
Vincent Neiger . LIP6, Sorbonne Université, France

joint work with

Bruno Salvy, Gilles Villard . Inria/CNRS, ENS Lyon, France

Seung Gyu Hyun, Éric Schost . U. Waterloo, Canada

faster modular composition of polynomials

Algorithmic Number Theory seminar
Institut de Mathématiques de Bordeaux, France

23 January 2024

1

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

2

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

3

“fast”: measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rational numbers Q

algebraic complexity bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

accurate for finite fields K = Fp

ignores coefficient growth, e.g. over K = Q

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading

4

“fast”: measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rational numbers Q

algebraic complexity bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

accurate for finite fields K = Fp

ignores coefficient growth, e.g. over K = Q

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading

4

“fast”: measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rational numbers Q

algebraic complexity bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

accurate for finite fields K = Fp

ignores coefficient growth, e.g. over K = Q

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading

4

modular composition

polynomials a, f,g,h univariate over K

modular composition
given g, a, h, compute h(a) mod g

minimal polynomial
given g, a, compute f such that f(a) = 0 mod g

related problems: power projections & inverse composition

5

modular composition

polynomials a, f,g,h univariate over K

modular composition
given g, a, h, compute h(a) mod g

minimal polynomial
given g, a, compute f such that f(a) = 0 mod g

related problems: power projections & inverse composition

5

modular composition

polynomials a, f,g,h univariate over K

modular composition
given g, a, h, compute h(a) mod g

minimal polynomial
given g, a, compute f such that f(a) = 0 mod g

related problems: power projections & inverse composition

5

[reminder] matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

▶ addition is “quadratic”: O(m2) operations in K
▶naive multiplication is cubic: O(m3)

breakthrough: subcubic matrix multiplication

[Strassen’69]

▶ complexity exponent ω ≈ 2.81

▶used in practice for m ⩾ a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

▶best-known exponent ω ≈ 2.373
[Le Gall’14] [Alman-Williams’20]

▶ “galactic” algorithms: strongly impractical as such

6

[reminder] polynomials: multiplication

p = 87x7 + 74x6 + 60x5 + 46x4 + 16x3 + 41x2 + 86x+ 69

p ∈ K[x]<8 −→ univariate polynomial in x of degree < 8 over K

fundamental operations on polynomials of degree < d:

▶ addition and Horner’s evaluation are linear: O(d)
▶naive multiplication is quadratic: O(d2)

breakthrough: subquadratic polynomial multiplication

[Karatsuba’62] M(d) ∈ O(d1.58)

breakthrough: quasi-linear polynomial multiplication

[Schönhage-Strassen’71] [Nussbaumer’80] [Cantor-Kaltofen’91] M(d) ∈ O(d log(d) log log(d))

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

▶ change of representation by evaluation-interpolation

▶used in practice as soon as d ≈ 100 (K = Fp)

▶FFT techniques using (virtual) roots of unity

note: M(d) ∈ O(d log(d))
if provided a “good” root of unity

7

matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

FLINT & NTL C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

8

matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

FLINT & NTL C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

8

matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

FLINT & NTL C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

8

matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

FLINT & NTL C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s

8

univariate polynomials: computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(x1), . . . , f(xd)

▶ interpolation f(x1), . . . , f(xd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

9

univariate polynomials: computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(x1), . . . , f(xd)

▶ interpolation f(x1), . . . , f(xd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

O(M(d)) O(M(d) log(d))

most problems, except. . .

9

univariate polynomials: open problems

modular composition
given g, a, h, compute h(a) mod g

minimal polynomial
given g, a, compute f such that f(a) = 0 mod g

related problems: power projections & inverse composition

Modular composition
Minimal polynomial

Inria
CNRSJNCF

ISSAC

The year is 2024 A.D.

Basic Polynomial Algebra is entirely
occupied by Computer Algebraists.

Well not entirely!

One small village of indomitable
open problems still holds out against
the invaders. And life is not easy
for the scientists who garrison the
fortified camps of ISSAC, JNCF,
Inria, CNRS. . .

