
Vincent Neiger
LIP6, Sorbonne Université, France

designing fast Guruswami-Sudan decoders using

univariate polynomial matrix algorithms

CAIPI symposium @ Bordeaux
November 9, 2023

1



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

2



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

3



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

FFT 1805, ’65

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

FFT 1805, ’65

Karatsuba ’62

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

FFT 1805, ’65

Karatsuba ’62Strassen ’69

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

FFT 1805, ’65

Karatsuba ’62Strassen ’69Buchberger ’76

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

FFT 1805, ’65

Karatsuba ’62Strassen ’69Buchberger ’76

LLL ’82, NFS ’88

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

FFT 1805, ’65

Karatsuba ’62Strassen ’69Buchberger ’76

LLL ’82, NFS ’88

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

Euclid’s GCD -300 Gaussian elimination 179 Newton’s method 1669

FFT 1805, ’65

Karatsuba ’62Strassen ’69Buchberger ’76

LLL ’82, NFS ’88

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



Undergraduate Texts in Mathematics

David A. Cox
John Little
Donal O'Shea

Ideals, 
Varieties, and 
Algorithms
An Introduction to Computational 
Algebraic Geometry and Commutative 
Algebra

 Fourth Edition 

graph theory

number theory
biology

robotics

combinatorics

algebraic geometry
error correcting codes

cryptography

computer algebra

algorithm design
and software implementations

for exact computations
with mathematical objects

4



error correcting codes cryptographic protocols

XXth-XXIst centuries : digital data & interconnected networks

integrity – confidentiality

goal of computer algebra
fast algorithms : complexity & efficient implementations

discrete structures : exact and intensive computations

▶matrices of large size, with sparsity or structure
▶polynomials and polynomial matrices in one variable
▶polynomials in several variables

reduce to efficient building blocks

▶MatMul: matrix multiplication
▶PolMul: polynomial multiplication

5



error correcting codes cryptographic protocols

XXth-XXIst centuries : digital data & interconnected networks

integrity – confidentiality

goal of computer algebra
fast algorithms : complexity & efficient implementations

discrete structures : exact and intensive computations

▶matrices of large size, with sparsity or structure
▶polynomials and polynomial matrices in one variable
▶polynomials in several variables

reduce to efficient building blocks

▶MatMul: matrix multiplication
▶PolMul: polynomial multiplication

5



measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rational numbers Q

algebraic complexity bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

accurate for finite fields K = Fp

ignores coefficient growth, e.g. over K = Q

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading

6



measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rational numbers Q

algebraic complexity bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

accurate for finite fields K = Fp

ignores coefficient growth, e.g. over K = Q

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading

6



measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rational numbers Q

algebraic complexity bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

accurate for finite fields K = Fp

ignores coefficient growth, e.g. over K = Q

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading

6



matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

▶ addition is “quadratic”: O(m2) operations in K
▶naive multiplication is cubic: O(m3)

breakthrough: subcubic matrix multiplication

[Strassen’69]

▶ complexity exponent ω ≈ 2.81

▶used in practice for m ⩾ a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

▶best-known exponent ω ≈ 2.373
[Le Gall’14] [Alman-Williams’20]

▶ “galactic” algorithms: strongly impractical as such

7



matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

▶ addition is “quadratic”: O(m2) operations in K
▶naive multiplication is cubic: O(m3)

breakthrough: subcubic matrix multiplication

[Strassen’69]

▶ complexity exponent ω ≈ 2.81

▶used in practice for m ⩾ a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

▶best-known exponent ω ≈ 2.373
[Le Gall’14] [Alman-Williams’20]

▶ “galactic” algorithms: strongly impractical as such

7



matrices: main computational problems

reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log

PLUQ = Gaussian elimination

TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

not closed:
open:

8



matrices: main computational problems

reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log

PLUQ = Gaussian elimination

TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

PolMul

MinPoly
CharPoly

}
= O(MatMul)

exploiting non-naive PolMul

not closed:
open:

8



matrices: main computational problems

reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log

PLUQ = Gaussian elimination

TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

PolMul

MinPoly
CharPoly

}
= O(MatMul)

exploiting non-naive PolMul

not closed: is Frobenius normal form in O(MatMul)?
open:

8



matrices: main computational problems

reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log

PLUQ = Gaussian elimination

TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

PolMul

MinPoly
CharPoly

}
= O(MatMul)

exploiting non-naive PolMul

not closed: is Frobenius normal form in O(MatMul)?
open:

8



matrices: main computational problems

reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log

PLUQ = Gaussian elimination

TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

PolMul

MinPoly
CharPoly

}
= O(MatMul)

exploiting non-naive PolMul

not closed: is Frobenius normal form in O(MatMul)?
open: is linear system solving as hard as multiplication?

8



bonus: some notes

biblio: https://www.sciencedirect.com/science/article/pii/S0747717113000631

▶ explicit reductions between inversion & MatMul & variants of
Gaussian elimination / echelon form computation

▶ constants in the O(·) complexities when using classical matrix
multiplication (ω = 3) or Strassen’s algorithm

“not closed”: it is open, but

▶ there is a randomized algorithm for Frobenius form computation
which has complexity O(MatMul)
⇝ http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf

▶ recent developments for the characteristic polynomial gives new
insight concerning core operations typically used in Frobenius form
algorithms

9

https://www.sciencedirect.com/science/article/pii/S0747717113000631
http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf


polynomials: multiplication

p = 87x7 + 74x6 + 60x5 + 46x4 + 16x3 + 41x2 + 86x+ 69

p ∈ K[x]<8 −→ univariate polynomial in x of degree < 8 over K

fundamental operations on polynomials of degree < d:

▶ addition and Horner’s evaluation are linear: O(d)
▶naive multiplication is quadratic: O(d2)

breakthrough: subquadratic polynomial multiplication

[Karatsuba’62] M(d) ∈ O(d1.58)

breakthrough: quasi-linear polynomial multiplication

[Schönhage-Strassen’71] [Nussbaumer’80] [Cantor-Kaltofen’91] M(d) ∈ O(d log(d) log log(d))

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

▶ change of representation by evaluation-interpolation

▶used in practice as soon as d ≈ 100

▶FFT techniques using (virtual) roots of unity

note: M(d) ∈O(d log(d))
if provided a “good” root of unity

10



polynomials: multiplication

p = 87x7 + 74x6 + 60x5 + 46x4 + 16x3 + 41x2 + 86x+ 69

p ∈ K[x]<8 −→ univariate polynomial in x of degree < 8 over K

fundamental operations on polynomials of degree < d:

▶ addition and Horner’s evaluation are linear: O(d)
▶naive multiplication is quadratic: O(d2)

breakthrough: subquadratic polynomial multiplication

[Karatsuba’62] M(d) ∈ O(d1.58)

breakthrough: quasi-linear polynomial multiplication

[Schönhage-Strassen’71] [Nussbaumer’80] [Cantor-Kaltofen’91] M(d) ∈ O(d log(d) log log(d))

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

▶ change of representation by evaluation-interpolation

▶used in practice as soon as d ≈ 100

▶FFT techniques using (virtual) roots of unity

note: M(d) ∈O(d log(d))
if provided a “good” root of unity

10



polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

not closed:
not closed:
open:
open:

11



polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

O(M(d))

not closed: polynomial multiplication in O(d log(d))?
not closed:
open:
open:

11



polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

not closed: polynomial multiplication in O(d log(d))?
not closed: interpolation and multipoint eval. in O(PolMul)?
open: XGCD and friends in O(PolMul)?
open:

11



polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

not closed: polynomial multiplication in O(d log(d))?
not closed: interpolation and multipoint eval. in O(PolMul)?
open: XGCD and friends in O(PolMul)?
open: modular composition f(g) mod h closer to O(PolMul)?

