Vincent Neiger

LIP6, Sorbonne Université, France

designing fast Guruswami-Sudan decoders using
univariate polynomial matrix algorithms

CAIPI symposium © Bordeaux

November 9, 2023

computer algebra

Reed-Solomon decoding

polynomial matrices

efficient list decoding

» efficient algorithms and software
computer algebra » for matrices over a field
» for univariate polynomials

Reed-Solomon decoding

polynomial matrices

efficient list decoding

Modern computer Algebra

Algorithmes Efficaces

en Calcul Formel

Al Bosrar

Frédéic Cuxzax

Polynomial
and Matrix
Computations

Volume 1
-
Algorithms

Dario Bin and Vcor Pan

David A Cox
John Little
Donal 0'Shea

Ideals,
Varieties, and
Algorithms

An Introduction to Computational
braic Geometry and Commutative
Aigebra

Qsprnger

‘Modern Computer Algebra
: Algorithmes Efficaces

I d David A, Cox
en Calcul Formel

John Little
Donal 0'Shea

Polynomial

and Matrix |deals
Computations !

Vome 1 Varieties, and
Fundamental Algo rlth mS

Algorithms

Anntroduction to Computational
Algebraic Geometry and Commutative
Algebra

Dario Bin and Vi

Qsprnger

Mxen @ Marias pfRIE
W Maple ggepotRa

LINBOX
r Algebra
GIVARO

GMP
Arbitary preciion
Integers

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

Euclid's GCD -300

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

Euclid's GCD -300 Gaussian elimination 179

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

Euclid's GCD -300 Gaussian elimination 179 Newton's method 1669

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

Euclid's GCD -300 Gaussian elimination 179 Newton’s method 1669

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

FFT 1805, '65

Euclid's GCD -300 Gaussian elimination 179 Newton’s method 1669

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

FFT 1805, '65

Karatsuba '62

Euclid's GCD -300 Gaussian elimination 179 Newton’s method 1669

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

FFT 1805, '65

Strassen '69 Karatsuba '62

Euclid's GCD -300 Gaussian elimination 179 Newton’s method 1669

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

FFT 1805, '65

Buchberger '76 Strassen '69 Karatsuba '62

Euclid's GCD -300 Gaussian elimination 179 Newton’s method 1669

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

LLL '82, NFS '88 FFT 1805, '65

Buchberger '76 Strassen '69 Karatsuba '62

Euclid’s GCD -300

Gaussian elimination 179

Researcher(s)
C.F. Gauss [10]

F. Carlini [28]

A. Smith [25]

). D. Everett [23]

C. Runge [7]

K. Stumpff [16]

Danielson and
Lanczos [5)

L.H. Thomas [13]

I.}. Good [3]

Cooley and

Tukey [1]
S. Winograd [14]

of
Number of

Date Sequence Lengths DFT Values
1805 Any composite integer All
1828 12 —
1846 4,8,16,32 50r9
1860 12 5
1903 2k All
1939 2%, 37k All
1942 27 Al
1948 Any integer with Al

relatively prime factors
1958 Any integer with Al

relatively prime factors
1965 Any composite integer All
1976 Any integer with Al

relatively prime factors

the DFT

Appli
Interpolation of orbits
of celestial bodies
Harmonic analysis of
barometric pressure
Correcting deviations
in compasses on ships
Modeling underground
temperature deviations
Harmonic analysis of
functions
Harmonic analysis of
functions
X-ray diffraction in
crystals
Harmonic analysis of
functions
Harmonic analysis of
functions
Harmonic analysis of
functions
Use of complexity theory
for harmonic analysis

Newton's method 1669

FFT 1805, '65

Karatsuba '62

Euclid’s GCD -300

Gaussian elimination 179

Researcher(s)
C.F. Gauss [10]

F. Carlini [28]

A. Smith [25]

). D. Everett [23]

C. Runge [7]

K. Stumpff [16]

Danielson and
Lanczos [5)

L.H. Thomas [13]

I.}. Good [3]

Cooley and

Tukey [1]
S. Winograd [14]

of
Number of

Date Sequence Lengths DFT Values
1805 Any composite integer All
1828 12 —
1846 4,8,16,32 50r9
1860 12 5
1903 2k All
1939 2%, 37k All
1942 27 Al
1948 Any integer with Al

relatively prime factors
1958 Any integer with Al

relatively prime factors
1965 Any composite integer All
1976 Any integer with Al

relatively prime factors

the DFT

Appli

Interpolation of orbits
of celestial bodies
Harmonic analysis of
barometric pressure
Correcting deviations
in compasses on ships
Modeling underground
temperature deviations
Harmonic analysis of
functions

Harmonic analysis of
functions

X-ray diffraction in
crystals

Harmonic analysis of
functions

Harmonic analysis of
functions

Harmonic analysis of
functions

Use of complexity theory
for harmonic analysis

Newton's method 1669

FFT 1805, '65

Karatsuba '62

biology
number theory robotics

computer algebra

algorithm design

and software implementations
for exact computations
with mathematical objects

graph theory combinatorics

algebraic geometry cryptography
error correcting codes

error correcting codes cryptographic protocols
& -~

4 ~ p
|

X0AK3 x0AK3 WS
il 052K/ AR

XXth-XXlst centuries : digital data & interconnected networks

integrity — confidentiality

discrete structures: exact and intensive computations

error correcting codes cryptographic protocols

-~ —~

o=
BE EReo

4 ~

XXth-XXlst centuries : digital data & interconnected networks

integrity — confidentiality

discrete structures: exact and intensive computations

» matrices of large size, with sparsity or structure
» polynomials and polynomial matrices in one variable
» polynomials in several variables

goal of computer algebra
fast algorithms: complexity & efficient implementations

reduce to efficient building blocks

» MatMul: matrix multiplication
»PolMul: polynomial multiplication

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ...
‘ with coefficients in some base field K

» low complexity bound prime field Iy, = Z/pZ
» low execution time field extension I, [x]/(f(x))

low memory usage, power consumption, ... rational numbers Q

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ...
‘ with coefficients in some base field K

» low complexity bound prime field Iy, = Z/pZ
» low execution time field extension I, [x]/(f(x))

low memory usage, power consumption, ... rational numbers Q

algebraic complexity bounds
~~» count number of operations in K

s standard complexity model for algebraic computations
% accurate for finite fields K = IF,,
ignores coefficient growth, e.g. over K =Q

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ...
‘ with coefficients in some base field K

» low complexity bound prime field Iy, = Z/pZ
» low execution time field extension I, [x]/(f(x))

low memory usage, power consumption, ... rational numbers Q

practical performance
~~ measure software running time

this talk:
» working over K = IF, with word-size prime p
» Intel Core i7-7600U @ 2.80GHz, no multithreading

matrices: multiplication

28 68 75 70
M= (38 25 75 55| € K3** —— 3 x 4 matrix over K (here Fo7)
24 1 56 28

fundamental operations on m x m matrices:
» addition is “quadratic”: O(m?) operations in K
» naive multiplication is cubic: O(m3)

[Strassen’69]

breakthrough: subcubic matrix multiplication

matrices: multiplication

28 68 75 70
M= (38 25 75 55| € K3** —— 3 x 4 matrix over K (here Fo7)
24 1 56 28

fundamental operations on m x m matrices:
» addition is “quadratic”: O(m?) operations in K
» naive multiplication is cubic: O(m3)

[Strassen’69]

breakthrough: subcubic matrix multiplication

» complexity exponent w ~ 2.81 i.e. O(m®) complexity

» used in practice for m > a few 100s
in NTL, FLINT, fflas-ffpack. ..

» best-known exponent w ~ 2.373
[Le Gall'14] [Alman-Williams'20]

» “galactic” algorithms: strongly impractical as such

matrices: main computational problems

reductions of most problems to matrix multiplication

’ PLUQ = Gaussian elimination
. TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM

l Inverse
)/ log

= O(MatMul)

4
’
v

I3

not closed:
open:

matrices: main computational problems

reductions of most problems to matrix multiplication

not closed:

MinPoly

PLUQ = Gaussian elimination
TRSM = triangular solving

LinSys

Det

Rank

PLUQ = O(MatMul)
TRSM
Inverse

MinPoly -
CharPoly } = O(Mativul)

exploiting non-naive PolMul

open:

|

matrices: main computational problems

reductions of most problems to matrix multiplication

MinPoly

PLUQ = Gaussian elimination
TRSM = triangular solving

LinSys

Det

Rank

PLUQ = O(MatMul)
TRSM
Inverse

MinPoly |
Wy CharPoly } = Ozl

exploiting non-naive PolMul

|

not closed: is Frobenius normal form in O(MatMul)?
open:

matrices: main computational problems

reductions of most problems to matrix multiplication

PLUQ = Gaussian elimination
TRSM = triangular solving

LinSys
Det
Rank
PLUQ = O(MatMul)
Inverse TRSM
Inverse

MinPoly |
CharPoly } = O(Mativul)

exploiting non-naive PolMul

|

not closed: is Frobenius normal form in O(MatMul)?
open:

matrices: main computational problems

reductions of most problems to matrix multiplication

PLUQ = Gaussian elimination
TRSM = triangular solving

LinSys
Det
Rank
PLUQ = O(MatMul)
Inverse TRSM
Inverse

MinPoly -
CharPoly } = O(MatMul)
PolMul exploiting non-naive PolMul

not closed: is Frobenius normal form in O(MatMul)?
open: is linear system solving as hard as multiplication?

bonus: some notes

biblio: nttps://www.sciencedirect.com/science/article/pii/S0747717113000631
» explicit reductions between inversion & MatMul & variants of
Gaussian elimination / echelon form computation
» constants in the O(-) complexities when using classical matrix
multiplication (w = 3) or Strassen’s algorithm

“not closed”: it is open, but

» there is a randomized algorithm for Frobenius form computation
which has complexity O(MatMul)
~» http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf

> recent developments for the characteristic polynomial gives new

insight concerning core operations typically used in Frobenius form
algorithms

https://www.sciencedirect.com/science/article/pii/S0747717113000631
http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf

polynomials: multiplication

P = 87x7 + 74x% + 60x> + 46x* + 16x> + 41x? + 86x + 69

p € K[xl.g — univariate polynomial in x of degree < 8 over K

fundamental operations on polynomials of degree < d:
» addition and Horner’s evaluation are linear: O(d)
» naive multiplication is quadratic: O(d?)