10

complexity improvements

[V.Neiger - B.Salvy - É.Schost - G.Villard, J.ACM 2024]

for generic input || using randomization

minimal polynomial
modular composition

}
in O (̃n(ω+2)/3)

exponent (ω + 2)/3: 1.67 for ω = 3, 1.6 for ω = 2.8, 1.46 for ω = 2.38

previous work (composition)
▶naive: O (̃n2)
▶ [Brent-Kung 1978]: O(n(ω+1)/2)

previous work (minpoly)
▶naive: O (̃nω) or O (̃n2)
▶ [Shoup 1994]: O(n(ω+1)/2)

exponent (ω + 1)/2: 2 for ω = 3, 1.9 for ω = 2.8, 1.69 for ω = 2.38

breakthough [Kedlaya-Umans 2011]:
composition in O (̃n log(q)) bit operations, over K = Fq

quasi-linear bit complexity, yet currently impractical [van der Hoeven-Lecerf 2020]

11

software improvements

efficient implementation for the minimal polynomial
for large degrees, outperforms the state of the art

implementation for modular composition: work in progress

field K = Fp, prime p with 60 bits
Intel Core i7-7600U @ 2.80GHz

random input polynomials ⇒ “generic”

general prime FFT prime
n NTL new NTL new
5k 0.349 0.496 0.130 0.208
20k 3.13 3.19 1.21 1.39
80k 31.5 23.6 13.9 10.7
320k 311 178 158 91.0

uses many types of computations on matrices over K[x]
⇝ relies on the Polynomial Matrix Library

▶multiplication for various parameters
▶matrix-Padé approximation
▶matrix division with remainder

▶determinant
▶ system solving
▶ kernel

https://github.com/vneiger/pml

12

https://github.com/vneiger/pml

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

13

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

▶minimal polynomial. . .
▶using power projections. . .
▶ and blocking + baby step-giant step

14

[reminder] minimal polynomial mod g(x)

ideal I = ⟨g(x),y− a(x)⟩:
set of all F(x,y) such that F(x,a(x)) = 0 mod g(x)

minimal polynomial = f(y) of smallest degree in I

example: f(y) = (y− 1)16 is the minpoly

of a(x) = x2 + 1 modulo g(y) = x32

relation to bivariate resultant, and specific ideal bases
I = ⟨g(x),y − a(x)⟩ = ⟨f(y), x − b(y)⟩

y

x

y

x

y

x

15

using power projections

0. choose random vector [ℓ1 · · · ℓn] ∈ Kn

→ defines a linear form ℓ : K[x]/⟨g⟩ → K

1. compute linear recurrent sequence
ℓ(1), ℓ(a mod g), . . . , ℓ(a2n−1 mod g)

2. compute minimal recurrence relation f(y)
via Berlekamp-Massey / Padé approximation

[Shoup 1994, 1999]

minpoly f(y)
⇓

f(a) = 0 mod g
⇓

f(y) = relation for (ak mod g)k
⇓

f(y) = relation for (ℓ(ak mod g))k

→ related to algorithm of [Wiedemann 1986]:

ℓ(ak mod g) =
[
ℓ1 · · · ℓn

]
Ak

 1
0
...

0


where A ∈ Kn×n is the “multiplication matrix” of a(x) modulo g(x)

for generic a(x) and g(0) ̸= 0, choose ℓ = [1 0 · · · 0]

then ℓ(ak mod g) = constant coeff of ak mod g

16

using power projections

0. choose random vector [ℓ1 · · · ℓn] ∈ Kn

→ defines a linear form ℓ : K[x]/⟨g⟩ → K

1. compute linear recurrent sequence
ℓ(1), ℓ(a mod g), . . . , ℓ(a2n−1 mod g)

2. compute minimal recurrence relation f(y)
via Berlekamp-Massey / Padé approximation

[Shoup 1994, 1999]

minpoly f(y)
⇓

f(a) = 0 mod g
⇓

f(y) = relation for (ak mod g)k
⇓

f(y) = relation for (ℓ(ak mod g))k

→ related to algorithm of [Wiedemann 1986]:

ℓ(ak mod g) =
[
ℓ1 · · · ℓn

]
Ak

 1
0
...