11



bonus: some notes

interpolation and multipoint eval. in O(PolMul) “not closed”:

▶ remains open for an arbitrary set of points, with no assumption, but:

▶ by design, solved for FFT points (powers of some root of unity)

▶ more generally, solved for points forming a geometric sequence
https://www.sciencedirect.com/science/article/pii/S0885064X05000026

▶ in many applications of interpolation/evaluation, one can choose the
points, in which case O(PolMul) is feasible

polynomial multiplication in O(d log(d)) “not closed”:

▶ remains open over an arbitrary field, concerning algebraic complexity

▶ solved when the field possesses suitable roots of unity for FFT

▶ method of choice in practice (using several primes and CRT if
needed) when working over prime finite fields Z/pZ

▶ recent progress in the bit complexity model
https://www.sciencedirect.com/science/article/pii/S0885064X19300378

https://dl.acm.org/doi/abs/10.1145/3505584

12

https://www.sciencedirect.com/science/article/pii/S0885064X05000026
https://www.sciencedirect.com/science/article/pii/S0885064X19300378
https://dl.acm.org/doi/abs/10.1145/3505584


matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

NTL & FLINT C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

13



matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

NTL & FLINT C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

13



matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

NTL & FLINT C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

13



matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

NTL & FLINT C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

13



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

14



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

15



error-correcting codes

goal:
reliable data transmission over
unreliable communication channel

modern development pioneered by
Hamming (1940s), Shannon (1948)

strategy:
add redundancy to the message
add redundancy to the message
add redundancy to the message

(drawing: courtesy of Johan Nielsen→Rosenkilde)

intended word
(w0, . . . ,wk)

code word
(c1, . . . , cn)

with k+1
n
⩽ 1

16



encoding: adding redundancy

all intended words
(w0, . . . ,wk)

all code words
(c1, . . . , cn)

encoding

polynomials of degree ⩽ k

w(x) = w0 + w1x + · · · + wkx
k

their evaluations at α1, . . . ,αn

(w(α1), . . . ,w(αn))

encoding

Reed-Solomon codes (1960):

17



transmission over unreliable channel

code word
(w(α1), . . . ,w(αn))

polynomial w(x)

of degree ⩽ k

received word
(β1, . . . ,βn)

encoding noisy

channel

▶number of errors ⩽ e, meaning #{i | w(αi) ̸= βi} ⩽ e (Hamming distance)

▶possible received words = balls of radius e centered on the code words

noise ⇒ transmission errors:

18



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w?

. uniqueness of w?

19



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w?

. uniqueness of w?

n = 5,k = 4
e = 0: Lagrange interpolation
e = 1: no error detection!

19



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w?

. uniqueness of w?

n = 5,k = 3
e = 0: Lagrange interpolant exists!
e = 1: up to 5 possible solutions. . .
→ error is detected, not corrected

19



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w?

. uniqueness of w?

n = 5,k = 3
e = 0: Lagrange interpolant exists!
e = 1: up to 5 possible solutions. . .
→ error is detected, not corrected

19



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w? by construction

. uniqueness of w? a priori . . . yet,
guaranteed if no overlap between the
balls of possible received words

n = 5,k = 3
e = 0: Lagrange interpolant exists!
e = 1: up to 5 possible solutions. . .
→ error is detected, not corrected

19



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w? by construction

. uniqueness of w? a priori . . . yet,
guaranteed if no overlap between the
balls of possible received words

19



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w? by construction

. uniqueness of w? a priori . . . yet,
guaranteed if no overlap between the
balls of possible received words

unique decoding bound:
2e < dmin

Reed-Solomon case:
e < n−k

2

19



unique decoding

decoding:

find the polynomial w(x) of degree ⩽ k
such that #{i | w(αi) ̸= βi} ⩽ e

. (α1, . . . ,αn) = encoding points

. (β1, . . . ,βn) = received word

. n− e = agreement

well-defined:

. existence of w? by construction

. uniqueness of w? a priori . . . yet,
guaranteed if no overlap between the
balls of possible received words

unique decoding bound:
2e < dmin

Reed-Solomon case:
e < n−k

2

19



bonus: minimum distance for Reed-Solomon codes

▶ for v ̸= w polynomials of degree ⩽ k over the base field K,
(v(α1), . . . , v(αn)) and (w(α1), . . . ,w(αn)) agree at ⩽ k positions

⇒ distance at least n− k between two code words

▶ for v = 0 and w = (x− α1) · · · (x− αk), the code words are
(0, . . . , 0) and (0, . . . , 0,w(αk+1), . . . ,w(αn))
⇒ two code words at distance exactly n− k

=⇒ minimum distance dmin = n− k
(for dimension reasons, this is the best one can hope for)

in this case, unique decoding condition: e <
n− k

2

20



summary: unique decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, e the error-correction radius,
▶ (β1, . . . ,βn) the received word in Kn

unique decoding requirement: e < n−k
2

output: the polynomial w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) ̸= βi} ⩽ e

21



summary: unique decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, e the error-correction radius,
▶ (β1, . . . ,βn) the received word in Kn

unique decoding requirement: e < n−k
2

output: the polynomial w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) ̸= βi} ⩽ e

multiple viewpoints + fruitful interactions: [coding theory]/[computer algebra]
▶ linear recurrence generator – Toeplitz linear system – Padé approximation
[Berlekamp’68] [Massey’69] [Brent-Gustavson-Yun’80] [Beckermann-Labahn’94]

▶modified extended GCD – rational function reconstruction
[Sugiyama-Kasahara-Hirasawa-Namekawa’75] [Welch-Berlekamp’86]
[Knuth’70] [Schönhage’71] [Moenck’73] [Brent-Gustavson-Yun’80]

▶Vandermonde-like linear system – vector rational interpolation
[Olshevsky-Shokrollahi’99] [Kötter-Vardy 2003]
[Morf’74] [Bitmead-Anderson’80] [Pan’90] [van Barel-Bultheel’92] [Beckermann-Labahn’97]

one target complexity: O(n3)→ O(n2)→ O(M(n) log(n))
21



encoding/decoding efficiency: basic remarks

encoding w(x) 7→ (w(α1), . . . ,w(αn))

▶naive: n times Horner evaluation O(k) O(nk)

▶ fast: n
k
times k-point evaluation O(n

k
M(k) log(k)) ⊆O(M(n) log(n))

points in geometric sequence ⇒ no log factor [Aho-Steiglitz-Ullman’75] [Bostan-Schost 2005]

22



encoding/decoding efficiency: basic remarks

encoding w(x) 7→ (w(α1), . . . ,w(αn))

▶naive: n times Horner evaluation O(k) O(nk)

▶ fast: n
k
times k-point evaluation O(n

k
M(k) log(k)) ⊆O(M(n) log(n))

points in geometric sequence ⇒ no log factor [Aho-Steiglitz-Ullman’75] [Bostan-Schost 2005]

naive decoding

▶ infinitely lucky decoder: there was no error
⇝ Lagrange interpolation in O(M(n) log(n))

▶ very lucky decoder: at most 1 error, unknown position
⇝ trial and error, worst case O(nM(n) log(n))

▶ lucky decoder: at most 2 errors, unknown positions
⇝ trial and error, worst case O(n2M(n) log(n))

▶ ordinary decoder: at most e errors, unknown positions
⇝ life is tough, complexity exponential in e

next slides = one can be both ordinary and

22



linear key equations and “rational interpolation” decoding

known interpolant R(x)
such that R(αi) = βi

unknown error-locator
Λ(x) =

∏
i | error(x − αi)

⇒ deg(Λ) ⩽ e

key equations: Λ(αi)R(αi) = Λ(αi)w(αi) for 1 ⩽ i ⩽ n

multivariate, non-linear, polynomial system: a priori difficult
(n equations of degree 2 in the k+ 1+ e coefficients of w and Λ)

approach: linearization
introducing the new unknown µ = Λw of degree ⩽ k + e

23



linear key equations and “rational interpolation” decoding

known interpolant R(x)
such that R(αi) = βi

unknown error-locator
Λ(x) =

∏
i | error(x − αi)