[Karatsuba'62] M(d) € O(d*%8)

breakthrough: subquadratic polynomial multiplication

10

polynomials: multiplication

P = 87x7 + 74x% + 60x> + 46x* + 16x> + 41x? + 86x + 69
p € K[xl.g — univariate polynomial in x of degree < 8 over K
fundamental operations on polynomials of degree < d:

» addition and Horner’s evaluation are linear: O(d)
» naive multiplication is quadratic: O(d?)

[Karatsuba'62] M(d) € O(d*%8)

breakthrough: subquadratic polynomial multiplication

[Schonhage-Strassen'71] [Nussbaumer'80] [Cantor-Kaltofen'91] M(d) € O(dlog(d) loglog(d))

breakthrough: quasi-linear polynomial multiplication

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

» change of representation by evaluation-interpolation

note: M(d) € O(dlog(d))

» used in practice as soon as d ~ 100 if provided a “good” root of unity

» FFT techniques using (virtual) roots of unity

10

polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

» addition f + g, multiplication f x g

> division with remainder f = qg+r

» truncated inverse f~! mod x4

» extended GCD fu + gv = ged(f, g)

Algorithmes Efficaces
en Calcul Formel

Alin Bostan
"

» multipoint eval. f— f(oy),..., f(xq)
» interpolation (o), ..., f(agq) —
» Padé approximation f = £ mod x4

» minpoly of linearly recurrent sequence

Polynol
and Matrix
Computations

not closed:
not closed:
open:
open:

11

polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

O(M(d))
» addition f + g, multiplication f x g

» division with remainder f = qg +r
» truncated inverse f~! mod x¢

» extended GCD fu + gv = ged(f, g)

Algorithmes Efficaces
en Calcul Formel

n o Alin Bostan
"

» multipoint eval. f— f(oy),..., f(xq)
» interpolation (o), ..., f(agq) —
» Padé approximation f = £ mod x4

» minpoly of linearly recurrent sequence

Polynol
and Matrix
Computations

not closed: polynomial multiplication in O(dlog(d))?

not closed:
open:
open:

11

polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

O(M(d)) O(M(d)log(d))
» addition f + g, multiplication fx g » multipoint eval. f— f(oy), ..., f(aq)
» division with remainder f = qg+r » interpolation (o), ..., f(agq) — f
» truncated inverse f~! mod x¢ > Padé approximation f = 2 mod x4
» extended GCD fu + gv = ged(f, g) » minpoly of linearly recurrent sequence

Algorithmes Efficaces
en Calcul Formel

m Alin Bostan Polyno
" and Matrix

S Computations

not closed: polynomial multiplication in O(dlog(d))?
not closed: interpolation and multipoint eval. in O(PolMul)? §
open: XGCD and friends in O(PolMul)?
open:

11

polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

O(M(d)) O(M(d)log(d))
» addition f + g, multiplication fx g » multipoint eval. f— f(oy), ..., f(aq)
» division with remainder f = qg+r » interpolation (o), ..., f(agq) — f
» truncated inverse f~! mod x¢ > Padé approximation f = 2 mod x4
» extended GCD fu + gv = ged(f, g) » minpoly of linearly recurrent sequence

Algorithmes Efficaces
en Calcul Formel

m Alin Bostan Polyno
" and Matrix

S Computations

not closed: polynomial multiplication in O(dlog(d))?
not closed: interpolation and multipoint eval. in O(PolMul)? §
open: XGCD and friends in O(PolMul)?
open: modular composition f(g) mod h closer to O(PolMul)? |

11

bonus:

some notes

interpolation and multipoint eval. in O(PolMul) “not closed”:

>
>
>

>

remains open for an arbitrary set of points, with no assumption, but:
by design, solved for FFT points (powers of some root of unity)
more generally, solved for points forming a geometric sequence
https://www.sciencedirect.com/science/article/pii/S0885064X05000026

in many applications of interpolation/evaluation, one can choose the
points, in which case O(PolMul) is feasible

polynomial multiplication in O(dlog(d)) “not closed”:

>
>
>

remains open over an arbitrary field, concerning algebraic complexity
solved when the field possesses suitable roots of unity for FFT

method of choice in practice (using several primes and CRT if
needed) when working over prime finite fields Z/pZ

recent progress in the bit complexity model
https://www.sciencedirect.com/science/article/pii/S0885064X19300378
https://dl.acm.org/doi/abs/10.1145/3505584

12

https://www.sciencedirect.com/science/article/pii/S0885064X05000026
https://www.sciencedirect.com/science/article/pii/S0885064X19300378
https://dl.acm.org/doi/abs/10.1145/3505584

matrices software polynomials

13

open-source mathematics software system
SDOE. [

high-performance exact linear algebra
LinBox — fflas-ffpack C/C++

high-performance polynomials (and more)
NTL & FLINT C/C++

matrices software polynomials

13

open-source mathematics software system
5D

high-performance exact linear algebra
LinBox — fflas-ffpack C/C++

Python/Cython

high-performance polynomials (and more)
NTL & FLINT C/C++

matrices

software

» choice of algorithms

» data structures and storage

» cache efficiency

» SIMD vectorization instructions

» multithreading, GPU programming

polynomials

13

open-source mathematics software system » choice of algorithms
SDAE. [

high-performance exact linear algebra
LinBox — fflas-ffpack C/C++

» data structures and storage

» cache efficiency

» SIMD vectorization instructions

high-performance polynomials (and more)
NTL & FLINT C/C++

» multithreading, GPU programming

matrices software polynomials

what you can compute in about 1 second
with fflas-ffpack with NTL

» PLUQ m =3800 1.00s » PolMul d=7x10° 1.03s
»LinSys m = 3800 1.00s »Division d=4x10° 0.96s
» MatMul m =3000 0.97s » XGCD d=2x10° 099
» Inverse m = 2800 1.01s » MinPoly d=2x105 1.10s

»CharPoly m =2000 1.09s » MPeval d=1x10* 1.01s

13

» efficient algorithms and software
computer algebra » for matrices over a field
» for univariate polynomials

Reed-Solomon decoding

polynomial matrices

efficient list decoding

14

» efficient algorithms and software
computer algebra » for matrices over a field
» for univariate polynomials

» context and unique decoding problem
Reed-Solomon decoding » key equations and how to solve them
» correcting more errors?

polynomial matrices

efficient list decoding

15

error-correcting codes

goal:
reliable data transmission over
unreliable communication channel

modern development pioneered by
Hamming (1940s), Shannon (1948)

strategy:

add redundancy to the message
add redundancy to the message
add redundancy to the message

intended word code word
E—
(wo, ..., W) (c1,....¢n)

Lkl

9

(drawing: courtesy of Johan Nielsen— Rosenkilde)
16

encoding: adding redundancy

all intended words encoding all code words
(wo, ..., Wy) (c1,...,cn)

e = code word
« = other words

Reed-Solomon codes (1960):

polynomials of degree < k encoding their evaluations at «4, ..., &n

_—

w(x) = wg + wix + - - + wixk (wlow), ..., wlom))

17

transmission over unreliable channel

polynomial w(x) encoding code word noisy received word

of degree < k (wleer), ..., w(on)) channel > (B1,---,Bn)

e = code word

possible received words

T
PO SRS
-
Ceecean,
... -

» number of errors < e, meaning #{i | w(a;) # Bi} < e (Hamming distance)

noise = transmission errors:

» possible received words = balls of radius e centered on the code words

18

unique decoding

decoding:

find the polynomial w(x) of degree < k
such that #{i | w(ay) #Bi} < e

R % &) = encoding points
(B, Bn) = received word
. M — e = agreement

well-defined:

. existence of w?

. uniqueness of w?

19

unique decoding

decoding:

find the polynomial w(x) of degree < k
such that #{i | w(xy) ZBi} < e

. (x1,...,xn) = encoding points n=5k=4 . .
o ([Bilgooos Bn) — received word e = 0: Lagrange interpolation
. M — e = agreement e = 1: no error detection!

well-defined:

. existence of w?
degree < 4
agreement > 5

. uniqueness of w?

R(z)

19

unique decoding

decoding:

find the polynomial w(x) of degree < k

such that #{i | w(xy) ZBi} < e n=5k=3

e = 0: Lagrange interpolant exists!

e =1: up to 5 possible solutions. ..
— error is detected, not corrected

. (o¢1,..., ®n) = encoding points
(B, Bn) = received word
. M — e = agreement

well-defined:

. existence of w?

. uniqueness of w? \(,) et > 1

AN

19

unique decoding

decoding:

find the polynomial w(x) of degree < k

such that #{i | w(xy) ZBi} < e n=5k=3

e = 0: Lagrange interpolant exists!

e =1: up to 5 possible solutions. ..
— error is detected, not corrected

. (o¢1,..., ®n) = encoding points
(B, Bn) = received word
. M — e = agreement

well-defined:

. existence of w? desreo < 3

agreement > 4
(all solutions)

. uniqueness of w?

19

unique decoding

decoding:

find the polynomial w(x) of degree < k

such that #{i | w(xy) ZBi} < e n=5k=3

e = 0: Lagrange interpolant exists!

e =1: up to 5 possible solutions. ..
— error is detected, not corrected

. (o¢1,..., ®n) = encoding points
(B, Bn) = received word
. M — e = agreement

well-defined:

. existence of w7 by construction & degree <3

agreement > 4
(all solutions)

. uniqueness of W7 a priori #. .. yet,
guaranteed if no overlap between the

balls of possible received words i _/] =~

19

unique decoding

decoding:

find the polynomial w(x) of degree < k
such that #{i | w(xy) ZBi} < e

. (o¢1,..., ®n) = encoding points
(B, Bn) = received word
. M — e = agreement

well-defined:

. existence of w7 by construction &

. uniqueness of W7 a priori #. .. yet,
guaranteed if no overlap between the
balls of possible received words i

e = code word
o = received word

19

unique decoding

e = code word

decoding:

find the polynomial w(x) of degree < k ‘
such that #{i | w(xy) ZBi} < e

. (o¢1,..., ®n) = encoding points ’
(B, Bn) = received word
. M — e = agreement
Amin ‘
well-defined: ‘
. existence of w7 by construction &

. uniqueness of W7 a priori #. .. yet, ’ .
guaranteed if no overlap between the

balls of possible received words i

unique decoding bound: Reed-Solomon case:
2¢ < dmin e < K

19

unique decoding

e = code word

decoding:

find the polynomial w(x) of degree < k
such that #{i | w(xy) ZBi} < e

. (o¢1,..., ®n) = encoding points
(B, Bn) = received word
. M — e = agreement

well-defined:

. existence of w7 by construction &

. uniqueness of W7 a priori #. .. yet,
guaranteed if no overlap between the
balls of possible received words i

unique decoding bound: Reed-Solomon case:
2¢ < dmin e < Ik

19

bonus: minimum distance for Reed-Solomon codes

» for v # w polynomials of degree < k over the base field K,
(v(eg), ..., v(an)) and (W(or), ..., w(on)) agree at < k positions

= distance at least n — k between two code words

» forv=0and w=(x—0oa1) - (x — o), the code words are
(o0,..., 0) and (O,..., 0, wloks1), .-+, w(on))
= two code words at distance exactly n — k

— minimum distance dmj, =N —k
(for dimension reasons, this is the best one can hope for)

n—k

in this case, unique decoding condition: e < >

20

summary: unique decoding problem

input:
» X1, ..., &, the n distinct evaluation points in K,
» k the degree bound, e the error-correction radius,
»(B1,...,Pn) the received word in K™

H H H . n—k
unique decodlng requirement: e < 5

output: the polynomial w(x) in K[x] such that
deg(w) <k and #{i|w(a) #Bi}<e

21

summary: unique decoding problem

input:
» X1, ..., &, the n distinct evaluation points in K,
» k the degree bound, e the error-correction radius,
»(B1,...,Pn) the received word in K™

H H H . n—k
unique decoding requirement: e < 5=

output: the polynomial w(x) in K[x] such that
deg(w) <k and #{i|w(a) #Bi}<e

multiple viewpoints + fruitful interactions: [coding theory|/
> linear recurrence generator — Toeplitz linear system — Padé approximation
[Berlekamp'68] [Massey'69]

» modified extended GCD - rational function reconstruction
[Sugiyama-Kasahara-Hirasawa-Namekawa'75] [Welch-Berlekamp'86]

» Vandermonde-like linear system — vector rational interpolation
[Olshevsky-Shokrollahi’99] [Kotter-Vardy 2003]

one target complexity: O(n3) — O(n?) — O(M(n) log(n))

21

encoding/decoding efficiency: basic remarks

encoding w(x)+— (w(a),..., w(an))
» naive: n times Horner evaluation O(k) O(nk)
»fast: times k-point evaluation O(£M(k)log(k)) € O(M(n)log(n))

points in geometric sequence = no log factor [Aho-Steiglitz-Ullman'75] [Bostan-Schost 2005]

22

encoding/decoding efficiency: basic remarks

encoding w(x)— (w(a),...,w(an))
» naive: n times Horner evaluation O(k) O(nk)
»fast: times k-point evaluation O(£M(k)log(k)) € O(M(n)log(n))

points in geometric sequence = no log factor [Aho-Steiglitz-Ullman'75] [Bostan-Schost 2005]

naive decoding
» infinitely lucky decoder: there was no error
~+ Lagrange interpolation in O(M(n) log(n)) %=

»very lucky decoder: at most 1 error, unknown position
~~ trial and error, worst case O(nM(n) log(n)) &=

» lucky decoder: at most 2 errors, unknown positions

oo ss

~+ trial and error, worst case O(n*M(n)log(n)) =&

» ordinary decoder: at most e errors, unknown positions
~ life is tough, complexity exponential in e e

next slides = one can be both ordinary and %%

22

linear key equations and “rational interpolation” decoding

known interpolant R(x) unknown error-locator
such that R(oi) = By A(X) = TTi | eror(® — i)
= deg(A) < e

[key equations: A(o;)R(o;) = Alog)w(og) for 1 <1< n}

multivariate, non-linear, polynomial system: a priori difficult
(n equations of degree 2 in the k + 1+ e coefficients of w and A)

approach: linearization

introducing the new unknown p = Aw of degree < k + e

23

linear key equations and “rational interpolation” decoding

known interpolant R(x) unknown error-locator
such that R(o) = By A(X) = TTi | eror(® — i)
= deg(A) < e

[key equations: A(o;)R(o;) = Alog)w(og) for 1 <1< nJ

multivariate, non-linear, polynomial system: a priori difficult
(n equations of degree 2 in the k + 1+ e coefficients of w and A)

approach: linearization

introducing the new unknown p = Aw of degree < k + e

linear system with n equations and k 4+ 1 + 2e unknowns (k+ 1 +2e < n):
» Gaussian elimination O(T13) — O(n®) [Bunch-Hopcroft'74] [Ibarra-Moran-Hui'82]

»O(n?) — O(M(n)log(n)) exploiting the Vandermonde-like structure
[Morf'74] [Bitmead-Anderson’'80] [Pan'90] [Olshevsky-Shokrollahi'99]

»O(n?) — O(M(n) log(n)) via vector rational interpolation
[Beckermann’92] [van Barel-Bultheel'92] [Beckermann-Labahn'94,'97] [Kotter-Vardy 2003]

23

univariate key equation and “rational reconstruction” decoding

known interpolant R(x) unknown error-locator unknown linearizer
such that R(o) = By A(x) =TT | error (X — 1) u(x) = A(x)w(x)
deg(A) < e deg(p) <e+k
Alxi)R(ei) = plog) fori<ig<n

(3
A(x)R(x) = pn(x)mod (x — ;) for1 <i<n
[Welch-Berlekamp'86] t G(x) = [licicn(x — i), degree n

[univariate key equation: A(x)R(x) = p(x) mod G(x)]

AR = pwmod G
deg(A) < e, deg(n) <n—e, A monic

approach: rational reconstruction {

note:e+k<n-—e

24

univariate key equation and “rational reconstruction” decoding

known interpolant R(x) unknown error-locator unknown linearizer
such that R(o) = By A(x) =TT | error (X — 1) u(x) = A(x)w(x)
deg(A) < e deg(p) <e+k
Alxi)R(ei) = plog) fori<ig<n

(3
A(x)R(x) = pn(x)mod (x — ;) for1 <i<n
[Welch-Berlekamp'86] t G(x) = [licicn(x — i), degree n

[univariate key equation: A(x)R(x) = p(x) mod G(x)]

approach: rational reconstruction

{ AR = mod G

deg(A) < e, deg(n) <n—e, A monic
note:e+k<n-—e
» unique rational solution & e which has to be &% =

»solved by XGCD algorithm stopped at smtable iteration O(n?)
[Sugiyama-Kasahara-Hirasawa-Namekawa'75] [Modern Computer Algebra, v.z.Gathen-Gerhard, 2003]

» fast XGCD algorithms can be adapted — O(M(n) log(n))
[Knuth'70] [Schénhage'71] [Moenck'73] [Gustavson-Yun'79][Brent-Gustavson-Yun'80]

24

classical key equation and “Padé approximation” decoding

AR =pumod G =pn+vG with deg(A) < e, A monic
deg(p) < deg(A) +k, deg(v) < deg(A)—1

Ireverse w.r.t, x"1tdeg(A)

deg(ji) < deg(A) +k, deg(V) < deg(A) —1

ls =R/G mod x" k1 (Newton iteration)

{ AR = ix™ %1+ 3G = 9G mod x™ %1 with deg(A) <e A(0)=1

deg(A) < e, deg(v)<e, A(0)=1

approach: linear recurrence

{ AS = ¥ mod x™ k!

25

classical key equation and “Padé approximation” decoding

AR =pumod G =pn+vG with deg(A) < e, A monic
deg(p) < deg(A) +k, deg(v) < deg(A)—1

Ireverse w.r.t, x"1tdeg(A)

deg(ji) < deg(A) +k, deg(V) < deg(A) —1

ls =R/G mod x" k1 (Newton iteration)

{ AR = ix™ %1+ 3G = 9G mod x™ %1 with deg(A) <e A(0)=1

approach: linear recurrence

{ AS = ¥ mod x™ k1

deg(A) < e, deg(Vv)<e, A(0)=1

» unique rational solution ¥/A, which yields A
» coefficients of S: linearly recurrent sequence generated by A
~ specific algorithms in O(n?) [Berlekamp'68] [Massey'69]

~ in fact equivalent to the XGCD approach 0O(n?) = O(M(n) log(n))
[Sugiyama et al.’75] [Brent-Gustavson-Yun'80] [Dornstetter'84]

»find A by homogeneous Toeplitz linear system O(n?) — O(M(n)log(n))

» use direct Padé approximation 0O(n?) = O(M(n) log(n))
[Padé 1894] [Sergeyev'86][van Barel-Bultheel'91][Beckermann-Labahn’94]

25

non-unique decoding

how to decode more errors?
e = code word

. transmission with < e errors o = received word
. where e > din/2

26

non-unique decoding

how to decode more errors?
e = code word

. transmission with < e errors o = received word
. where e > din/2

well-defined?

. existence of w: «#, by construction

. uniqueness of w: 1, possibly several
code words at the same distance

. closest code word not necessarily the
sent code word!

26

non-unique decoding

how to decode more errors?
e = code word

. transmission with < e errors o = received word
. where e > din/2

well-defined?

. existence of w: «#, by construction

. uniqueness of w: 1, possibly several
code words at the same distance

. closest code word not necessarily the
sent code word!

list-decoding:

return a list of all code
words at distance < e

[Elias’50s]

26

list decoding problem

for convenience, we use the agreement parameter t = n — e:
#Hilwlow) #Bil<e & #FHilwly) =it >t

input:
»X1,..., 0, the n distinct evaluation points in K,
» k the degree bound, t = n — e the agreement,
»(B1,...,Pn) the received word in K™

list decoding requirement: t> > kn [Guruswami-Sudan’99)

output: all polynomials w(x) in K[x] such that
deg(w) <k and #ilwle)=pi} >t

27

» efficient algorithms and software
computer algebra » for matrices over a field
» for univariate polynomials

» context and unique decoding problem
Reed-Solomon decoding » key equations and how to solve them
» correcting more errors?

polynomial matrices

efficient list decoding

28

» efficient algorithms and software
computer algebra » for matrices over a field
» for univariate polynomials

» context and unique decoding problem
Reed-Solomon decoding » key equations and how to solve them
» correcting more errors?