0


where A ∈ Kn×n is the “multiplication matrix” of a(x) modulo g(x)

for generic a(x) and g(0) ̸= 0, choose ℓ = [1 0 · · · 0]

then ℓ(ak mod g) = constant coeff of ak mod g

16

new minpoly algorithm:
blocking & baby-step giant-step

block Wiedemann approach [Coppersmith 1994]

iterating projection by 1× n vector on powers A0,A1, . . . ,A2n−1

⇒ iterating projection by m×n matrix on powers A0,A1, . . . ,A2d−1

choose m ≪ n and take d = n/m

1. compute linear recurrent matrix sequence:

Im,
[
Im 0

]
A

[
Im
0

]
, . . . ,

[
Im 0

]
A2d−1

[
Im
0

]
2. compute minimal matrix recurrence relation P(y) ∈ K[y]m×m

via matrix-Berlekamp-Massey / matrix-Padé, complexity O˜(mωd)

step 1: computing coefficient i of xjak mod g, for i, j < m, k < 2d
→ new baby-step giant-step in O (̃md(ω+1)/2)

▶ f(y) = det(P(y)) is the minimal polynomial of a modulo g

▶P(y) is a good basis of I = ⟨g(x),y− a(x)⟩
good: deg(P) ⩽ d, Popov form, predictable degrees, . . .

17

new minpoly algorithm:
blocking & baby-step giant-step

block Wiedemann approach [Coppersmith 1994]

iterating projection by 1× n vector on powers A0,A1, . . . ,A2n−1

⇒ iterating projection by m×n matrix on powers A0,A1, . . . ,A2d−1

choose m ≪ n and take d = n/m

1. compute linear recurrent matrix sequence:

Im,
[
Im 0

]
A

[
Im
0

]
, . . . ,

[
Im 0

]
A2d−1

[
Im
0

]
2. compute minimal matrix recurrence relation P(y) ∈ K[y]m×m

via matrix-Berlekamp-Massey / matrix-Padé, complexity O˜(mωd)

step 1: computing coefficient i of xjak mod g, for i, j < m, k < 2d
→ new baby-step giant-step in O (̃md(ω+1)/2)

▶ f(y) = det(P(y)) is the minimal polynomial of a modulo g

▶P(y) is a good basis of I = ⟨g(x),y− a(x)⟩
good: deg(P) ⩽ d, Popov form, predictable degrees, . . .

17

new minpoly algorithm:
blocking & baby-step giant-step

block Wiedemann approach [Coppersmith 1994]

iterating projection by 1× n vector on powers A0,A1, . . . ,A2n−1

⇒ iterating projection by m×n matrix on powers A0,A1, . . . ,A2d−1

choose m ≪ n and take d = n/m

1. compute linear recurrent matrix sequence:

Im,
[
Im 0

]
A

[
Im
0

]
, . . . ,

[
Im 0

]
A2d−1

[
Im
0

]
2. compute minimal matrix recurrence relation P(y) ∈ K[y]m×m

via matrix-Berlekamp-Massey / matrix-Padé, complexity O˜(mωd)

step 1: computing coefficient i of xjak mod g, for i, j < m, k < 2d
→ new baby-step giant-step in O (̃md(ω+1)/2)

▶ f(y) = det(P(y)) is the minimal polynomial of a modulo g

▶P(y) is a good basis of I = ⟨g(x),y− a(x)⟩
good: deg(P) ⩽ d, Popov form, predictable degrees, . . .

17

[reminder] polynomial matrices

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3

3 × 3 matrix of degree 3
with entries in K[x] = F7[x]

operations on K[x]m×m
<d

▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

2 × 2 matrices in XGCD, Padé approximation,
Berlekamp-Massey, Toeplitz linear systems. . .

⇝ m×m matrix versions of these problems

▶ some problems&techniques shared with matrices over K
▶ some problems&techniques specific to entries in K[x]

18

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ inversion O˜(m3d)

▶ kernel, system solving

▶ rank, determinant

univariate relations

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies, modular equations

transformation to normal forms

▶ triangularization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

19

polynomial matrices: two open questions

deterministic Smith form

[s1
s2

. . .

sm

][
A

]
si+1 divides si

▶ complexity O (̃mωd) [Storjohann’03]

▶Las Vegas randomized algorithm

▶ requires large field K

deterministic algo in O (̃mωd)?

algebraic approximants

p1a1 + p2a2 + · · ·+ pmam = 0 mod f(y)

p11+ p2a+ · · ·+ pmam−1 = 0 mod f(y)

structured ai’s

▶most algorithms ignore the structure

▶ recent progress [Villard’18]+this talk

▶ restrictive: genericity, specific m

how to leverage this structure?