⇒ deg(Λ) ⩽ e

key equations: Λ(αi)R(αi) = Λ(αi)w(αi) for 1 ⩽ i ⩽ n

multivariate, non-linear, polynomial system: a priori difficult
(n equations of degree 2 in the k+ 1+ e coefficients of w and Λ)

approach: linearization
introducing the new unknown µ = Λw of degree ⩽ k + e

linear system with n equations and k+ 1+ 2e unknowns (k+ 1+ 2e ⩽ n):

▶Gaussian elimination O(n3)→ O(nω) [Bunch-Hopcroft’74] [Ibarra-Moran-Hui’82]

▶O(n2)→ O(M(n) log(n)) exploiting the Vandermonde-like structure
[Morf’74] [Bitmead-Anderson’80] [Pan’90] [Olshevsky-Shokrollahi’99]

▶O(n2)→ O(M(n) log(n)) via vector rational interpolation
[Beckermann’92] [van Barel-Bultheel’92] [Beckermann-Labahn’94,’97] [Kötter-Vardy 2003]

23



univariate key equation and “rational reconstruction” decoding

known interpolant R(x)

such that R(αi) = βi

unknown error-locator

Λ(x) =
∏

i | error(x − αi)

deg(Λ) ⩽ e

unknown linearizer

µ(x) = Λ(x)w(x)

deg(µ) ⩽ e+ k

univariate key equation: Λ(x)R(x) = µ(x) mod G(x)

Λ(αi)R(αi) = µ(αi) for 1 ⩽ i ⩽ n
⇕

Λ(x)R(x) = µ(x) mod (x−αi) for 1 ⩽ i ⩽ n
⇕

G(x) =
∏

1⩽i⩽n(x− αi), degree n[Welch-Berlekamp’86]

approach: rational reconstruction
{

ΛR = µ mod G

deg(Λ) ⩽ e, deg(µ) < n− e, Λ monic

note: e+ k < n− e

24



univariate key equation and “rational reconstruction” decoding

known interpolant R(x)

such that R(αi) = βi

unknown error-locator

Λ(x) =
∏

i | error(x − αi)

deg(Λ) ⩽ e

unknown linearizer

µ(x) = Λ(x)w(x)

deg(µ) ⩽ e+ k

univariate key equation: Λ(x)R(x) = µ(x) mod G(x)

Λ(αi)R(αi) = µ(αi) for 1 ⩽ i ⩽ n
⇕

Λ(x)R(x) = µ(x) mod (x−αi) for 1 ⩽ i ⩽ n
⇕

G(x) =
∏

1⩽i⩽n(x− αi), degree n[Welch-Berlekamp’86]

approach: rational reconstruction
{

ΛR = µ mod G

deg(Λ) ⩽ e, deg(µ) < n− e, Λ monic

note: e+ k < n− e

▶unique rational solution µ
Λ
, which has to be Λw

Λ
= w

▶ solved by XGCD algorithm stopped at suitable iteration O(n2)
[Sugiyama-Kasahara-Hirasawa-Namekawa’75] [Modern Computer Algebra, v.z.Gathen-Gerhard, 2003]

▶ fast XGCD algorithms can be adapted → O(M(n) log(n))
[Knuth’70] [Schönhage’71] [Moenck’73] [Gustavson-Yun’79][Brent-Gustavson-Yun’80]

24



classical key equation and “Padé approximation” decoding

{
ΛR = µ mod G = µ+ νG with deg(Λ) ⩽ e,Λ monic
deg(µ) ⩽ deg(Λ) + k, deg(ν) ⩽ deg(Λ) − 1

{
Λ̄R̄ = µ̄xn−k−1 + ν̄Ḡ = ν̄Ḡ mod xn−k−1 with deg(Λ̄) ⩽ e, Λ̄(0) = 1
deg(µ̄) ⩽ deg(Λ̄) + k, deg(ν̄) ⩽ deg(Λ̄) − 1

reverse w.r.t. xn−1+deg(Λ)

approach: linear recurrence
{

Λ̄S = ν̄ mod xn−k−1

deg(Λ̄) ⩽ e, deg(ν̄) < e, Λ̄(0) = 1

S = R̄/Ḡ mod xn−k−1 (Newton iteration)

25



classical key equation and “Padé approximation” decoding

{
ΛR = µ mod G = µ+ νG with deg(Λ) ⩽ e,Λ monic
deg(µ) ⩽ deg(Λ) + k, deg(ν) ⩽ deg(Λ) − 1

{
Λ̄R̄ = µ̄xn−k−1 + ν̄Ḡ = ν̄Ḡ mod xn−k−1 with deg(Λ̄) ⩽ e, Λ̄(0) = 1
deg(µ̄) ⩽ deg(Λ̄) + k, deg(ν̄) ⩽ deg(Λ̄) − 1

reverse w.r.t. xn−1+deg(Λ)

approach: linear recurrence
{

Λ̄S = ν̄ mod xn−k−1

deg(Λ̄) ⩽ e, deg(ν̄) < e, Λ̄(0) = 1

S = R̄/Ḡ mod xn−k−1 (Newton iteration)

▶unique rational solution ν̄/Λ̄, which yields Λ
▶ coefficients of S: linearly recurrent sequence generated by Λ̄
⇝ specific algorithms in O(n2) [Berlekamp’68] [Massey’69]

⇝ in fact equivalent to the XGCD approach O(n2)→ O(M(n) log(n))
[Sugiyama et al.’75] [Brent-Gustavson-Yun’80] [Dornstetter’84]

▶find Λ̄ by homogeneous Toeplitz linear system O(n2)→ O(M(n) log(n))
▶use direct Padé approximation O(n2)→ O(M(n) log(n))

[Padé 1894] [Sergeyev’86][van Barel-Bultheel’91][Beckermann-Labahn’94]

25



non-unique decoding

how to decode more errors?
. transmission with ⩽ e errors
. where e ⩾ dmin/2

26



non-unique decoding

how to decode more errors?
. transmission with ⩽ e errors
. where e ⩾ dmin/2

well-defined?

. existence of w: , by construction

. uniqueness of w: , possibly several
code words at the same distance

. closest code word not necessarily the
sent code word!

26



non-unique decoding

how to decode more errors?
. transmission with ⩽ e errors
. where e ⩾ dmin/2

well-defined?

. existence of w: , by construction

. uniqueness of w: , possibly several
code words at the same distance

. closest code word not necessarily the
sent code word!

list-decoding:
return a list of all code
words at distance ⩽ e

[Elias’50s]

26



list decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, t = n− e the agreement,
▶ (β1, . . . ,βn) the received word in Kn

list decoding requirement: t2 > kn [Guruswami-Sudan’99]

output: all polynomials w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) = βi} ⩾ t

for convenience, we use the agreement parameter t = n − e:
#{i | w(αi) ̸= βi} ⩽ e ⇔ #{i | w(αi) = βi} ⩾ t

27



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

28



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation

29



introduction to vector interpolation

⇓ earlier in the talk ⇓

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

⇓ next in the talk ⇓

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(mωM(d) log(d)) operations in K

or a tiny bit more for matrix-GCD

30



introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences

31



introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences

Cauchy interpolation:

given G(x) = (x− α1) · · · (x− αd) ∈ K[x],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod G(x)

31



introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences

Cauchy interpolation:

given G(x) = (x− α1) · · · (x− αd) ∈ K[x],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod G(x)

▶degree constraints specified by the context
▶usual choices have d1 + d2 ≈ d and existence of a solution

31



introduction to vector interpolation

approximation and structured linear system

K = F7

f = 2x7 + 2x6 + 5x4 + 2x2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod x8

[ q p ]

[
f
−1

]
= 0 mod x8

[q0 q1 q2 q3 q4 1 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

32



introduction to vector interpolation

approximation and structured linear system

K = F7

f = 2x7 + 2x6 + 5x4 + 2x2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod x8

[ q p ]

[
f
−1

]
= 0 mod x8

[q0 q1 q2 q3 q4 1 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

32



introduction to vector interpolation

approximation and structured linear system

K = F7

f = 2x7 + 2x6 + 5x4 + 2x2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod x8