» introduction to vector interpolation
polynomial matrices » core algorithms & shifted normal forms
» fast divide and conquer interpolation

efficient list decoding

29

introduction to vector interpolation

|} earlier in the talk |

Oo(M(d)) O(M(d)log(d))
» addition f + g, multiplication f x g » multipoint eval. f— f(oy), ..., f(aq)
» division with remainder f = qg +r » interpolation (o), ..., f(agq) — f
» truncated inverse =1 mod x¢ > Padé approximation f = 2 mod x4
» extended GCD fu + gv = ged(f, g) » minpoly of linearly recurrent sequence

|l next in the talk |}

Padé approximation, sequence minpoly, extended GCD
O(M(d) log(d)) operations in K

matrix versions of these problems
O(m®M(d) log(d)) operations in K
or a tiny bit more for matrix-GCD

30

introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,

given degree constraints di, d; > 0,

— compute polynomials (p(x), q(x)) of degrees < (dj, dp)
and such that f = % mod x4

strong links with linearly recurrent sequences

31

introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,

given degree constraints di, d; > 0,

— compute polynomials (p(x), q(x)) of degrees < (dj, dp)
and such that f = % mod x4

strong links with linearly recurrent sequences

Cauchy interpolation:

given G(x) = (x — 1) -+ (x — q) € K[x],

for pairwise distinct o, ..., xq € K,

given degree constraints di, d; > 0,

— compute polynomials (p(x), q(x)) of degrees < (dj, d2)
and such that f = % mod G(x)

31

introduction to vector interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,

given degree constraints di, d; > 0,

— compute polynomials (p(x), q(x)) of degrees < (dj, dp)
and such that f = % mod x4

strong links with linearly recurrent sequences

Cauchy interpolation:

given G(x) = (x — 1) -+ (x — q) € K[x],

for pairwise distinct o, ..., xq € K,

given degree constraints di, d; > 0,

— compute polynomials (p(x), q(x)) of degrees < (dj, d2)
and such that f = % mod G(x)

» degree constraints specified by the context
» usual choices have d; + d> ~ d and existence of a solution

31

introduction to vector interpolation

approximation and structured linear system
K =F;
f=2x"+2x8+5x* +2x2 + 4
d=8,di=3,d,=6
— look for (p, q) of degree < (3,6) such that f = E mod x®

[q p][_fJ =0 mod x®

32

introduction to vector interpolation

approximation and structured linear system

K =Ty

f=2x"4+2x°4+5x*+2x>+ 4

d=8,d;=3,d,=6

— look for (p, q) of degree < (3,6) such that f = E mod x®

[qg pl _fl =0 mod x®
(4 0 2 0 5 0 2 2]
4 0 2 05 0 2
4 0 2 0 5 0
4 0 2 0 5
[do d1 92 93 g4 1[po P1 P2l 4 0 2 0| =0
4 0 2
6 0000000
6 0 00OO OO
| 6000 0 0

32

introduction to vector interpolation

approximation and structured linear system

K =Ty

f=2x"4+2x°+5x*+2x>+ 4

d=8,d;=3,d,=6

— look for (p, q) of degree < (3,6) such that f = E mod x®

[aq pl _fl =0 mod x®
(4. 0.2, 0 5 0.2 2]
4.0.2. 0 5 0 2
4. 0.2 0 50
4. 0.2 0 5
[do 91 92 93 qa 1|po p1 P2l 4 0 2.0 =0
40 2
6 0000000
6.0.0.0 0 0.0
I 60000 0

32

Sur la généralisation des fractions continues algébriques;
' Pae M. H. PADE,

Docteur &s Sciences mathématiques,
Professeur au lycée de Lille.

- [1894, Journal de mathématiques pures et appliquées]

INTRODUCTION.

M. Hermite s’est, dans un travail récemment paru ('), occupé de
la généralisation des fractions continues algébriques. La question est
de déterminer les polynomes X,, X, ..., X,,, de degrés p,, ty, ...,
qui satisfont & I'équation

S, X, + 8, X, +ovet 8, X, = S gttt

S,, S,, ..., S, étant des séries enti¢res données, et S une série égale-
ment entiére. Ou plutdt, il s’agit d’obtenir un algorithme qui permette

le calcul de proche en proche de ces systémes de r polynomes, et qui

soit analogue & I'algorithme par lequel le numérateur et le dénomina-
teur d’une réduite d’une fraction continue se déduisent des numéra-
tanre ot dédnominatenrs des reduites nréecédentes. D'élécantes conside-

33

introduction to vector interpolation

approximation and interpolation: the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

» polynomials 1, ..., f;, € K[x]

» precision d € Z~g

»degree bounds dy, ..., dmn € Z~p

output:

polynomials p1, ..., pm € K(x] such that
»pifi + -+ Ppmfm = 0 mod x¢
»deg(pi) < d; for all 1

(Padé approximation: particular case m =2 and f; = —1)

34

introduction to vector interpolation

approximation and interpolation: the vector case

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:
» polynomials 1, ..., f;, € K[x]
» pairwise distinct points &1, ..., xg € K

»degree bounds dy, ..., dmn € Z~p

output:

polynomials p1, ..., pm € K(x] such that

»pr(ai)fi(oq) + -+ pmlai)fm(o) =0forall 1 <i<d
»deg(pi) < d; for all 1

(rational interpolation: particular case m = 2 and f, = —1)

34

introduction to vector interpolation

approximation and interpolation: the vector case

in this talk: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard
2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

» polynomials fq, ..., i, € K[x]

> field elements &y, ..., xqg € K ~> not necessarily distinct
»degree bounds dj, ..., dmn € Z~p ~> general “shift” s € Z™
output:

polynomials p1, ..., pm € K(x] such that
»pifi + -+ pmfm = 0 mod ngigd(x —)
»deg(pi) < d; for all 1 ~+ minimal s-row degree

(Hermite-Padé: o; = - -+ = axqg = 0; interpolation: pairwise distinct points)

34

introduction to vector interpolation

interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points {(o, i), 1 <1< 8}

={(24,80), (31,73), (15,73), (32,35), (83,66), (27,46), (20,91), (59,64)},
compute a bivariate polynomial Q(x,y) € Kix, y]

such that Q(o, fi) =0for1 <1< 8

g((;)) ::IE:g_razr::e. i.r;’c(zrp;ll:)agn)t } — solutions = ideal (G(x),y — R(x))

solutions of smaller x-degree: Q(x,y) = Qo(x) + Q1(x)y + Q2(x)y?

1
QMRx) =[Q Qi Qa] R | =0mod G(x)
R
» instance of univariate rational vector interpolation
»with a structured input equation (powers of R mod G)

35

introduction to vector interpolation

interpolation and structured linear system

application of vector rational interpolation:

given pairwise distinct points {(o, i), 1 <1< 8}

={(24,80), (31,73), (15,73), (32,35), (83,66), (27,46), (20,91), (59,64)},
compute a bivariate polynomial Q(x,y) € Kix, y]

such that Q(o, fi) =0for1 <1< 8

add degree constraints: seek Q(x,y) of the form
doo + qorx + qo2x? + qo3x® + qoax* + (q10 + quix + q12x?)y + q20y%:

ro1 R
X1 X2 Xg
ol o3 o3
o o3 o
. . of of o
[doo do1 9oz qos os ' qio qu d12 | 90 || _ 1 7 2 & _|=0
B1 B2 Bs
11 P o xgPs
2 2 2
. o o B e
» K-linear system 7"{[73}""27[%2"""7”?[37877
2 2 2
» two levels of structure =P i o Bg

Q(x,y) = (2x* 4+ 56x3 + 42x2 4 48x + 15) + (72x? 4+ 12x + 30)y + y?
35

n to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?

36

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is
M={(p1,....Pm) € KIx]™ | p1f1 + -+ + pmfm = 0 mod G}

recall G(x) = [Ticica (x — i)

36

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is
M={(p1,....Pm) € KIx]™ | p1f1 + -+ + pmfm = 0 mod G}
recall G(x) = [Ticica (x — i)
M is a “free K[x]-module of rank m", meaning:
» stable under K[x]-linear combinations

» admits a basis consisting of m elements
» basis = K[x]-linear independence + generates all solutions

36

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is
M={(p1,....Pm) € KIx]™ | p1f1 + -+ + pmfm = 0 mod G}

recall G(x) = [Ticica (x — i)

M is a “free K[x]-module of rank m", meaning:

» stable under K[x]-linear combinations

» admits a basis consisting of m elements

» basis = K[x]-linear independence + generates all solutions

»MC KxI™ = M hasrank <m
»G(x)Kx™CcM = M hasrank > m

remark: solutions are not considered modulo G
e.g. (G,0,...,0) is in M and may appear in a basis

36

uction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is
M={(p1,....Pm) € KIx]™ | p1f1 + -+ + pmfm = 0 mod G}

recall G(x) = [Ticica (x — i)

basis of solutions:

» square nonsingular matrix P in K[x]™*™

» each row of P is a solution
» any solution is a K[x]-combination uP, u € K[x]**™

i.e. M is the K[x]-row space of P

36

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is
M={(p1,....Pm) € KIx]™ | p1f1 + -+ + pmfm = 0 mod G}

recall G(x) = [Ticica (x — i)

basis of solutions:

» square nonsingular matrix P in K[x]™*™

» each row of P is a solution
» any solution is a K[x]-combination uP, u € K[x]**™

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

36

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is
M={(p1,....Pm) € KIx]™ | p1f1 + -+ + pmfm = 0 mod G}

recall G(x) = [Ticica (x — i)

basis of solutions:

» square nonsingular matrix P in K[x]™*™

» each row of P is a solution
» any solution is a K[x]-combination uP, u € K[x]**™

i.e. M is the K[x]-row space of P

fact: det(P) is a divisor of G(x)

fact: any other basis is UP for U € K[x]™*™ with det(U) € K\ {0}

36

introduction to vector interpolation

polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is
M={(p1,....Pm) € KIx]™ | p1f1 + -+ + pmfm = 0 mod G}
recall G(x) = [Ticica (x — i)

basis of solutions:
» square nonsingular matrix P in K[x]™*™

» each row of P is a solution
» any solution is a K[x]-combination uP, u € K[x]**™

i.e. M is the K[x]-row space of P

computing a basis of M with “minimal degrees”
» has many more applications than a single small-degree solution
»is in most cases the fastest known strategy anyway(!)

