condition)
(iii)	$\forall i, \ Q(\alpha_i, \beta_i) = 0 \text{ with multiplicity } s$	(vanishing condition)

bivariate interpolation with multiplicities:

Input:

n points $\{(\alpha_i, \beta_i)\}_{1 \le i \le n}$ in \mathbb{K}^2 , with the α_i 's distinct k the degree constraint, t the agreement ℓ the list-size, s the multiplicity (s $\le \ell$)

Output:

a nonzero polynomial Q(x,y) in $\mathbb{K}[x,y]$ such that

(i)	$deg_{y}(Q) \leqslant \ell$	(list-size condition)
(ii)	$\deg_{\mathbf{x}}(\mathbf{Q}(\mathbf{x},\mathbf{x}^{\mathbf{k}}\mathbf{y}) < \mathbf{st}$	(weighted-degree condition)
(iii)	$\forall i, \ Q(\alpha_i, \beta_i) = 0$ with multiplicity s	(vanishing condition)

► find parameters l and s► interpolation step compute Q(x, y) such that: w(x) solution $\Rightarrow Q(x, w(x)) = 0$ ► root-finding step compute all y-roots of Q(x, y), keep those that are solutions

(i)	$deg_{y}(Q) \leqslant \ell$	(list-size condition)
(ii)	$\deg_{\mathbf{x}}(\mathbf{Q}(\mathbf{x},\mathbf{x}^{\mathbf{k}}\mathbf{y}) < \mathbf{st}$	(weighted-degree condition)
(iii)	$\forall i, \ Q(\alpha_i, \beta_i) = 0 \text{ with multiplicity } s$	(vanishing condition)

► find parameters l and s► interpolation step compute Q(x, y) such that: w(x) solution $\Rightarrow Q(x, w(x)) = 0$ ► root-finding step compute all y-roots of Q(x, y), keep those that are solutions

 $\begin{array}{ll} (i) & \mbox{deg}_y(Q) \leqslant \ell & (\mbox{list-size condition}) \\ (ii) & \mbox{deg}_x(Q(x,x^ky) < st & (\mbox{weighted-degree condition}) \\ (iii) & \ensuremath{\forall} i, \ Q(\alpha_i, \beta_i) = 0 \ \mbox{with multiplicity s} & (\mbox{vanishing condition}) \end{array}$

• list-size condition allows to work with polynomial matrices identification $\mathbb{K}[x, y]_{\deg_y \leqslant \ell} \longleftrightarrow \mathbb{K}[x]^{\ell}$ $Q(x, y) = Q_0(x) + Q_1(x)y + \cdots + Q_{\ell}(x)y^{\ell}$ • weighted-degree condition handled via shifted forms

degree constraints $deg(Q_j(x)) < st - jk$ for $j = 0, ..., \ell$

```
• find parameters \ell and s

• interpolation step

compute Q(x, y) such that: w(x) solution \Rightarrow Q(x, w(x)) = 0

• root-finding step

compute all y-roots of Q(x, y), keep those that are solutions
```

$ \begin{array}{ll} (i) & \mbox{deg}_y(Q) \leqslant \ell \\ (ii) & \mbox{deg}_x(Q(x,x^ky) < st \\ (iii) & \mbox{\forall} i, \ Q(\alpha_i,\beta_i) = 0 \ \mbox{with multiplicity } s \end{array} $	(list-size condition) (weighted-degree condition) (vanishing condition)		
root-finding step: [Alekhnovich 2005] [Neiger-Rosenkilde-Schost 2017]	quasi-linear complexity		
fastest known interpolation step: via univariate relations $O^{\sim}(\ell^{\omega-1}s^2n)$ [Jeannerod-Neiger-Schost-Villard 2017] • Sudan case (s = 1): vector rational interpolation • general case: similar problem with s equations, which have respective moduli G^s , G^{s-1} ,, G			

features common to all algorithms:

- $\begin{array}{l} \textbf{ use } (i) + (ii) \text{ to fix the linear unknowns:} \\ Q = \sum_{0 \leqslant j \leqslant \ell} \sum_{0 \leqslant i < st-jk} \mathsf{q}_{i,j} x^i y^j \end{array}$
- ► same number of linear unknowns: $(\ell + 1)$ st $-\frac{\ell(\ell+1)}{2}$ k
- ▶ same number of linear equations: $\frac{s(s+1)}{2}n$
- call a structured linear system solver

features common to all algorithms:

- $\begin{array}{l} \textbf{ use } (i) + (ii) \text{ to fix the linear unknowns:} \\ Q = \sum_{0 \leqslant j \leqslant \ell} \sum_{0 \leqslant i < st-jk} \mathfrak{q}_{i,j} x^i y^j \end{array}$
- ► same number of linear unknowns: $(\ell + 1)st \frac{\ell(\ell+1)}{2}k$
- ▶ same number of linear equations: $\frac{s(s+1)}{2}n$
- call a structured linear system solver

$$\begin{bmatrix} Q_0(x) & Q_1(x) \end{bmatrix} \begin{bmatrix} 2x^7 + 2x^6 + 5x^4 + 2x^2 + 4 \\ -1 \end{bmatrix} = 0 \mod x^8$$

$$\begin{bmatrix} q_{00}(x) & Q_1(x) \end{bmatrix} \begin{bmatrix} 4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 2 \\ 4 & 0 & 2 & 0 & 5 & 0 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 4 & 0 & 2 & 0 & 5 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = 0$$

features common to all algorithms:

- $\begin{array}{l} \textbf{ use } (i) + (ii) \text{ to fix the linear unknowns:} \\ Q = \sum_{0 \leqslant j \leqslant \ell} \sum_{0 \leqslant i < st jk} q_{i,j} x^i y^j \end{array}$
- ► same number of linear unknowns: $(\ell + 1)$ st $-\frac{\ell(\ell+1)}{2}$ k
- ▶ same number of linear equations: $\frac{s(s+1)}{2}n$
- call a structured linear system solver

Vandermonde-like system

 $O(\ell s^4 n^2)$

- ► [Olshevsky-Shokrollahi'99]
- Inearize the vanishing condition on each point

 $O(\ell s^4 n^2)$

Vandermonde-like system

- ► [Olshevsky-Shokrollahi'99]
- Inearize the vanishing condition on each point

Mosaic-Hankel system

 $O(\ell s^4 n^2)$

- ▶ [Roth-Ruckenstein'00] [Zeh-Gentner-Augot 2011]
- Inearize the reversed extended key equation
- ▶ uses an adapted [Feng-Tzeng'91] solver

 $O(\ell s^4 n^2)$

Vandermonde-like system

- ► [Olshevsky-Shokrollahi'99]
- Inearize the vanishing condition on each point

Mosaic-Hankel system

 $O(\ell s^4 n^2)$

- ▶ [Roth-Ruckenstein'00] [Zeh-Gentner-Augot 2011]
- Inearize the reversed extended key equation
- ▶ uses an adapted [Feng-Tzeng'91] solver

Toeplitz-like system

 $O(\ell^{\omega-1}s^2n)$

- ▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]
- Inearize the extended key equation
- ▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

features common to all algorithms:

- $\begin{array}{l} \textbf{ use }(i) \text{ to fix the polynomial unknowns:} \\ Q = \sum_{0 \leqslant j \leqslant \ell} Q_j(x) y^j \quad \longleftrightarrow \quad [Q_0(x) \cdots Q_\ell(x)] \\ \textbf{ consider same interpolant } \mathbb{K}[x]\text{-module:} \\ \{Q \mid (i) + (iii)\} = \{\sum_{0 \leqslant j \leqslant \ell} Q_j(x) y^j \mid Q(\alpha_i, \beta_i) = 0 \text{ with mult. } s\} \end{array}$
- use (iii) to derive a basis of the module:

 $\{Q \mid (\mathfrak{i}) + (\mathfrak{i}\mathfrak{i}\mathfrak{i})\} = \langle p_0(x, y), p_1(x, y), \dots, p_\ell(x, y) \rangle$

 \blacktriangleright call a $\mathbb{K}[x]\text{-module basis reduction algorithm,}$ using a shift to satisfy the weighted-degree condition (ii)

features common to all algorithms:

 $\begin{array}{ll} \textbf{ use } (i) \text{ to fix the polynomial unknowns:} \\ Q = \sum_{0 \leqslant j \leqslant \ell} Q_j(x) y^j & \longleftrightarrow \quad [Q_0(x) \cdots Q_\ell(x)] \\ \textbf{ consider same interpolant } \mathbb{K}[x]\text{-module:} \\ \{Q \mid (i) + (iii)\} = \{\sum_{0 \leqslant j \leqslant \ell} Q_j(x) y^j \mid Q(\alpha_i, \beta_i) = 0 \text{ with mult. } s\} \end{array}$

• use (iii) to derive a basis of the module:

$$\{Q \mid (i) + (iii)\} = \langle p_0(x, y), p_1(x, y), \dots, p_\ell(x, y) \rangle$$

 \blacktriangleright call a $\mathbb{K}[x]\text{-module basis reduction algorithm,}$ using a shift to satisfy the weighted-degree condition (ii)

features common to all algorithms:

 $\begin{array}{ll} \bullet \text{ use }(i) \text{ to fix the polynomial unknowns:} \\ Q = \sum_{0 \leqslant j \leqslant \ell} Q_j(x) y^j & \longleftrightarrow \quad [Q_0(x) \cdots Q_\ell(x)] \\ \bullet \text{ consider same interpolant } \mathbb{K}[x]\text{-module:} \\ \{Q \mid (i) + (iii)\} = \{\sum_{0 \leqslant j \leqslant \ell} Q_j(x) y^j \mid Q(\alpha_i, \beta_i) = 0 \text{ with mult. } s\} \end{array}$

• use (iii) to derive a basis of the module:

$$[Q \mid (\mathfrak{i}) + (\mathfrak{i}\mathfrak{i}\mathfrak{i})\} = \langle \mathfrak{p}_0(x, y), \mathfrak{p}_1(x, y), \dots, \mathfrak{p}_{\ell}(x, y) \rangle$$

 \blacktriangleright call a $\mathbb{K}[x]\text{-module basis reduction algorithm,}$ using a shift to satisfy the weighted-degree condition (ii)

basis reduction \approx [Mulders-Storjohann 2003]

- ▶ [Reinhard 2003]
- ▶ [Lee-O'Sullivan 2008]
- [Trifonov 2010]

 $\begin{array}{c} \text{g} \quad \begin{array}{c} \text{quadratic in n} \\ O(\ell^3 m^2 n^2) \\ O(\ell^4 m n^2) \\ O(m^3 n^2) \text{ (heuristic)} \end{array}$

basis reduction ≈ [Mulders-Storjohann • [Reinhard 2003] • [Lee-O'Sullivan 2008] • [Trifonov 2010]		3] quadratic in n $O(\ell^3 m^2 n^2)$ $O(\ell^4 m n^2)$ $O(m^3 n^2)$ (heuristic)	
	basis reduction = matrix-half-GC ► [Alekhnovich 2002+2005]	D.	$\frac{\text{linear in } n}{O^{(\ell^4 m^4 n)}}$
	<pre>basis reduction = [Giorgi-Jeanner • [Beelen-Brander 2010] • [Bernstein 2010] • [Cohn-Heninger 2011+2015]</pre>	od-Villard 2003]	The second system of the syst