20

polynomial matrices: two open questions

deterministic Smith form

[s1
s2

. . .

sm

][
A

]
si+1 divides si

▶ complexity O (̃mωd) [Storjohann’03]

▶Las Vegas randomized algorithm

▶ requires large field K

deterministic algo in O (̃mωd)?

algebraic approximants

p1a1 + p2a2 + · · ·+ pmam = 0 mod f(y)

p11+ p2a+ · · ·+ pmam−1 = 0 mod f(y)

structured ai’s

▶most algorithms ignore the structure

▶ recent progress [Villard’18]+this talk

▶ restrictive: genericity, specific m

how to leverage this structure?

20

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

▶minimal polynomial. . .
▶using power projections. . .
▶ and blocking + baby step-giant step

21

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

▶minimal polynomial. . .
▶using power projections. . .
▶ and blocking + baby step-giant step

▶previously existing algorithms
▶ approach for generic input
▶ randomizing via change of basis

22

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

23

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

[Paterson-Stockmeyer 1971, Brent-Kung 1978]

rely on matrix multiplication using “slices” of length ν =
√
n

h(y) = S0(y) + yνS1(y) + y2νS2(y) + · · ·+ y(ν−1)νSν−1(y)

define α = aν mod g

h(a) = S0(a) + αS1(a) + α2S2(a) + · · ·+ αν−1Sν−1(a) mod g

complexity: O (̃n3/2) for O(
√
n) multiplications by a and α modulo g

+ O(n(ω+1)/2) for matrix multiplication

in practice: ▶much faster than naive approach
▶O (̃n3/2) regime lasts until largish n

23

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

Horner with NTL built-in
n Horner precomputations Brent-Kung
100 0.00229 0.00227 0.000441
200 0.0162 0.00691 0.00110
400 0.117 0.0278 0.00312
800 0.637 0.116 0.00944
1600 2.52 0.515 0.0281
3200 10.4 2.23 0.0884
6400 45.8 9.61 0.273

field K = Fp, prime p with 60 bits
NTL 11.4.3 on Intel Core i7-7600U @ 2.80GHz

23

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

h(a) = S0(a) +αS1(a) +α2S2(a) + · · ·+αν−1Sν−1(a)

=
[
1 α · · · αν−1

]


S0(a)
S1(a)

...
Sν−1(a)



=
[
1 α · · · αν−1

]


S0,0 S0,1 · · · S0,ν−1

S1,0 S1,1 · · · S1,ν−1

...
...

...
Sν−1,0 Sν−1,1 · · · Sν−1,ν−1




1
a
...

aν−1



recall: α = aν mod g

23

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

ν× ν matrix over K

length ν vectors over K[x]<n

h(a) = S0(a) +αS1(a) +α2S2(a) + · · ·+αν−1Sν−1(a)

=
[
1 α · · · αν−1

]


S0(a)
S1(a)

...
Sν−1(a)



=
[
1 α · · · αν−1

]


S0,0 S0,1 · · · S0,ν−1

S1,0 S1,1 · · · S1,ν−1

...
...

...
Sν−1,0 Sν−1,1 · · · Sν−1,ν−1




1
a
...

aν−1



recall: α = aν mod g

23

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

ν× ν matrix over K

length ν vectors over K[x]<n

h(a) = S0(a) +αS1(a) +α2S2(a) + · · ·+αν−1Sν−1(a)

=
[
1 α · · · αν−1

]


S0(a)
S1(a)

...
Sν−1(a)



=
[
1 α · · · αν−1

]


S0,0 S0,1 · · · S0,ν−1

S1,0 S1,1 · · · S1,ν−1

...
...