~~ degree minimality ensured via shifted reduced forms

36

polynomial matrices: multiplication

3x+4 B +ax+1 4x2+3
A= 5 5x2+3x+1 5x+3 | € K[x]?*3)
33+ +5x+3 6x+5 2x+1 3 x 3 matrix of degree 3

with entries in K[x] = F[x]

operations on K[x] ™7™

» combination of matrix and polynomial computations
» addition in O(m?2d), naive multiplication in O(m3d?)
[Cantor-Kaltofen'91]
multiplication in O(m®dlog(d) + m2dlog(d) loglog(d))
€ O(m®M(d)) c O"(m«d)

2 X 2 matrices in XGCD, Padé approximation,
Berlekamp-Massey, Toeplitz linear systems. . .

~» M X M matrix versions of these problems

» some problems&techniques shared with matrices over K

» some problems&techniques specific to entries in K[x]

37

polynomial matrices: multiplication

3x+4 B +ax+1 4x2+3
A= 5 5x2+3x+1 5x+3 | € K[x]?*3)
3x3 + %2 + 5% + 3 6x +5 2% + 1 3 X 3 matrix of degree 3

with entries in K[x] = F[x]

mXxXm

operations on K[x]™']

» combination of matrix and polynomial computations
» addition in O(m?2d), naive multiplication in O(m3d?)
[Cantor-Kaltofen'91]
multiplication in O(m®dlog(d) + m2dlog(d) loglog(d))
€ O(m®M(d)) c O"(m«d)

applying univariate polynomial techniques directly:

» Newton truncated inversion, matrix-QuoRem 0"(m«d) =
» inversion & determinant by evaluation-interpolation O~ (m®*!d) =
» vector rational approximation & interpolation mE

applying matrix techniques directly: echelonization is exponential time 4

37

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d

— 0O7(m«d)
of “average” degree 2 ~
ge T M o 0(me D)
classical matrix operations univariate specific operations

» multiplication

» truncated inverse, QuoRem

» kernel, system solving » Hermite-Padé approximation

» rank, determinant

» inversion

0~ (m3d)

» vector rational interpolation

» syzygies / modular equations

transformation to normal forms

» echelonization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form

38

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d

— 0O7(m«d)
of “average” degree 2 ~
ge T M o 0(me D)
classical matrix operations univariate specific operations

» multiplication

» truncated inverse, QuoRem

» kernel, system solving » Hermite-Padé approximation

» rank, determinant

» inversion

0~ (m3d)

» vector rational interpolation

» syzygies / modular equations

transformation to normal forms

» echelonization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form

38

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d

u " — O0"(m«d
of “average” degree % _ ONEmw%))
classical matrix operations univariate specific operations
» multiplication » truncated inverse, QuoRem
» kernel, system solving » Hermite-Padé approximation
» rank, determinant » vector rational interpolation
»inversion 0~ (m3d) » syzygies / modular equations

transformation to normal forms

» echelonization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form

38

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m x m of degree d

— O"(m«d)
of “average” degree 2 -
8¢ T w5 0"meD)
classical matrix operations univariate specific operations
» multiplication » truncated inverse, QuoRem

» kernel, system solving » Hermite-Padé approximation

» rank, determinant » vector rational interpolation

»inversion 0~ (m3d) » syzygies / modular equations

transformyation to normal forms
» echelonization: Hermite form
» row reduction: Popov form

» diagonalization: Smith form

38

Hermite and Popov forms

working over K = Z/7Z

3x + 4 x3+4x+1 4x2+3
A= 5 5x2+3x+1 5x+3
3x3 +x2+5x+3 6x + 5 2x +1

using elementary row operations, transform A into. . .

x0+6x* +x3+x+4 00
Hermite form H = [5x> +5x*+6x3 +2x2+6x+3 x 0
Ix*+5x3 +4x2 +6x+ 1 5 1

B +5x2+4x+1 2x+4 3x+5
Popov form P = 1 x?+2x+3 x+2
3x +2 4x x?

39

Hermite and Popov forms

nonsingular A € K[x]m™>*™

elementary row transformations

Hermite form [Hermite, 1851]
> triangular
» column normalized

16 4

15 0 3.7

15 0 1 5 3
15 0 3 6 1 2

40

Hermite and Popov forms

nonsingular A € K[x]m™>*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

» triangular » minimal row degrees

» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 0 3 6 1 2 3 3 3 4 6 0 1 6

40

Hermite and Popov forms

nonsingular A € K[x]m™>*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

» triangular » minimal row degrees

» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5

15 0 3 7 3 4 3 3 0 1 0

15 0 1 5 3 3 3 4 3 2

15 0 3 6 1 2 3 3 3 4 6 0 1 6
Spot reduced Grobner basis <top

K[x]-module M C K[x]**™ of rank m

40

Hermite and Popov forms

mXxXm

nonsingular A € K[x]

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

» triangular » minimal row degrees

» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 0 3 6 1 2 3 3 3 4 6 0 1 6

invariant: D = deg(det(A)) =4+7+34+2=7+1+2+6
D

> average column degree is 2 (target cost: O"(m”";)}
» size of object is mD + m? = m?(2 +1)

40

Hermite and Popov forms

nonsingular A € K[x]m™>*™

elementary row transformations

Hermite form [Hermite, 1851] Popov form [Popov, 1972]

» triangular » minimal row degrees

» column normalized » column normalized

16 4 4 3 3 3 7 0 1 5
15 0 3 7 3 4 3 3 0 1 0
15 0 1 5 3 3 3 4 3 2

15 0 3 6 1 2 3 3 3 4 6 0 1 6

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:

arbitrary degree co ints + no column normalization

&~ minimal, non-reduced, <-Grdbner basis

40

shifted forms

shift: integer tuple s = (s1,...,Sm) acting as column weights
— connects Popov and Hermite forms

4 3 3 3 7 0 1 5
s =(0,0,0,0) 3 4 3 3 0 1 0
Popov 3 3 4 3 2
3 3 3 4] 6 0 1 6]
(7 4 2 0] 8 5 1]
s =(0,2,4,6) 6 5 2 0 7 6 1
s-Popov 6 4 3 0 2
6 4 2 1] 0 1 0f
16 4
s =(0,D,2D,3D) 15 0 3 7
Hermite 15 0 15 3
15 0 3 6 1 2

» normal form, average column degree D/m
» shifts arise naturally in algorithms (approximants, kernel, ...)
» they allow one to specify non-uniform degree constraints

41

from normal forms to relations

p1f11 P eeo +pmf1m = 0 mod g1

plfnl + - +pmfnm = 0 mod In

reconstruction as relations

high-order lifting || [Giorgi-Jeannerod-Villard\2003]
[Storjohann, 20038 [Neiger 2016] [Neiger-Vu R017]

normal form computation

hifted
(Popov form }—————---{ Hermite form)

42

software development for polynomial matrices

43

https://github.com/vneiger/pml

open-source mathematics software system

EDgE Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

software development for polynomial matrices

43

https://github.com/vneiger/pml

open-source mathematics software system

EDQE Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra
LinBox — fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

software development for polynomial matrices

43

https://github.com/vneiger/pml

open-source mathematics software system high-performance exact linear algebra

5= Python/Cython LinBox — fflas-ffpack C/C++
goals: complete, robust, available goal: optimized basic operations
(more than 60k downloads per month) memory cost, vectorization, multithreading

software development for polynomial matrices

Polynomial Matrix Library c¢/c++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml
[Hyun-Neiger-Schost '19]

» current version based on NTL

» work-in-progress version based on FLINT wide range of algorithms
» welcome comments, suggestions, contributions efficiency = state of the art
“hey, this doesn’t work!”

“yo, plans for implementing this?” kernel, high-order lifting,

“how to decode RS codes with PML?" system solving, reduced form...

43

https://github.com/vneiger/pml

polynomial matrices: two open questions

deterministic Smith form

s1 » complexity O"(m“’%) [Storjohann'03]
A - s . » Las Vegas randomized algorithm
Sm » requires large field K

S ALl 4 deterministic algo in O"(m®2)?

44

polynomial matrices: two open questions

deterministic Smith form

s1 » complexity O"(m“’%) [Storjohann'03]
A - s . » Las Vegas randomized algorithm
Sm » requires large field K

siy1 divides s;

e o e D
deterministic algo in O"(m® ~)?

algebraic interpolants

= main step of Sudan decoding

pifi +pafa + -+ pmfm =0 mod G » most algorithms ignore the structure

ietredles » recent progress [Villard'18]

structure i$S
» restrictive: genericity, specific m & d

sco m—1 _ .
1P AR e = = 0 imee] & how to leverage this structure?

44

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m=4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F = [1 R R2 R3]T

iteration: i =1 point: 24,31, 15, 32, 83, 27,20, 59
shift 0 2 4 6]
1 0 0 0
basi 0 1 0 0
asis 0 0 1 0
0 0 0 1

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
9% 91 91 61 88 79 36 22
34 47 47 1 8 45 75 50

values

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =1 point: 24,31, 15, 32, 83, 27,20, 59
shift 0 2 4 6]
1 0 0 0
basi 0 1 0 0
asis 0 0 1 0
0 0 0 1

1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
9% 91 91 61 88 79 36 22
34 47 47 1 8 45 75 50

values

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i = 1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 0 2 4 6
1 0 0 0
basi 17 1 0 0
asis 5 0 1 0
63 0 0 1
1 1 1 1 1 1 1 1
Alues 0 90 90 52 83 63 11 81
vaiu 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i = 1 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6
x+73 0 0 0
basi 17 1 0 0
asis 5 0 1 0
63 0 0 1
0 7 8 8 5 3 093 35
Alues 0 9 90 52 8 63 11 81
vaiu 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i = 2 point: 24,31, 15,32, 83, 27, 20, 59
shift 1 2 4 6
x+73 0 0 0
basi 17 1 0 0
asis 5 0 1 0
63 0 0 1
0 7 8 8 5 3 93 35
Alues 0 9 90 52 8 63 11 81
vaiu 0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i = 2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 1 2 4 6

x+73 0 0 0
basi x + 90 1 0 0
asis 56x -+ 16 0 1 0
12x + 66 0 0 1

0 7 8 8 5 3 93 35

Alues 0 0 8 60 45 66 7 19

vaiu 0 0 74 26 9 55 8 44

0 0 2 63 80 47 90 48

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: 1 =2 point: 24,31, 15, 32, 83, 27, 20, 59
shift 2 2 4 6]
x2 4 42x + 65 0 0 0
. x + 90 1 0 o
basis 56x + 16 0 1 0
12x + 66 0 0o 1

0 0 47 8 61 85 44 10
values 0 0 81 60 45 66 7 19
u 0 0 74 26 9 55 8 44

0 0

2 63 80 47 90 48

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =3 point: 24,31, 15, 32, 83, 27, 20, 59
shift 2 2 4 6
x2 4 42x + 65 0 0 0
. x 4 90 1 0 0
basis 56x + 16 0 1 0
12x + 66 0 0o 1

47 8 61 85 44 10
81 60 45 66 19
74 26 96 55 44

2 63 80 47 90 48

~

values

O O oo
O O O o
[ee]

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =3 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 2 4 6]
x3 4 27x% +17x + 92 0 0 0
. 54x2 4+ 38x + 11 1 0 o0
basis 17x2 + 91x + 54 0 1 0
66x2 + 68x + 88 0 0 1
30 74 50 26 52
7 41 0 b5 74
values