[ q p ]

[
f
−1

]
= 0 mod x8

[q0 q1 q2 q3 q4 1 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

32



[1894, Journal de mathématiques pures et appliquées]

33



introduction to vector interpolation

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)

34



introduction to vector interpolation

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)

34



introduction to vector interpolation

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)

in this talk: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard

2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶field elements α1, . . . ,αd ∈ K ⇝ not necessarily distinct

▶degree bounds d1, . . . ,dm ∈ Z>0 ⇝ general “shift” s ∈ Zm

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod
∏

1⩽i⩽d(x− αi)

▶deg(pi) < di for all i ⇝ minimal s-row degree

(Hermite-Padé: α1 = · · · = αd = 0; interpolation: pairwise distinct points)

34



introduction to vector interpolation

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial Q(x,y) ∈ K[x,y]
such that Q(αi,βi) = 0 for 1 ⩽ i ⩽ 8

G(x) = (x− 24) · · · (x− 59)
R(x) = Lagrange interpolant

}
−→ solutions = ideal ⟨G(x),y− R(x)⟩

solutions of smaller x-degree: Q(x,y) = Q0(x) +Q1(x)y+Q2(x)y
2

Q(x,R(x)) =
[
Q0 Q1 Q2

]  1
R
R2

 = 0 mod G(x)

▶ instance of univariate rational vector interpolation
▶with a structured input equation (powers of R mod G)

35



introduction to vector interpolation

interpolation and structured linear system

application of vector rational interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial Q(x,y) ∈ K[x,y]
such that Q(αi,βi) = 0 for 1 ⩽ i ⩽ 8

add degree constraints: seek Q(x,y) of the form
q00 +q01x+q02x

2 +q03x
3 +q04x

4 + (q10 +q11x+q12x
2)y+q20y

2:

[
q00 q01 q02 q03 q04 q10 q11 q12 q20

]



1 1 · · · 1
α1 α2 · · · α8

α2
1 α2

2 · · · α2
8

α3
1 α3

2 · · · α3
8

α4
1 α4

2 · · · α4
8

β1 β2 · · · β8

α1β1 α2β2 · · · α8β8

α2
1β1 α2

2β2 · · · α2
8β8

β2
1 β2

2 · · · β2
8


= 0

▶K-linear system
▶ two levels of structure

Q(x,y) = (2x4 + 56x3 + 42x2 + 48x+ 15) + (72x2 + 12x+ 30)y+ y2

35



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



introduction to vector interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
M = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod G}

recall G(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

M is a “free K[x]-module of rank m”, meaning:
▶ stable under K[x]-linear combinations
▶ admits a basis consisting of m elements
▶basis = K[x]-linear independence + generates all solutions

▶M ⊂ K[x]m ⇒ M has rank ⩽ m
▶G(x)K[x]m ⊂M ⇒ M has rank ⩾ m

remark: solutions are not considered modulo G
e.g. (G, 0, . . . , 0) is in M and may appear in a basis

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U ∈ K[x]m×m with det(U) ∈ K \ {0}

computing a basis of M with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

36



polynomial matrices: multiplication

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3
3 × 3 matrix of degree 3

with entries in K[x] = F7[x]

operations on K[x]m×m<d

▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

2 × 2 matrices in XGCD, Padé approximation,
Berlekamp-Massey, Toeplitz linear systems. . .

⇝ m×m matrix versions of these problems

▶ some problems&techniques shared with matrices over K
▶ some problems&techniques specific to entries in K[x]

37



polynomial matrices: multiplication

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3
3 × 3 matrix of degree 3

with entries in K[x] = F7[x]

operations on K[x]m×m<d

▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

applying univariate polynomial techniques directly:

▶Newton truncated inversion, matrix-QuoRem O (̃mωd)

▶ inversion & determinant by evaluation-interpolation O (̃mω+1d)

▶ vector rational approximation & interpolation ???

applying matrix techniques directly: echelonization is exponential time

37



polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

38



polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

38



polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

38



polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

38



Hermite and Popov forms

working over K = Z/7Z

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1


using elementary row operations, transform A into. . .

Hermite form H =

 x6 + 6x4 + x3 + x+ 4 0 0
5x5 + 5x4 + 6x3 + 2x2 + 6x+ 3 x 0

3x4 + 5x3 + 4x2 + 6x+ 1 5 1



Popov form P =

x3 + 5x2 + 4x+ 1 2x+ 4 3x+ 5
1 x2 + 2x+ 3 x+ 2

3x+ 2 4x x2



39



Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

40



Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

40



Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

40



Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

40



Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module M ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

40



shifted forms

shift: integer tuple s = (s1, . . . , sm) acting as column weights

→ connects Popov and Hermite forms

s = (0, 0, 0, 0)
Popov


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



s = (0, 2, 4, 6)
s-Popov


7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1



8 5 1
7 6 1

2
0 1 0



s = (0,D, 2D, 3D)
Hermite


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2


▶normal form, average column degree D/m

▶ shifts arise naturally in algorithms (approximants, kernel, . . . )
▶ they allow one to specify non-uniform degree constraints

41



from normal forms to relations

normal form computation

shifted
Popov form

Popov form Hermite form

high-order lifting
[Storjohann, 2003]

[Giorgi-Jeannerod-Villard 2003]
[Neiger 2016] [Neiger-Vu 2017]

reconstruction as relations


p1f11 + · · ·+ pmf1m = 0 mod g1

...
...

...
p1fn1 + · · ·+ pmfnm = 0 mod gn

42



software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

43

https://github.com/vneiger/pml


software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

43

https://github.com/vneiger/pml


software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

43

https://github.com/vneiger/pml


software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

43

https://github.com/vneiger/pml


polynomial matrices: two open questions

deterministic Smith form

[ s1
s2

. . .

sm

][
A

]
si+1 divides si

▶ complexity O (̃mω D
m
) [Storjohann’03]

▶Las Vegas randomized algorithm

▶ requires large field K

deterministic algo in O (̃mω D
m
)?

algebraic interpolants

= main step of Sudan decoding

p1f1 + p2f2 + · · ·+ pmfm = 0 mod G

p11+ p2R+ · · ·+ pmRm−1 = 0 mod G

structured fi’s

▶most algorithms ignore the structure

▶ recent progress [Villard’18]

▶ restrictive: genericity, specific m & d

how to leverage this structure?

44



polynomial matrices: two open questions

deterministic Smith form

[ s1
s2

. . .

sm

][
A

]
si+1 divides si

▶ complexity O (̃mω D
m
) [Storjohann’03]

▶Las Vegas randomized algorithm

▶ requires large field K

deterministic algo in O (̃mω D
m
)?

algebraic interpolants

= main step of Sudan decoding

p1f1 + p2f2 + · · ·+ pmfm = 0 mod G

p11+ p2R+ · · ·+ pmRm−1 = 0 mod G

structured fi’s

▶most algorithms ignore the structure

▶ recent progress [Villard’18]

▶ restrictive: genericity, specific m & d

how to leverage this structure?