basis reduction \approx [Mulder • [Reinhard 2003] • [Lee-O'Sullivan 2008] • [Trifonov 2010]		s-Storjohann 2003] $O(\mathfrak{m}^3\mathfrak{l})$	$\begin{array}{c} \mbox{quadratic in n} \\ O(\ell^3 m^2 n^2) \\ O(\ell^4 m n^2) \\ n^2) \mbox{ (heuristic)} \end{array}$		
	basis reduction = • [Alekhnovich 20]	matrix-half-GCD 02+2005]	~ (<mark>′linear</mark> in n ∂~(ℓ⁴m⁴n)	
basis reduction = • [Beelen-Brander • [Bernstein 2010] • [Cohn-Heninger		[Giorgi-Jeannerod-Villar · 2010]] 2011+2015]	d 2003]	$ \begin{array}{l} \text{linear in } n \\ O^{\sim}(\ell^4 m n) \\ O^{\sim}(\ell^{\omega+1} n) \\ O^{\sim}(\ell^{\omega} m n) \end{array} $	
		basis reduction = fas ► [Neiger 2016] [Neiger ► do not go this wa ~ here, better call fa	test known r-Vu 2017] y! ast vector inter	$O^{\sim}(\ell^{\omega-1})$	ectly

summary for [Sudan '97] [Guruswami-Sudan '99]:

► list-decoding of Reed-Solomon codes, extends error-correction bound

compute $Q(x,y) = Q_0 + Q_1 y + \dots + Q_\mathfrak{m} y^\ell$ such that

- $[Q_0,\ldots,Q_\ell]$ has small shifted degree
- $Q(\alpha_i,\beta_i)=0$ with multiplicity μ for all i

[Kötter-Vardy 2003] soft-decision decoding of Reed-Solomon codes

α_1,\ldots,α_n are not pairwise distinct compute $Q(x,y)=Q_0+Q_1y+\cdots+Q_\ell y^\ell$ such that

- $[Q_0,\ldots,Q_\ell]$ has small shifted degree
- $Q(\alpha_i, \beta_i) = 0$ with multiplicity μ_i for all i

[Guruswami-Rudra 2006]

list-decoding of folded Reed-Solomon codes: further extends the error-correction bound up to the information-theoretic limit

[Devet-Goldberg-Heninger 2012]

Optimally robust Private Information Retrieval

compute $Q(x,y_1,\ldots,y_s)=\sum_{(j_1,\ldots,j_s)\in\Gamma}Q_{j_1,\ldots,j_s}y_1^{j_1}\cdots y_s^{j_s}$ such that

- $[Q_{j_1,\ldots,j_s}]_{(j_1,\ldots,j_s)\in\Gamma}$ has small shifted degree
- $Q(\alpha_i, \beta_{i1}, \dots, \beta_{is}) = 0$ with multiplicity μ for all i

generalizations of the interpolation step

[Beelen-Rosenkilde-Solomatov 2022] [Beelen-Neiger (preprint) 2023] Guruswami-Sudan algorithm in the algebraic-geometry code setting

up to more precomputations, very similar context:

... also up to many technical details

$$\mathfrak{M}_{\mathbf{s},\ell,\beta} = \left\{ \mathbf{Q} = \sum_{\mathbf{t}=\mathbf{0}}^{\ell} z^{\mathbf{t}} \mathbf{Q}_{\mathbf{t}} \in \mathsf{F}[z] \mid \mathbf{Q}_{\mathbf{t}} \in \Delta(-\mathsf{t}\mathsf{G}), \right.$$

 $Q \text{ has a root of multiplicity at least } s \text{ at } (P_j, \beta_j) \text{ for all } j \bigg\}.$

$$\mathcal{M}_{s,\ell,\beta} = \bigoplus_{t=0}^{s-1} (z-R)^t \Delta(G_t) \oplus \bigoplus_{t=s}^{\ell} f_t(z)(z-R)^s \Delta(G_t).$$

summary

computer algebra

Reed-Solomon decoding

polynomial matrices

efficient list decoding

- efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- \blacktriangleright context and unique decoding problem
- ▶ key equations and how to solve them
- correcting more errors?
- introduction to vector interpolation
- ▶ core algorithms & shifted normal forms
- ▶ fast divide and conquer interpolation
- ▶ the Guruswami-Sudan algorithm
- ▶ via structured systems or basis reduction
- a word on extensions