...
Sν−1,0 Sν−1,1 · · · Sν−1,ν−1




1
a
...

aν−1



recall: α = aν mod g

matrix multiplication (n×
√
n) ∗ (

√
n×
√
n) ∗ (

√
n× n)

23

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

a bivariate extension of modular composition:

input: g(x) and a(x) of degree n
H(x,y) with degx < m and degy < d = n/m

output: H(x,a(x)) mod g(x)

case discussed until now: m = 1, d = n

▶ algorithm: generalizes Brent-Kung [Nüsken-Ziegler 2004]

▶ complexity : O(md(ω+1)/2)

23

modular composition, step 1: matrix minpoly

summary of the minpoly algorithm:
▶ specialization of first step of bivariate resultant [Villard 2018]
▶ accelerated by baby-step giant-step → O (̃md(ω+1)/2 +mωd)
▶ genericity or randomization required for efficiency

computes an m×m polynomial matrix P(y) of degree ⩽ d
whose columns are minimal polynomial vectors of a mod g

change of representation

univariate vector ←→ bivariate polynomial
F0(y)
F1(y)

...
Fm−1(y)

 ←→ F(x,y) =
∑

i<m Fi(y)x
i

columns of P(y) ⇒ F(x,a) = 0 mod g i.e. F ∈ I

Popov basis of submodule
I∩K[x,y]degx<m

←→ Gröbner basis of ideal in K[x,y]
I = ⟨g(x),y−a(x)⟩

24

modular composition, step 1: matrix minpoly

summary of the minpoly algorithm:
▶ specialization of first step of bivariate resultant [Villard 2018]
▶ accelerated by baby-step giant-step → O (̃md(ω+1)/2 +mωd)
▶ genericity or randomization required for efficiency

computes an m×m polynomial matrix P(y) of degree ⩽ d
whose columns are minimal polynomial vectors of a mod g

change of representation

univariate vector ←→ bivariate polynomial
F0(y)
F1(y)

...
Fm−1(y)

 ←→ F(x,y) =
∑

i<m Fi(y)x
i

columns of P(y) ⇒ F(x,a) = 0 mod g i.e. F ∈ I

Popov basis of submodule
I∩K[x,y]degx<m

←→ Gröbner basis of ideal in K[x,y]
I = ⟨g(x),y−a(x)⟩

24

modular composition, step 2: balance degrees

composition h(y) → b(x) = h(a) mod g
= h(a) + F(x,a) mod g
= H(x,a) mod g

H(x,y) = h(y)+ F(x,y) for any

F(x,y) generated by P(y)

step 2: find H(x,y) such that

{
degx(H) < m, degy(H) < d

h(a) = H(x,a) mod g

step 3: computing H(x,a) mod g costs O (̃md(ω+1)/2)

extending Brent&Kung’s approach [Nüsken-Ziegler’04]

25

modular composition, step 2: balance degrees

composition h(y) → b(x) = h(a) mod g
= h(a) + F(x,a) mod g
= H(x,a) mod g

H(x,y) = h(y)+ F(x,y) for any

F(x,y) generated by P(y)

step 2: find H(x,y) such that

{
degx(H) < m, degy(H) < d

h(a) = H(x,a) mod g

step 3: computing H(x,a) mod g costs O (̃md(ω+1)/2)

extending Brent&Kung’s approach [Nüsken-Ziegler’04]

x

y

h(y)

x

y

H(x,y)

x

y

b(x)

Brent&Kung

mod P(y)

25

modular composition, step 2: balance degrees

composition h(y) → b(x) = h(a) mod g
= h(a) + F(x,a) mod g
= H(x,a) mod g

H(x,y) = h(y)+ F(x,y) for any

F(x,y) generated by P(y)

step 2: find H(x,y) such that

{
degx(H) < m, degy(H) < d

h(a) = H(x,a) mod g

step 3: computing H(x,a) mod g costs O (̃md(ω+1)/2)

extending Brent&Kung’s approach [Nüsken-Ziegler’04]

complexity minimized for
m = n1/3,d = n2/3

O (̃n(ω+2)/3)

finding H(x,y): matrix division with remainder
h(y)
0
...
0

 = P(y)Q(y) +


H0(y)
H1(y)

...
Hm−1(y)

 degree < d

complexity O (̃mωd)

25

genericity and randomization

non-generic a(x)
. I ∩K[x,y]degx<m might not generate I (not an issue)
. finding a basis of I∩K[x,y]degx<m seems more difficult

randomization by change of basis

take a random γ ∈ K[x]/⟨g(x)⟩
w.h.p. γ has minimal polynomial µ(y) of degree n
⇒ 1,γ,γ2, . . . ,γn−1 is a basis of K[x]/⟨g(x)⟩