44



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



values


1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



values


1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


1 1 1 1 1 1 1 1
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 7 88 8 59 3 93 35
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 x2 + 42x+ 65 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 x2 + 42x+ 65 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 x3 + 27x2 + 17x+ 92 0 0 0
54x2 + 38x+ 11 1 0 0
17x2 + 91x+ 54 0 1 0
66x2 + 68x+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 x3 + 27x2 + 17x+ 92 0 0 0
54x2 + 38x+ 11 1 0 0
17x2 + 91x+ 54 0 1 0
66x2 + 68x+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 3 4 6]

basis

 x3 + 31x2 + 27x+ 3 36 0 0
54x3 + 56x2 + 56x+ 36 x+ 65 0 0

56x2 + 43x+ 35 60 1 0
52x2 + 33x+ 60 68 0 1



values


0 0 0 0 95 50 66 0
0 0 0 0 54 0 19 58
0 0 0 0 4 45 79 95
0 0 0 0 7 31 41 17


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 5 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 3 4 6]

basis

 x4 + 45x3 + 73x2 + 90x+ 42 36x+ 19 0 0
81x3 + 20x2 + 9x+ 20 x+ 67 0 0

2x3 + 21x2 + 41 35 1 0
52x3 + 15x2 + 79x+ 22 0 0 1



values


0 0 0 0 0 13 13 0
0 0 0 0 0 89 55 58
0 0 0 0 0 48 17 95
0 0 0 0 0 12 78 17


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 6 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 4 4 6]

basis

 x4 + 19x3 + 57x2 + 44x+ 26 74x+ 43 0 0
81x4 + 64x3 + 51x2 + 68x+ 42 x2 + 40x+ 34 0 0

3x3 + 44x2 + 54x+ 64 6x+ 49 1 0
28x3 + 45x2 + 44x+ 52 50x+ 52 0 1



values


0 0 0 0 0 0 66 70
0 0 0 0 0 0 3 13
0 0 0 0 0 0 56 55
0 0 0 0 0 0 15 7


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 7 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 4 4 6]

basis

 x5 + 96x4 + 65x3 + 68x2 + 19x+ 62 74x2 + 18x+ 13 0 0
6x4 + 94x3 + 44x2 + 66x+ 32 x2 + 19x+ 10 0 0
55x4 + 78x3 + 75x2 + 49x+ 39 2x+ 86 1 0
13x4 + 81x3 + 10x2 + 34x+ 2 42x+ 29 0 1



values


0 0 0 0 0 0 0 14
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 25
0 0 0 0 0 0 0 44


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 x5 + 12x4 + 10x3 + 34x2 + 65x+ 2 60x2 + 43x+ 67 0 0
6x5 + 31x4 + 27x3 + 89x2 + 18x+ 52 x3 + 57x2 + 53x+ 89 0 0

2x4 + 56x3 + 42x2 + 48x+ 15 72x2 + 12x+ 30 1 0
40x4 + 19x3 + 14x2 + 40x+ 49 53x2 + 79x+ 74 0 1



values


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 R R2 R3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 x5 + 12x4 + 10x3 + 34x2 + 65x+ 2 60x2 + 43x+ 67 0 0
6x5 + 31x4 + 27x3 + 89x2 + 18x+ 52 x3 + 57x2 + 53x+ 89 0 0

2x4 + 56x3 + 42x2 + 48x+ 15 72x2 + 12x+ 30 1 0
40x4 + 19x3 + 14x2 + 40x+ 49 53x2 + 79x+ 74 0 1



values


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Q(x,y) = (2x4 + 56x3 + 42x2 + 48x+ 15) + (72x2 + 12x+ 30)y+ y2

45



fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

input: vector F =

[
f1
...

fm

]
, points α1, . . . ,αd ∈ K, shift s = (s1, . . . , sm) ∈ Zm

1. P =

[
−p1−...
−pm−

]
= identity matrix in K[x]m×m

2. for i from 1 to d:

a. choose pivot π with smallest sπ such that fπ(αi) ̸= 0
update pivot shift sπ = sπ + 1

b. constant elimination: for j ̸= π do pj ← pj −
fj(αi)

fπ(αi)
pπ

polynomial elimination: pπ ← (x− αi)pπ

c. compute residual equation: for j ̸= π do fj ← fj −
fj(αi)

fπ(αi)
fπ

fπ ← (x− αi)fπ

after i iterations: P is an s-reduced basis of solutions for (α1, . . . ,αi)

46



fast divide and conquer interpolation

iterative algorithm: complexity aspects

at step i, P and F are left multiplied by Ei =

[
Iπ−1 λ1 0
0 x−α 0
0 λ2 Im−π

]
where λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications EiF and EiP
▶ at any stage P has degree ⩽ d and dimensions m×m
▶ at any stage F has degree < 2d and dimensions m× 1

one gets O(md2) with either:
. normalizing at each step + finer analysis
. “balanced” input shift + finer analysis
(shifts in RS list-decoding are balanced)

correctness:
▶ the main task is to prove the base case (d = 1, single point)
▶ then, correctness follows from the “basis multiplication theorem”

47



fast divide and conquer interpolation

iterative algorithm: complexity aspects

at step i, P and F are left multiplied by Ei =

[
Iπ−1 λ1 0
0 x−α 0
0 λ2 Im−π

]
where λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications EiF and EiP
▶ at any stage P has degree ⩽ d and dimensions m×m
▶ at any stage F has degree < 2d and dimensions m× 1

one gets O(md2) with either:
. normalizing at each step + finer analysis
. “balanced” input shift + finer analysis
(shifts in RS list-decoding are balanced)

correctness:
▶ the main task is to prove the base case (d = 1, single point)
▶ then, correctness follows from the “basis multiplication theorem”

47



fast divide and conquer interpolation

iterative algorithm: complexity aspects

at step i, P and F are left multiplied by Ei =

[
Iπ−1 λ1 0
0 x−α 0
0 λ2 Im−π

]
where λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications EiF and EiP
▶ at any stage P has degree ⩽ d and dimensions m×m
▶ at any stage F has degree < 2d and dimensions m× 1

one gets O(md2) with either:
. normalizing at each step + finer analysis
. “balanced” input shift + finer analysis
(shifts in RS list-decoding are balanced)

correctness:
▶ the main task is to prove the base case (d = 1, single point)
▶ then, correctness follows from the “basis multiplication theorem”

47



fast divide and conquer interpolation

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn ’94+’97] [Giorgi-Jeannerod-Villard 2003]

▶ compute a first basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 shifted reduced

P2P1 reduced not implied by “P1 reduced and P2 reduced”

theorem:
(P1 is s-reduced and P2 is t-reduced”) ⇒ P2P1 is s-reduced

where t is a shift trivially computed from s and P1 (t = rdegs(P1))

48



fast divide and conquer interpolation

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn ’94+’97] [Giorgi-Jeannerod-Villard 2003]

▶ compute a first basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 shifted reduced

P2P1 reduced not implied by “P1 reduced and P2 reduced”

theorem:
(P1 is s-reduced and P2 is t-reduced”) ⇒ P2P1 is s-reduced

where t is a shift trivially computed from s and P1 (t = rdegs(P1))

48



fast divide and conquer interpolation

bonus: detailed statement and proof

let M ⊆M1 be two K[x]-submodules of K[x]m of rank m,
let P1 ∈ K[x]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[x]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[x]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[x]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1 is

nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p is a

K[x]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists λ ∈
K[x]1×m such that p = λP1. But then λ ∈M2, and thus there exists µ ∈ K[x]1×m

such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

49



fast divide and conquer interpolation

bonus: detailed statement and proof

let M ⊆M1 be two K[x]-submodules of K[x]m of rank m,
let P1 ∈ K[x]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[x]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[x]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[x]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1 is

nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p is a

K[x]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists λ ∈
K[x]1×m such that p = λP1. But then λ ∈M2, and thus there exists µ ∈ K[x]1×m

such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

49



fast divide and conquer interpolation

bonus: detailed statement and proof

let M ⊆M1 be two K[x]-submodules of K[x]m of rank m,
let P1 ∈ K[x]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[x]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[x]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[x]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1 is

nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p is a

K[x]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists λ ∈
K[x]1×m such that p = λP1. But then λ ∈M2, and thus there exists µ ∈ K[x]1×m

such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

49



fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn ’94+’97]

input: F, (α1, . . . ,αd), s
output: P

▶ if d ⩽ threshold: call iterative algorithm
▶ else:

a. G1 ← (x− α1) · · · (x− α⌊d/2⌋); G2 ← (x− α⌊d/2⌋+1) · · · (x− αd)

b. P1 ← recursive call on F rem G1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual equation: F← 1
G1

P1F

e. P2 ← recursive call F rem G2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