66 45 77 20
9 32 31 84 29

O O O o

O O O o

O O O o
&

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =4 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 2 4 6
x3 4 27x%2 +17x + 92 0 0 0
. 54x2 4+ 38x + 11 1 0 0
basis 17x2 + 91x + 54 0 1 0
66x2 + 68x + 88 0 0 1
30 74 50 26 52
7 41 0 b5 74
values

66 45 77 20
9 32 31 84 29

O O O o

O O O o

O O O o
&

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =4 point: 24,31, 15, 32, 83, 27, 20, 59
shift 3 3 4 6]
x3 +31x%2 +27x +3 36 0 0
basi 54x3 4+ 56x2 + 56x + 36 X + 65 0 0
asis 56x2 + 43x + 35 60 1 0
52x2 + 33x + 60 68 0 1

9% 50 66 O

values 45 79 05

7 31 41 17

o o oo

O O O o

o O oo

o O O o
~

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =5 point: 24,31, 15, 32, 83, 27, 20, 59
shift 4 3 4 6]

x4 + 45x3 + 73x2 + 90x + 42 36x + 19 0 0
basis 81x3 +20x? + 9x + 20 x + 67 0 0
2x3 4+ 21x2% + 41 35 1 0
52x3 + 15%2 4 79x + 22 0 0 1

0 0 0 0 0 13 13 0

values 0 0 0 0 0 89 55 58

0 0 0 0 0 48 17 95

0 0 0 0 0o 12 78 17

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =6 point: 24,31, 15, 32, 83, 27, 20, 59
shift 4 4 4 6

x* 4+ 19x3 + 57x2 + 44x + 26 74x + 43 0 0
basi 81x* + 64x3 + 51x2 + 68x + 42 x2 + 40x + 34 0 o0
asis 3x3 + 44x2 + 54x + 64 6x + 49 1 0
28x3 + 45x2 + 44x + 52 50% + 52 0 1

0 0 0 0 0 0 66 70

values 0 0 0 0 0 0 3 13

0 0 0 0 0 0 56 55

0 0 0 0 0 0 15 7

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =7 point: 24,31, 15, 32, 83, 27, 20, 59
shift 5 4 4 6]

x% 4 96x* + 65%3 + 68x2 + 19x + 62 74x2 + 18x + 13 0 0
basi 6x* + 94x3 + 44x? + 66X + 32 x2 +19x + 10 0 o0
asis 55x* + 78x3 + 75x2 + 49x + 39 2x + 86 1 0
13x* + 81x3 4+ 10x? + 34x + 2 42x + 29 0 1

0 0 0 0 0 0 0 14

values 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 25

0 0 0 0 0 0 0 44

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i = 8 point: 24,31, 15, 32, 83, 27, 20, 59
shift 5 5 4 6]
x% 4+ 12x* + 10x3 + 34x? + 65x + 2 60x2 + 43x + 67 0 0
basi 6x> + 31x* + 27x3 + 89x? 4 18x + 52 x3 4+ 57x% + 53x + 89 0 0
asis 2x* 4 56x3 + 42x2 + 48x + 15 72x2 4 12x + 30 1 0
40x* + 19x3 + 14x2 + 40x + 49 53x2 + 79x + 74 0 1

values

O O O o
O O O o
O O oo
O O O o
o O O o
o O O o
O O O o
O O O o

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]

parameters: d=38 m==4 s =(0,2,4,6), base field Fo7
input: (24,31, 15,32,83,27,20,59) and F =[1 R R? R3T

iteration: i =8 point: 24,31, 15, 32, 83, 27, 20, 59
shift 5 5 4 6

x% 4+ 12x* + 10x3 + 34x? + 65x + 2 60x2 4 43x + 67 0
basi 6x> + 31x* + 27x3 + 89x? 4 18x + 52 x3 4+ 57x% + 53x + 89 0
asis 2x% 4 56x3 + 42x2 + 48x + 15 72x2 + 12x + 30 1
40x* + 19x3 + 14x2 + 40x + 49 53x2 4 79x + 74 0
Q(x,y) = (2x* + 56x3 + 42x2 + 48x + 15) + (72x2 + 12x + 30)y + y?

0 0 0 0 0 0 0 0

values 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

= O OO

45

fast divide and conquer interpolation

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kétter-Vardy]
1
input: vector F = l: :

fm

},points o,...,0xq €K, shift s =(s1,...,8m) €Z™

—pi—
1. P= l :] = identity matrix in K[x]Jm™>*™
—Pin—

2. for i from 1 to d:

a. choose pivot 7t with smallest s, such that f (x;) #0
update pivot shift s, =s, + 1

S . fj (o
b. constant elimination: for j # 7 do p; ¢ p; — (o) Pr
frr(cxi)
polynomial elimination: p, < (x — &{)px
fj(OCi)

c. compute residual equation: for j # 7t do fj < fj — i

(i)
fro (x— oq)fr

after i iterations: P is an s-reduced basis of solutions for (&, ..., &)

46

fast divide and conquer interpolation

iterative algorithm: complexity aspects

Iii A 0
at step i, P and F are left multiplied by E; = [C fose U]

A2 Im—n
where A1 € K11 3pd Ay € K(M~7)*1 are constant

47

fast divide and conquer interpolation

iterative algorithm: complexity aspects

Iii A1 O
at step i, P and F are left multiplied by E; = [C ' x;locl 0 }
2 m—7

where A1 € K11 gpd Ay € K(M~7)X1 are constant

complexity O(m?d?):

» iteration with d steps

» each step: evaluation of F + multiplications E;F and E;P

» at any stage P has degree < d and dimensions m x m

» at any stage F has degree < 2d and dimensions m x 1
one gets O(md?) with either:

. normalizing at each step + finer analysis

. "balanced” input shift + finer analysis
(shifts in RS list-decoding are balanced)

47

fast divide and conquer interpolation

iterative algorithm: complexity aspects

i A 0
at step i, P and F are left multiplied by E; = [C fose U }

A2 Im—n
where A1 € K11 gpd Ay € K(M~7)X1 are constant

complexity O(m?d?):

» iteration with d steps

» each step: evaluation of F + multiplications E;F and E;P

» at any stage P has degree < d and dimensions m x m

» at any stage F has degree < 2d and dimensions m x 1
one gets O(md?) with either:

. normalizing at each step + finer analysis

. “balanced” input shift 4 finer analysis
(shifts in RS list-decoding are balanced)

correctness:
» the main task is to prove the base case (d = 1, single point)
» then, correctness follows from the “basis multiplication theorem”

47

fast divide and conquer interpolation

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

» compute a first basis P; for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is PoPy

we want P>P; shifted reduced
P,>P; reduced not implied by "“P; reduced and P, reduced”

48

fast divide and conquer interpolation

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

» compute a first basis P; for a subproblem

» update the input instance to get the second subproblem
» compute a second basis P, for this second subproblem
» the output basis of solutions is PoPy

we want P>P; shifted reduced
P,>P; reduced not implied by "“P; reduced and P, reduced”

theorem:
(P is s-reduced and P; is t-reduced”) = P,P; is s-reduced

where t is a shift trivially computed from s and P; (t = rdeg, (P1))

48

fast divide and conquer interpolation

bonus: detailed statement and proof

let M C M; be two K[x]-submodules of K[x]™ of rank m,

let P; € K[x]™>*™ be a basis of Mj,

let s € Z™ and t = rdeg (P1),

» the rank of the module My = {A € K[x]™*™ | AP; € M} is m
and for any basis P, € K[x]™*™ of M,

the product P,P; is a basis of M

»if Py is s-reduced and P is t-reduced,

then P>P; is s-reduced

49

fast divide and conquer interpolation

bonus: detailed statement and proof

let M C M; be two K[x]-submodules of K[x]™ of rank m,
let P; € K[x]™>*™ be a basis of Mj,
let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[x][**™ | AP; € M} is m
and for any basis P, € K[x]™*™ of M,
the product P,P; is a basis of M

»if Py is s-reduced and P is t-reduced,
then P>P; is s-reduced

Let A € K[x]™*™ denote the adjugate of P;. Then, we have AP; = det(P1)I,.
Thus, pAP; = det(P1)p € M for all p € M, and therefore MA C M5. Now,
the nonsingularity of A ensures that MA has rank m; this implies that M, has
rank m as well (see e.g. [Dummit-Foote 2004, Sec.12.1, Thm.4]). The matrix PoPy is
nonsingular since det(P,P1) # 0. Now let p € M; we want to prove that p is a
K[x]-linear combination of the rows of PoP;. First, p € Mj, so there exists A €
K[x]1*™ such that p = AP;. But then A € My, and thus there exists pu € K[x]1*™

such that A = puP,. This yields the combination p = uP,P;.
49

fast divide and conquer interpolation

bonus: detailed statement and proof

let M C M; be two K[x]-submodules of K[x]™ of rank m,

let P; € K[x]™>*™ be a basis of Mj,

let s € Z™ and t = rdeg (P1),

» the rank of the module M, = {A € K[x][**™ | AP; € M} is m
and for any basis P, € K[x]™*™ of M,

the product P,P; is a basis of M

»if Py is s-reduced and P is t-reduced,

then P>P; is s-reduced

Let d = rdegy(P2); we have d = rdegs (P2P1) by the predictable degree prop-
erty. Using X 9P,P1 X5 = X 9P, X'X 'P;X®, we obtain that Img(PoP;) =
Im¢ (P2)Img (P1). By assumption, Im¢(P2) and Img(P;1) are invertible, and there-
fore Img (P2P7) is invertible as well; thus P,P; is s-reduced.