50



fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn ’94+’97]

input: F, (α1, . . . ,αd), s
output: P

▶ if d ⩽ threshold: call iterative algorithm
▶ else:

a. G1 ← (x− α1) · · · (x− α⌊d/2⌋); G2 ← (x− α⌊d/2⌋+1) · · · (x− αd)

b. P1 ← recursive call on F rem G1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual equation: F← 1
G1

P1F

e. P2 ← recursive call F rem G2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ residual: {p | pP1F = 0 mod G} = {p | p( 1

G1
P1F) = 0 mod G2}

50



fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn ’94+’97]

input: F, (α1, . . . ,αd), s
output: P

▶ if d ⩽ threshold: call iterative algorithm
▶ else:

a. G1 ← (x− α1) · · · (x− α⌊d/2⌋); G2 ← (x− α⌊d/2⌋+1) · · · (x− αd)

b. P1 ← recursive call on F rem G1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual equation: F← 1
G1

P1F

e. P2 ← recursive call F rem G2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ residual: {p | pP1F = 0 mod G} = {p | p( 1

G1
P1F) = 0 mod G2}

complexity O(mωM(d) log(d)):
▶ if ω = 2, quasi-linear in worst-case output size
▶most expensive step in the recursion is the product P2P1

▶ equation C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

50



fast divide and conquer interpolation

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2 ) + 4M(d
4 ) + · · ·+

d
2 M(2)

)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

51



fast divide and conquer interpolation

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2 ) + 4M(d
4 ) + · · ·+

d
2 M(2)

)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

51



fast divide and conquer interpolation

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2 ) + 4M(d
4 ) + · · ·+

d
2 M(2)

)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

51



fast divide and conquer interpolation

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2 ) + 4M(d
4 ) + · · ·+

d
2 M(2)

)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization
▶base case for d ≈ m,

costs O(mω)

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

51



fast divide and conquer interpolation

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2 ) + 4M(d
4 ) + · · ·+

d
2 M(2)

)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization
▶base case for d ≈ m,

costs O(mω)

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

51



fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F ∈ K[x]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

52



fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F ∈ K[x]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

▶more recently: O (̃mω−1nd) for F mod xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis

52



fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F ∈ K[x]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

▶more recently: O (̃mω−1nd) for F mod xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis

▶F mod G and general modular matrix equations in similar complexity
[Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis

52



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation

53



outline

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation

▶ the Guruswami-Sudan algorithm
▶ via structured systems or basis reduction
▶ a word on extensions

54



list decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, t = n− e the agreement,
▶ (β1, . . . ,βn) the received word in Kn

list decoding requirement: t2 > kn [Guruswami-Sudan’99]

output: all polynomials w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) = βi} ⩾ t

for convenience, we use the agreement parameter t = n − e:
#{i | w(αi) ̸= βi} ⩽ e ⇔ #{i | w(αi) = βi} ⩾ t

55



list decoding problem

input:
▶α1, . . . ,αn the n distinct evaluation points in K,
▶k the degree bound, t = n− e the agreement,
▶ (β1, . . . ,βn) the received word in Kn

list decoding requirement: t2 > kn [Guruswami-Sudan’99]

output: all polynomials w(x) in K[x] such that
deg(w) ⩽ k and #{i | w(αi) = βi} ⩾ t

for convenience, we use the agreement parameter t = n − e:
#{i | w(αi) ̸= βi} ⩽ e ⇔ #{i | w(αi) = βi} ⩾ t

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

Guruswami-Sudan algorithm:

55



introducing the interpolation+root-finding approach

consider one solution w1:

key equation:
Λ1R = Λ1w1 mod G

where R(αi) = βi, G(x) =
∏

1⩽i⩽n(x− αi) Λ1(x) =
∏

i | error1
(x− αi)

obstacle: no uniqueness of solution µ1

Λ1
for rational reconstruction

Λ1R = µ1 mod G

with degµ1 ⩽ e+ k

since e ⩾ n−k
2
⇒ (unique decoding bound not satisfied),

possibly deg(Λ1) + deg(Λ1w1) ⩾ n = degG

(more unknowns than equations in the linearized problem)

56



introducing the interpolation+root-finding approach

note Λ1(R−w1) = 0 mod G, and consider a second solution w2:

“extended” key equation:

Λ(R−w1)(R−w2) = 0 mod G

where Λ =
∏

i | error1∧2
(x− αi) = gcd(Λ1,Λ2)

w1 and w2 are y-roots of the bivariate polynomial

Q(x,y) = Λ(y−w1)(y−w2) = Λw1w2 − Λ(w1 +w2)y + Λy2

⇝ similar remark for all ℓ solutions w1, . . . ,wℓ

properties of Q(x,y):

▶degree in y is ℓ = number of solutions
▶weighted-degree degx(Q(x, xky)) close to ℓk
▶Q(αi,βi) = 0 for every i (i.e. Q(x,R) = 0 mod G)

56



the Guruswami-Sudan algorithm

bivariate interpolation with multiplicities:
Input:

n points {(αi,βi)}1⩽i⩽n in K2, with the αi’s distinct
k the degree constraint, t the agreement
ℓ the list-size, s the multiplicity (s ⩽ ℓ)

Output:
a nonzero polynomial Q(x,y) in K[x,y] such that
(i) degy(Q) ⩽ ℓ (list-size condition)
(ii) degx(Q(x, xky) < st (weighted-degree condition)
(iii) ∀i, Q(αi,βi) = 0 with multiplicity s (vanishing condition)

▶find parameters ℓ and s

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57



the Guruswami-Sudan algorithm

bivariate interpolation with multiplicities:
Input:

n points {(αi,βi)}1⩽i⩽n in K2, with the αi’s distinct
k the degree constraint, t the agreement
ℓ the list-size, s the multiplicity (s ⩽ ℓ)

Output:
a nonzero polynomial Q(x,y) in K[x,y] such that
(i) degy(Q) ⩽ ℓ (list-size condition)
(ii) degx(Q(x, xky) < st (weighted-degree condition)
(iii) ∀i, Q(αi,βi) = 0 with multiplicity s (vanishing condition)

▶find parameters ℓ and s

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57



the Guruswami-Sudan algorithm

(i) degy(Q) ⩽ ℓ (list-size condition)
(ii) degx(Q(x, xky) < st (weighted-degree condition)
(iii) ∀i, Q(αi,βi) = 0 with multiplicity s (vanishing condition)

▶find parameters ℓ and s

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57



the Guruswami-Sudan algorithm

(i) degy(Q) ⩽ ℓ (list-size condition)
(ii) degx(Q(x, xky) < st (weighted-degree condition)
(iii) ∀i, Q(αi,βi) = 0 with multiplicity s (vanishing condition)

▶find parameters ℓ and s

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

w(x) solution

#{i | w(αi) = βi} ⩾ tdeg(w) ⩽ k

Q(x,w(x)) has ⩾ st rootsdegQ(x,w(x)) < st

Q(x,w(x)) = 0

(iii)(ii)

57



the Guruswami-Sudan algorithm

(i) degy(Q) ⩽ ℓ (list-size condition)
(ii) degx(Q(x, xky) < st (weighted-degree condition)
(iii) ∀i, Q(αi,βi) = 0 with multiplicity s (vanishing condition)

▶find parameters ℓ and s

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

▶ list-size condition allows to work with polynomial matrices
identification K[x,y]degy⩽ℓ←→ K[x]ℓ

Q(x,y) = Q0(x) +Q1(x)y+ · · ·+Qℓ(x)y
ℓ

▶weighted-degree condition handled via shifted forms
degree constraints deg(Qj(x)) < st− jk for j = 0, . . . , ℓ

57



the Guruswami-Sudan algorithm

(i) degy(Q) ⩽ ℓ (list-size condition)
(ii) degx(Q(x, xky) < st (weighted-degree condition)
(iii) ∀i, Q(αi,βi) = 0 with multiplicity s (vanishing condition)