49

fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: F, (1,...,x4), 8
output: P
»if d < threshold: call iterative algorithm
» else:
a. Gy (x—oq) - (x—aay2)); G2 ¢ (x —x|a/2)41) - (x — xq)
b. P; < recursive call on F rem Gy, (o1, ..., X[a/2), S
c. updated shift: t + rdeg(Py)
d. residual equation: F + GllPlF
e. P, < recursive call F rem Go, (|q/2)+1,---,%a), t
f. return the product P,P;

50

fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: F, (1,...,x4), 8
output: P

»if d < threshold: call iterative algorithm
» else:

a. Gy + (x—oaq) - (x —aasz)i G2 < (x — o|asz)41) -+ (x — xa)
P; < recursive call on F rem Gy, (a1, ..., x|[q/2]), 8

updated shift: t < rdegg (P1)

residual equation: F <~ &-P;F

P « recursive call F rem G, (|a/2]41,---, Xa), t

- 0 2 0 T

return the product P,P;

correctness:

» correctness of base case

» then, direct consequence of the “basis multiplication theorem”
» residual: {p | pP1F =0 mod G} ={p | p(GllPlF) =0 mod G»}

50

fast divide and conquer interpolation

divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: F, (1,...,x4), 8
output: P

»if d < threshold: call iterative algorithm
» else:

a. Gy + (x—oaq) - (x —aasz)i G2 < (x — o|asz)41) -+ (x — xa)
P; < recursive call on F rem Gy, (a1, ..., x|[q/2]), 8

updated shift: t < rdegg (P1)

residual equation: F <~ &-P;F

P « recursive call F rem G, (|a/2]41,---, Xa), t

- 0 2 0 T

return the product P,P;

complexity O(m®M(d) log(d)):

»if w = 2, quasi-linear in worst-case output size

» most expensive step in the recursion is the product P,P;

» equation C(m, d) = €(m, |d/2]) + €(m, [d/2]) + O(m*M(d))

50

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: deg(F) < d output: deg(P) < d
complexity of each step:

> residual F 5-P,F O(m2M(d))
»F rem M; and F rem M, O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2€(m, | d/2])

51

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: deg(F) < d output: deg(P) < d
complexity of each step:

> residual F 5-P,F O(m2M(d))
»F rem M; and F rem M, O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2C(m, [d/2])

C(m,d) =¢€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))
d base cases, each one costs O(m)

= O(m*M(d)log(d))

unrolling: m® (M(d) +2M(4) +4M(2) +--- + ¢M(2)) + dm

51

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: deg(F) < d output: deg(P) < d

complexity of each step:

> residual F 5-P,F O(m2M(d))
»F rem M; and F rem M, O(mM(d))
» product PoP; O(m®M(d))
»two recursive calls 2€(m, | d/2])

output: deg(P) ~ [4]

m
s = 0 and generic F:
O(m*M([&T1)
unchanged

O(meM([51))

m !’
unchanged

» partial linearization

C(m,d) =¢€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))

d base cases, each one costs O(m)

= O(m*M(d)log(d))

51

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: deg(F) < d output: deg(P) < d output: deg(P) ~ ’—%]
complexity of each step: s = 0 and generic F:
> residual F 5-P,F O(m2M(d)) KeIRuSdVIGECR))

»F rem M and F rem M, O(mM(d)) unchanged

» product PoP; O(m®M(d)) O(m‘”M([n%]))

» two recursive calls 2€(m, | d/2]) unchanged

» partial linearization
» base case for d ® m,

costs O(m®)

C(m,d) =¢€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))
d base cases, each one costs O(m)

= O(m®M(d) log(d)) O(meM([51) log([1))

51

fast divide and conquer interpolation

divide and conquer: complexity aspects

input: deg(F) < d output: deg(P) < d output: deg(P) ~ ’—%]
complexity of each step: s = 0 and generic F:
> residual F 5-P,F O(m2M(d)) KeIRuSdVIGECR))

»F rem M and F rem M, O(mM(d)) unchanged

» product PoP; O(m®M(d)) O(m‘”M([n%]))

» two recursive calls 2C(m, [d/2]) unchanged

» partial linearization
» base case for d ® m,

costs O(m®)

C(m,d) =¢€(m, |d/2]) + €(m, [d/2]) + O(m*M(d))
d base cases, each one costs O(m)

= O(m®M(d) log(d)) O(meM([51) log([1))

m ‘ n | d | PM-Basis | PM-Basts with linearization
4 1 | 65536 1.6693 1.26891
16 1 | 16384 1.8535 0.89652
64 1 2048 2.2865 0.14362
256 | 1 1024 36.620 0.20660

51

fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

» recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F € K[x]™*™ withn > 1

» [Giorgi-Jeannerod-Villard 2003] achieved O(m“M(d) log(d))
for F mod x4, with mn > 1 and n € O(m)

~for s = 0 and generic F: O"(m®[247) [Lecerf, ca 2001, unpublished]

52

fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

» recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F € K[x]™*™ withn > 1

» [Giorgi-Jeannerod-Villard 2003] achieved O(m“M(d) log(d))
for F mod x4, with mn > 1 and n € O(m)

~for s = 0 and generic F: O"(m®[247) [Lecerf, ca 2001, unpublished]

» more recently: O”(m®~'nd) for F mod x¢
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
~> any S, no genericity assumption, returns the canonical s-Popov basis

52

fast divide and conquer interpolation

vector rational interpolation: recent progress

overview of the state of the art:

» recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
it also works for F € K[x]™*™ withn > 1

» [Giorgi-Jeannerod-Villard 2003] achieved O(m“M(d) log(d))
for F mod x4, with mn > 1 and n € O(m)

~for s = 0 and generic F: O"(m®[247) [Lecerf, ca 2001, unpublished]

» more recently: O”(m®~'nd) for F mod x¢
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
~> any S, no genericity assumption, returns the canonical s-Popov basis

» F mod G and general modular matrix equations in similar complexity
[Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]

~> any S, no genericity assumption, returns the canonical s-Popov basis

52

» efficient algorithms and software
computer algebra » for matrices over a field
» for univariate polynomials

» context and unique decoding problem
Reed-Solomon decoding » key equations and how to solve them
» correcting more errors?

» introduction to vector interpolation
polynomial matrices » core algorithms & shifted normal forms
» fast divide and conquer interpolation

efficient list decoding

53

computer algebra

Reed-Solomon decoding

polynomial matrices

efficient list decoding

» efficient algorithms and software
» for matrices over a field
» for univariate polynomials

» context and unique decoding problem
» key equations and how to solve them
» correcting more errors?

» introduction to vector interpolation
» core algorithms & shifted normal forms
» fast divide and conquer interpolation

» the Guruswami-Sudan algorithm
»via structured systems or basis reduction
»a word on extensions

54

list decoding problem

for convenience, we use the agreement parameter t = n — e:
#Hilwlow) #Bil<e & #FHilwly) =it >t

input:
»X1,..., 0, the n distinct evaluation points in K,
» k the degree bound, t = n — e the agreement,
»(B1,...,Pn) the received word in K™

list decoding requirement: t> > kn [Guruswami-Sudan’99)

output: all polynomials w(x) in K[x] such that
deg(w) <k and #ilwle)=pi} >t

55

list decoding problem

for convenience, we use the agreement parameter t = n — e:
#Hilwla) #Bit<e & #ilwlw) =pit 2>t

input:
»X1,..., 0, the n distinct evaluation points in K,
» k the degree bound, t = n — e the agreement,
»(B1,...,Pn) the received word in K™

list decoding requirement: t> > kn [Guruswami-Sudan’99)

output: all polynomials w(x) in K[x] such that
deg(w) <k and #ilwle)=pi} >t

Guruswami-Sudan algorithm:

> interpolation step
compute Q(x,y) such that: w(x) solution = Q(x, w(x)) =0

» root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

55

introducing the interpolation+root-finding approach

consider one solution wy:
key equation:
/\1R = /\1W1 mod G
where R(oii) = Bi, G(x) = [[1cicn(x =) A1(x) = [1i | error, (X — i)

|

obstacle: no uniqueness of solution J/t—ll for rational reconstruction
/\1R = W1 mod G

with deg; <e+k

since e > “>* = (unique decoding bound not satisfied),
possibly deg(A;) + deg(Aiw;) > n=degG

(more unknowns than equations in the linearized problem)

56

introducing the interpolation+root-finding approach

note A1(R—w1) =0 mod G, and consider a second solution wo:
“extended” key equation:
/\(R—Wl)(R —Wg) =0 modG

where A =[] x — o) = ged(Ag, Ag)

i] errorl/\z(

wj and wy are y-roots of the bivariate polynomial
Qx.y) = Aly—wi)ly—w2) = Awiwp, — Alwr + w2y + Ay?

~~ similar remark for all { solutions w1, ..., Wy

properties of Q(x,y):

»degree in y is £ = number of solutions
» weighted-degree deg, (Q(x, x*y)) close to {k
» Q(oi, i) = 0 for every i (i.e. Q(x,R) =0 mod G)

56

the Guruswami-Sudan algorithm

bivariate interpolation with multiplicities:

Input:
n points {(, Bi)}ligign in K2, with the o;'s distinct
k the degree constraint, t the agreement
€ the list-size, s the multiplicity (s < ¢)

Output:
a nonzero polynomial Q(x,y) in K[x, y] such that
(1) deg, (Q) < ¢ (list-size condition)
(i) deg, (Q(x,x*y) < s (weighted-degree condition)

(iil) Wi, Q(«y,Bi) =0 |th multiplicity s (vanishing condition)

57

the Guruswami-Sudan algorithm

bivariate interpolation with multiplicities:

Input:
n points {(, Bi)}ligign in K2, with the «;'s distinct
k the degree constraint, t the agreement
€ the list-size, s the multiplicity (s < ¢)

Output:
a nonzero polynomial Q(x,y) in K[x, y] such that
(1) deg, (Q) < ¢ (list-size condition)
(i) deg, (Q(x,x*y) < s (weighted-degree condition)

(iil) Wi, Q(«y,Bi) =0 |th multiplicity s (vanishing condition)

» find parameters £ and s
» interpolation step

compute Q(x,y) such that: w(x) solution = Q(x,w(x)) =0

» root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57

the Guruswami-Sudan algorithm

Q) <t (list-size condition)
(ii) deg, (Q(x,x*y) < st (weighted-degree condition)
(iit) Wi, Q(eui, Bi) = 0 with multiplicity s (vanishing condition)

» find parameters £ and s
» interpolation step

compute Q(x,y) such that: w(x) solution = Q(x, w(x)) =0

» root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57

the Guruswami-Sudan algorithm

Q) <t (list-size condition)
(ii) deg, (Q(x,x*y) < st (weighted-degree condition)
(iit) Wi, Q(eui, Bi) = 0 with multiplicity s (vanishing condition)

w(x) solution
deg(w) <k #ilwla) =pit >t

l(ii) l(iii)
deg Q(x,w(x)) < st Q(x,w(x)) has > st roots

» find parameters { and

» interpolation step
compute Q(x,y) such that: w(x) solution = Q(x, w(x)) =0

» root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57

the Guruswami-Sudan algorithm

Q) <t (list-size condition)
(ii) deg, (Q(x,x*y) < st (weighted-degree condition)
(iit) Wi, Q(eui, Bi) = 0 with multiplicity s (vanishing condition)