▶find parameters ℓ and s

▶ interpolation step
compute Q(x,y) such that: w(x) solution ⇒ Q(x,w(x)) = 0

▶ root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

root-finding step: quasi-linear complexity
[Alekhnovich 2005] [Neiger-Rosenkilde-Schost 2017]

fastest known interpolation step: via univariate relations O (̃ℓω−1s2n)
[Jeannerod-Neiger-Schost-Villard 2017]

▶Sudan case (s = 1): vector rational interpolation
▶general case: similar problem with s equations,
which have respective moduli Gs, Gs−1, . . . , G

57



alternative approach: structured linear algebra

features common to all algorithms:
▶use (i) + (ii) to fix the linear unknowns:

Q =
∑

0⩽j⩽ℓ

∑
0⩽i<st−jk qi,jx

iyj

▶ same number of linear unknowns: (ℓ+ 1)st− ℓ(ℓ+1)
2 k

▶ same number of linear equations: s(s+1)
2 n

▶ call a structured linear system solver

Vandermonde-like system O(ℓs4n2)
▶ [Olshevsky-Shokrollahi’99]

▶ linearize the vanishing condition on each point

Mosaic-Hankel system O(ℓs4n2)
▶ [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]

▶ linearize the reversed extended key equation
▶ uses an adapted [Feng-Tzeng’91] solver

Toeplitz-like system O (̃ℓω−1s2n)
▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]

▶ linearize the extended key equation
▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

58



alternative approach: structured linear algebra

features common to all algorithms:
▶use (i) + (ii) to fix the linear unknowns:

Q =
∑

0⩽j⩽ℓ

∑
0⩽i<st−jk qi,jx

iyj

▶ same number of linear unknowns: (ℓ+ 1)st− ℓ(ℓ+1)
2 k

▶ same number of linear equations: s(s+1)
2 n

▶ call a structured linear system solver

[ Q0(x) Q1(x) ]

[
2x7 + 2x6 + 5x4 + 2x2 + 4

−1

]
= 0 mod x8

[q00 q01 q02 q03 q04 q05 | q10 q11 q12]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

Vandermonde-like system O(ℓs4n2)
▶ [Olshevsky-Shokrollahi’99]

▶ linearize the vanishing condition on each point

Mosaic-Hankel system O(ℓs4n2)
▶ [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]

▶ linearize the reversed extended key equation
▶ uses an adapted [Feng-Tzeng’91] solver

Toeplitz-like system O (̃ℓω−1s2n)
▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]

▶ linearize the extended key equation
▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

58



alternative approach: structured linear algebra

features common to all algorithms:
▶use (i) + (ii) to fix the linear unknowns:

Q =
∑

0⩽j⩽ℓ

∑
0⩽i<st−jk qi,jx

iyj

▶ same number of linear unknowns: (ℓ+ 1)st− ℓ(ℓ+1)
2 k

▶ same number of linear equations: s(s+1)
2 n

▶ call a structured linear system solver

Q(x,y) = q00 +q01x+q02x
2 +q03x

3 +q04x
4 + (q10 +q11x+q12x

2)y+q20y
2:

[
q00 q01 q02 q03 q04 q10 q11 q12 q20

]



1 1 · · · 1
α1 α2 · · · α8

α2
1 α2

2 · · · α2
8

α3
1 α3

2 · · · α3
8

α4
1 α4

2 · · · α4
8

β1 β2 · · · β8

α1β1 α2β2 · · · α8β8

α2
1β1 α2

2β2 · · · α2
8β8

β2
1 β2

2 · · · β2
8


= 0

Vandermonde-like system O(ℓs4n2)
▶ [Olshevsky-Shokrollahi’99]

▶ linearize the vanishing condition on each point

Mosaic-Hankel system O(ℓs4n2)
▶ [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]

▶ linearize the reversed extended key equation
▶ uses an adapted [Feng-Tzeng’91] solver

Toeplitz-like system O (̃ℓω−1s2n)
▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]

▶ linearize the extended key equation
▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

58



alternative approach: structured linear algebra

Vandermonde-like system O(ℓs4n2)
▶ [Olshevsky-Shokrollahi’99]

▶ linearize the vanishing condition on each point

Mosaic-Hankel system O(ℓs4n2)
▶ [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]

▶ linearize the reversed extended key equation
▶ uses an adapted [Feng-Tzeng’91] solver

Toeplitz-like system O (̃ℓω−1s2n)
▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]

▶ linearize the extended key equation
▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

58



alternative approach: structured linear algebra

Vandermonde-like system O(ℓs4n2)
▶ [Olshevsky-Shokrollahi’99]

▶ linearize the vanishing condition on each point

Mosaic-Hankel system O(ℓs4n2)
▶ [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]

▶ linearize the reversed extended key equation
▶ uses an adapted [Feng-Tzeng’91] solver

Toeplitz-like system O (̃ℓω−1s2n)
▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]

▶ linearize the extended key equation
▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

58



alternative approach: structured linear algebra

Vandermonde-like system O(ℓs4n2)
▶ [Olshevsky-Shokrollahi’99]

▶ linearize the vanishing condition on each point

Mosaic-Hankel system O(ℓs4n2)
▶ [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]

▶ linearize the reversed extended key equation
▶ uses an adapted [Feng-Tzeng’91] solver

Toeplitz-like system O (̃ℓω−1s2n)
▶ [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]

▶ linearize the extended key equation
▶ uses the solver of [Bostan-Jeannerod-Schost 2007]

Las Vegas randomized

58



alternative approach: basis reduction

features common to all algorithms:
▶use (i) to fix the polynomial unknowns:

Q =
∑

0⩽j⩽ℓ Qj(x)y
j ←→ [Q0(x) · · ·Qℓ(x)]

▶ consider same interpolant K[x]-module:
{Q | (i) + (iii)} = {

∑
0⩽j⩽ℓ Qj(x)y

j | Q(αi,βi) = 0 with mult. s}

▶use (iii) to derive a basis of the module:
{Q | (i) + (iii)} = ⟨p0(x,y),p1(x,y), . . . ,pℓ(x,y)⟩

▶ call a K[x]-module basis reduction algorithm,
using a shift to satisfy the weighted-degree condition (ii)

basis reduction ≈ [Mulders-Storjohann 2003] quadratic in n
▶ [Reinhard 2003] O(ℓ3m2n2)
▶ [Lee-O’Sullivan 2008] O(ℓ4mn2)
▶ [Trifonov 2010] O(m3n2) (heuristic)

basis reduction = matrix-half-GCD l̃inear in n
▶ [Alekhnovich 2002+2005] O (̃ℓ4m4n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] l̃inear in n
▶ [Beelen-Brander 2010] O (̃ℓ4mn)
▶ [Bernstein 2010] O (̃ℓω+1n)
▶ [Cohn-Heninger 2011+2015] O (̃ℓωmn)

basis reduction = fastest known O (̃ℓω−1s2n)
▶ [Neiger 2016] [Neiger-Vu 2017]

▶do not go this way!
⇝ here, better call fast vector interpolation directly

59



alternative approach: basis reduction

features common to all algorithms:
▶use (i) to fix the polynomial unknowns:

Q =
∑

0⩽j⩽ℓ Qj(x)y
j ←→ [Q0(x) · · ·Qℓ(x)]

▶ consider same interpolant K[x]-module:
{Q | (i) + (iii)} = {

∑
0⩽j⩽ℓ Qj(x)y

j | Q(αi,βi) = 0 with mult. s}

▶use (iii) to derive a basis of the module:
{Q | (i) + (iii)} = ⟨p0(x,y),p1(x,y), . . . ,pℓ(x,y)⟩

▶ call a K[x]-module basis reduction algorithm,
using a shift to satisfy the weighted-degree condition (ii)



G 0 0 0 · · · 0
−R 1 0 0 · · · 0
0 −R 1 0 · · · 0
0 0 −R 1 · · · 0
...

. . .
. . .

. . .