» list-size condition allows to work with polynomial matrices
identification K[x, Yldeg, <¢ +— K[x]¢

Q(x,y) = Qo(x) + Qi(x)y + - + Qe(x)y*

» weighted-degree condition handled via shifted forms
degree constraints deg(Qj(x)) < st —jk for j=0,...,¢

» find parameters £ and s
» interpolation step

compute Q(x,y) such that: w(x) solution = Q(x, w(x)) =0

» root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57

the Guruswami-Sudan algorithm

(1) degy(Q) <¢ (list-size condition)
(ii) deg, (Q(x,x*y) < st (weighted-degree condition)
(iit) Wi, Q(eui, Bi) = 0 with multiplicity s (vanishing condition)

root-finding step: quasi-linear complexity
[Alekhnovich 2005] [Neiger-Rosenkilde-Schost 2017]

fastest known interpolation step: via univariate relations O~ ({“~'s?n)
[Jeannerod-Neiger-Schost-Villard 2017]

» Sudan case (s = 1): vector rational interpolation

» general case: similar problem with s equations,

which have respective moduli G¥, Gl ..., G

» find parameters £ and s

» interpolation step
compute Q(x,y) such that: w(x) solution = Q(x, w(x)) =0

» root-finding step
compute all y-roots of Q(x,y), keep those that are solutions

57

alternative approach: structured linear algebra

features common to all algorithms:
»use (1) + (ii) to fix the linear unknowns:

Q= Zogjgz Zogi<st—jk qi,ixiyj
»same number of linear unknowns: ({ + 1)st —

. . 1
»same number of linear equations: wn

2(e+1)
—-— k

» call a structured linear system solver

58

alternative approach: structured linear algebra

features common to all algorithms:

»use (i) + (i) to fix the linear unknowns:
Q= Zogjgz Zogi<st—jk qi,jxiyj

»same number of linear unknowns: ({ + 1)st — 2(22_+1)k

. . 1
»same number of linear equations: %n

» call a structured linear system solver

T 6 4 2
[Qo(x) Qi(x)] 2x" + 2x! —0—5);6 +2x° + 4 — 0 mod x5

M4 0 2 0 5 0 2 2]

4 0 2 0 5 0 2

4 0 2 0 5 0

4 0 2 0 5

[doo qo1 do2 o3 qos qos | 10 qi11 12l 4 0 2 0 =0

4 0 2

16 0 00 0°0 0 0 Of

6 0 0 0 0 0 O

L 6 0 0 0 0 O

58

alternative approach: structured linear algebra

features common to all algorithms:
»use (i) + (i) to fix the linear unknowns:

_ iy
Q= Zogjgz Zogi<st—jk qijx'y’
»same number of linear unknowns: ({ + 1)st —

. . 1
»same number of linear equations: wn

2(e+1)
—-— k

» call a structured linear system solver

Q(x,y) = qoo + qorx + qo2x? + qosx® + qoax* + (q10 + qu1x + q12Xx2)y + q2oy?:

r 1 1 1 1
X1 [0 &) Xg
of o3 o
of o3 o
[qoo qor dqo2 qo3 dos ' di0 q11 12 ' q20 } ,”‘ﬁ 77777 of ‘2‘"";;;7”?{;”, =0
B1 B2 Bs
x1PB1 P2 xgPs
odB1 3P o Ps
TR I R

58

alternative approach: structured linear algebra

Vandermonde-like system O(fs*n?)
» [Olshevsky-Shokrollahi’99]
» linearize the vanishing condition on each point

58

alternative approach: structured linear algebra

Vandermonde-like system O(fs*n?)
» [Olshevsky-Shokrollahi’99]
» linearize the vanishing condition on each point

Mosaic-Hankel system O(fs*n?)
» [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]
» linearize the reversed extended key equation
» uses an adapted [Feng-Tzeng'91] solver

58

alternative approach: structured linear algebra

Vandermonde-like system O(fs*n?)
» [Olshevsky-Shokrollahi’99]
» linearize the vanishing condition on each point

Mosaic-Hankel system O(fs*n?)
» [Roth-Ruckenstein’00] [Zeh-Gentner-Augot 2011]
» linearize the reversed extended key equation
» uses an adapted [Feng-Tzeng'91] solver

Toeplitz-like system O~ (tv—1s%n)
» [Chowdhury-Jeannerod-Neiger-Schost-Villard 2015]
» linearize the extended key equation
» uses the solver of [Bostan-Jeannerod-Schost 2007]
Las Vegas randomized

58

alternative approach: basis reduction

features common to all algorithms:
» use (i) to fix the polynomial unknowns:
Q= Zogjge Qj ()Y +— [Qo(x)--- Qe(x)]
» consider same interpolant K[x]-module:
{Q (1) + (1) = {Xogjce Qi ()Y | Q(eti, B1) = 0 with mult. s}
» use (iii) to derive a basis of the module:
{Q 1)+ (1)} = (po(x,y), P1(x,y), ..., Pe(x,Y))
» call a K[x]-module basis reduction algorithm,
using a shift to satisfy the weighted-degree condition (ii)

59

alternative approach: basis reduction

features common to all algorithms:
» use (i) to fix the polynomial unknowns:
Q= Zogjge Qj ()Y +— [Qo(x)--- Qe(x)]
» consider same interpolant K[x]-module:
{Q (1) + (1) = {Xogjce Qi ()Y | Q(eti, B1) = 0 with mult. s}
» use (iii) to derive a basis of the module:
{Q 1)+ (1)} = (po(x,y), P1(x,y), ..., Pe(x,Y))
» call a K[x]-module basis reduction algorithm,
using a shift to satisfy the weighted-degree condition (ii)

G— G 0 ©
y—R— —R 1 0
y(y—R) — 0 —R 1
y3(y—R) — 0 0 -R

= O O O
o O O o

y“y—R) — 0o -~ -~ 0 —-R 1

59

alternative approach: basis reduction

features common to all algorithms:
» use (i) to fix the polynomial unknowns:
Q= Zogjge Qj ()Y +— [Qo(x)--- Qe(x)]
» consider same interpolant K[x]-module:
{Q (1) + (1) = {Xogjce Qi ()Y | Q(eti, B1) = 0 with mult. s}
» use (iii) to derive a basis of the module:
{Q 1)+ (1)} = (po(x,y), P1(x,y), ..., Pe(x,Y))
» call a K[x]-module basis reduction algorithm,
using a shift to satisfy the weighted-degree condition (ii)

G— [G 0 0 © 0
y—-R— |-R 1 0 0 0
wY-R2— |-R2 0 1 0 0
yY¥-RP— |-R® 0 0 1 0

y'—R'— |-RC 0 .-~ 0 0 1

59

alternative approach: basis reduction

quadratic in n
O(;m?n?)
O(¢*mn?)
O(m3n?) (heuristic)

basis reduction & [Mulders-Storjohann 2003]
» [Reinhard 2003]
» [Lee-O’Sullivan 2008]
» [Trifonov 2010]

59

alternative approach: basis reduction

basis reduction & [Mulders-Storjohann 2003] quadratic in n
» [Reinhard 2003] 0(3m2n?)
» [Lee-O’Sullivan 2008] O(t*mn?)
» [Trifonov 2010] O(m3n?) (heuristic)

basis reduction = matrix-half-GCD
» [Alekhnovich 2002+-2005]

basis reduction = [Giorgi-Jeannerod-Villard 2003]
» [Beelen-Brander 2010]
» [Bernstein 2010]
» [Cohn-Heninger 2011+2015]

“linear in n
O~ (¢*m*n)

“linear in n

O~ (¢*mn)
O~(€w+1n)
O~(L®mn)

59

alternative approach: basis reduction

basis reduction & [Mulders-Storjohann 2003] quadratic in n
» [Reinhard 2003] 0(3m2n?)
» [Lee-O’Sullivan 2008] O(t*mn?)
» [Trifonov 2010] O(m3n?) (heuristic)

basis reduction = matrix-half-GCD “linear in n

» [Alekhnovich 2002+-2005] O~ (¢*m*n)

basis reduction = [Giorgi-Jeannerod-Villard 2003] “linear in n

» [Beelen-Brander 2010] O~ (¢*mn)

» [Bernstein 2010] O~ (¢++in)

» [Cohn-Heninger 2011+2015] O"({“mn)

basis reduction = fastest known O~ ((v~1s%n)

» [Neiger 2016] [Neiger-Vu 2017]
» do not go this way!
~ here, better call fast vector interpolation directly

59

generalizations of the interpolation step

summary for [Sudan '97] [Guruswami-Sudan '99]:
» list-decoding of Reed-Solomon codes, extends error-correction bound

compute Q(x,y) = Qo + Q1y + - - - + Qmy" such that
» [Qo, .., Q¢ has small shifted degree
» Q(oi, Bi) = 0 with multiplicity p for all 1

60

generalizations of the interpolation step

[Kétter-Vardy 2003]
soft-decision decoding of Reed-Solomon codes

X1, ..., &n are not pairwise distinct

compute Q(x,y) = Qo + Qry + - - + Qey" such that
» [Qo, ..., Q] has small shifted degree
» Q(oi, Bi) = 0 with multiplicity p; for all i

60

generalizations of the interpolation step

[Guruswami-Rudra 2006]
list-decoding of folded Reed-Solomon codes:
further extends the error-correction bound up to the information-theoretic

limit

[Devet-Goldberg-Heninger 2012]
Optimally robust Private Information Retrieval

compute Q(x, Yy, ..., Ys) =2 G iver Qi jsyjll .-yl such that
» [Qj,...5)G1,....jo)er has small shifted degree
» Qo Bit,-- -, Bis) = 0 with multiplicity u for all i

60

generalizations of the interpolation step

[Beelen-Rosenkilde-Solomatov 2022]
[Beelen-Neiger (preprint) 2023]
Guruswami-Sudan algorithm in the algebraic-geometry code setting

up to more precomputations, very similar context:

.. also up to many technical details
seﬁ_{Q Zz Q: € Flzl | Q¢ € A(—tG),
Q has a root of multiplicity at least s at (Pj, 35) for all)}

s—1

M, :@(@@ft *A(Gy).

t=0

60

computer algebra

Reed-Solomon decoding

polynomial matrices

efficient list decoding

» efficient algorithms and software
» for matrices over a field
» for univariate polynomials

» context and unique decoding problem
» key equations and how to solve them
» correcting more errors?

» introduction to vector interpolation
» core algorithms & shifted normal forms
» fast divide and conquer interpolation

» the Guruswami-Sudan algorithm
»via structured systems or basis reduction
»a word on extensions

61