0 · · · · · · 0 −R 1



G −→
y− R −→

y(y− R) −→
y2(y− R) −→

...
yℓ−1(y− R) −→

basis reduction ≈ [Mulders-Storjohann 2003] quadratic in n
▶ [Reinhard 2003] O(ℓ3m2n2)
▶ [Lee-O’Sullivan 2008] O(ℓ4mn2)
▶ [Trifonov 2010] O(m3n2) (heuristic)

basis reduction = matrix-half-GCD l̃inear in n
▶ [Alekhnovich 2002+2005] O (̃ℓ4m4n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] l̃inear in n
▶ [Beelen-Brander 2010] O (̃ℓ4mn)
▶ [Bernstein 2010] O (̃ℓω+1n)
▶ [Cohn-Heninger 2011+2015] O (̃ℓωmn)

basis reduction = fastest known O (̃ℓω−1s2n)
▶ [Neiger 2016] [Neiger-Vu 2017]

▶do not go this way!
⇝ here, better call fast vector interpolation directly

59



alternative approach: basis reduction

features common to all algorithms:
▶use (i) to fix the polynomial unknowns:

Q =
∑

0⩽j⩽ℓ Qj(x)y
j ←→ [Q0(x) · · ·Qℓ(x)]

▶ consider same interpolant K[x]-module:
{Q | (i) + (iii)} = {

∑
0⩽j⩽ℓ Qj(x)y

j | Q(αi,βi) = 0 with mult. s}

▶use (iii) to derive a basis of the module:
{Q | (i) + (iii)} = ⟨p0(x,y),p1(x,y), . . . ,pℓ(x,y)⟩

▶ call a K[x]-module basis reduction algorithm,
using a shift to satisfy the weighted-degree condition (ii)



G 0 0 0 · · · 0
−R 1 0 0 · · · 0
−R2 0 1 0 · · · 0
−R3 0 0 1 · · · 0
...

...
. . .

. . .

−Rℓ 0 · · · 0 0 1



G −→
y− R −→

y2 − R2 −→
y3 − R3 −→

...
yℓ − Rℓ −→

basis reduction ≈ [Mulders-Storjohann 2003] quadratic in n
▶ [Reinhard 2003] O(ℓ3m2n2)
▶ [Lee-O’Sullivan 2008] O(ℓ4mn2)
▶ [Trifonov 2010] O(m3n2) (heuristic)

basis reduction = matrix-half-GCD l̃inear in n
▶ [Alekhnovich 2002+2005] O (̃ℓ4m4n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] l̃inear in n
▶ [Beelen-Brander 2010] O (̃ℓ4mn)
▶ [Bernstein 2010] O (̃ℓω+1n)
▶ [Cohn-Heninger 2011+2015] O (̃ℓωmn)

basis reduction = fastest known O (̃ℓω−1s2n)
▶ [Neiger 2016] [Neiger-Vu 2017]

▶do not go this way!
⇝ here, better call fast vector interpolation directly

59



alternative approach: basis reduction

basis reduction ≈ [Mulders-Storjohann 2003] quadratic in n
▶ [Reinhard 2003] O(ℓ3m2n2)
▶ [Lee-O’Sullivan 2008] O(ℓ4mn2)
▶ [Trifonov 2010] O(m3n2) (heuristic)

basis reduction = matrix-half-GCD l̃inear in n
▶ [Alekhnovich 2002+2005] O (̃ℓ4m4n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] l̃inear in n
▶ [Beelen-Brander 2010] O (̃ℓ4mn)
▶ [Bernstein 2010] O (̃ℓω+1n)
▶ [Cohn-Heninger 2011+2015] O (̃ℓωmn)

basis reduction = fastest known O (̃ℓω−1s2n)
▶ [Neiger 2016] [Neiger-Vu 2017]

▶do not go this way!
⇝ here, better call fast vector interpolation directly

59



alternative approach: basis reduction

basis reduction ≈ [Mulders-Storjohann 2003] quadratic in n
▶ [Reinhard 2003] O(ℓ3m2n2)
▶ [Lee-O’Sullivan 2008] O(ℓ4mn2)
▶ [Trifonov 2010] O(m3n2) (heuristic)

basis reduction = matrix-half-GCD l̃inear in n
▶ [Alekhnovich 2002+2005] O (̃ℓ4m4n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] l̃inear in n
▶ [Beelen-Brander 2010] O (̃ℓ4mn)
▶ [Bernstein 2010] O (̃ℓω+1n)
▶ [Cohn-Heninger 2011+2015] O (̃ℓωmn)

basis reduction = fastest known O (̃ℓω−1s2n)
▶ [Neiger 2016] [Neiger-Vu 2017]

▶do not go this way!
⇝ here, better call fast vector interpolation directly

59



alternative approach: basis reduction

basis reduction ≈ [Mulders-Storjohann 2003] quadratic in n
▶ [Reinhard 2003] O(ℓ3m2n2)
▶ [Lee-O’Sullivan 2008] O(ℓ4mn2)
▶ [Trifonov 2010] O(m3n2) (heuristic)

basis reduction = matrix-half-GCD l̃inear in n
▶ [Alekhnovich 2002+2005] O (̃ℓ4m4n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] l̃inear in n
▶ [Beelen-Brander 2010] O (̃ℓ4mn)
▶ [Bernstein 2010] O (̃ℓω+1n)
▶ [Cohn-Heninger 2011+2015] O (̃ℓωmn)

basis reduction = fastest known O (̃ℓω−1s2n)
▶ [Neiger 2016] [Neiger-Vu 2017]

▶do not go this way!
⇝ here, better call fast vector interpolation directly

59



generalizations of the interpolation step

summary for [Sudan ’97] [Guruswami-Sudan ’99]:
▶ list-decoding of Reed-Solomon codes, extends error-correction bound

compute Q(x,y) = Q0 +Q1y+ · · ·+Qmyℓ such that

▶ [Q0, . . . ,Qℓ] has small shifted degree

▶ Q(αi,βi) = 0 with multiplicity µ for all i

60



generalizations of the interpolation step

[Kötter-Vardy 2003]
soft-decision decoding of Reed-Solomon codes

α1, . . . ,αn are not pairwise distinct
compute Q(x,y) = Q0 +Q1y+ · · ·+Qℓy

ℓ such that

▶ [Q0, . . . ,Qℓ] has small shifted degree

▶ Q(αi,βi) = 0 with multiplicity µi for all i

60



generalizations of the interpolation step

[Guruswami-Rudra 2006]
list-decoding of folded Reed-Solomon codes:
further extends the error-correction bound up to the information-theoretic
limit

[Devet-Goldberg-Heninger 2012]
Optimally robust Private Information Retrieval

compute Q(x,y1, . . . ,ys) =
∑

(j1,...,js)∈Γ Qj1,...,jsy
j1
1 · · ·y

js
s such that

▶ [Qj1,...,js ](j1,...,js)∈Γ has small shifted degree

▶ Q(αi,βi1, . . . ,βis) = 0 with multiplicity µ for all i

60



generalizations of the interpolation step

[Beelen-Rosenkilde-Solomatov 2022]
[Beelen-Neiger (preprint) 2023]
Guruswami-Sudan algorithm in the algebraic-geometry code setting

up to more precomputations, very similar context:
. . . also up to many technical details

Ms,ℓ,β =

{
Q =

ℓ∑
t=0

ztQt ∈ F[z]
∣∣ Qt ∈ ∆(−tG),

Q has a root of multiplicity at least s at (Pj,βj) for all j

}
.

Ms,ℓ,β =

s−1⊕
t=0

(z− R)t∆(Gt)⊕
ℓ⊕

t=s

ft(z)(z− R)s∆(Gt).

60



summary

▶ computer algebra

▶ Reed-Solomon decoding

▶ polynomial matrices

▶ efficient list decoding

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶ context and unique decoding problem
▶ key equations and how to solve them
▶ correcting more errors?

▶ introduction to vector interpolation
▶ core algorithms & shifted normal forms
▶ fast divide and conquer interpolation

▶ the Guruswami-Sudan algorithm
▶ via structured systems or basis reduction
▶ a word on extensions

61