⇒ isomorphism
K[x]/⟨g(x)⟩ → K[y]/⟨µ(y)⟩

a(x) 7→ α(y) such that α(γ) = a mod g

algorithm:

1. compute α(y) and µ(y)

2. compute β(y) = h(α(y)) mod µ(y)

3. compute b(x) = β(γ(x)) mod g(x)

26

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

▶minimal polynomial. . .
▶using power projections. . .
▶ and blocking + baby step-giant step

▶previously existing algorithms
▶ approach for generic input
▶ randomizing via change of basis

27

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

▶minimal polynomial. . .
▶using power projections. . .
▶ and blocking + baby step-giant step

▶previously existing algorithms
▶ approach for generic input
▶ randomizing via change of basis

▶ framework for polynomial matrices
▶matrix fraction reconstruction
▶ system solving and determinant

28

software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

29

https://github.com/vneiger/pml

software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

29

https://github.com/vneiger/pml

software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

29

https://github.com/vneiger/pml

software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

memory cost, vectorization, multithreading

Polynomial Matrix Library C/C++

403 files, 59k lines of code, including 17k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶ current version based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to decode RS codes with PML?”

wide range of algorithms

efficiency = state of the art

kernel, high-order lifting,
system solving, reduced form. . .

29

https://github.com/vneiger/pml

multiplication

most fundamental nontrivial operation ⇒ must be thoroughly optimized

various algorithms + use of thresholds:

▶ specific code for very small size or very small degree
(they arise in recursive calls)

▶ specific algorithm for large size & small degree
(used in matrix sequence computation for obtaining balanced bases)

▶ evaluation/interpolation + matrix multiplication over K
(FFT points, geometric points, 3-primes FFT, . . .)

20 bit FFT prime 60 bit prime
m d ours Linbox ratio ours Linbox ratio
8 131072 1.034 1.231 0.84 3.067 10.48 0.29
32 8192 0.653 0.776 0.84 2.782 8.510 0.33
128 2048 3.079 3.544 0.87 20.84 38.66 0.54
512 128 3.623 4.329 0.84 31.54 47.17 0.67

+ middle product versions

+ allowing precomputations (for repeated multiplication with the same matrix)

30

fraction reconstruction

reconstruct a matrix of degree ⩽ d as a fraction with degrees ⩽ d/2

i.e. matrix version of Padé approximation: F = P−1Q mod xd

⇝ used in block Wiedemann, matrix Berlekamp-Massey, basis reduction, . . .

▶using M-Basis / PM-Basis [Giorgi-Jeannerod-Villard 2003]

▶performance similar to or better than state-of-the-art (LinBox)
⇝ depends on: bitsize of p, matrix dimensions, matrix degrees

▶ interpolant variants also implemented, and often slightly faster

m n d ours Linbox ratio
8 4 131072 6.091 12.74 0.48
32 16 8192 3.602 5.665 0.64
128 64 2048 13.61 18.66 0.73
512 256 256 32.08 37.31 0.86

m n d M M-I d PM PM-I PM-Ig
8 4 32 4.31e-4 3.54e-4 32768 4.36 20.7 4.38
32 16 32 9.41e-3 6.47e-3 4096 6.91 17.0 6.18
128 64 32 0.333 0.229 1024 31.9 41.7 25.7
256 128 32 2.49 1.46 256 33.3 28.1 24.2

31

linear system solving over Fp[x]

▶Dixon’s method turned out as the most efficient [Dixon 1982]

▶ kernel based solver is not far behind, and more general
▶high-order lifting solver [Storjohann 2003] seems slower

m d Dixon high-order lifting kernel
16 1024 0.695 2.39 1.96
32 1024 2.88 13.8 8.06
128 512 37.2 266 84.2

determinant

▶ expansion by minors for small dimensions
▶ evaluation/interpolation at sufficiently many points
▶ solving a linear system with random right-hand side [Pan, 1988]

▶ triangularizing the matrix via kernel bases [Labahn-Neiger-Zhou, 2017]

m d minors evaluation linsolve triangular
4 65536 0.673 1.90 5.78 0.686
16 4096 ∞ 3.75 3.52 6.12
32 4096 ∞ 26.5 15.3 32.4
64 2048 ∞ 109 35.9 71.0
128 512 ∞ out of memory 40.7 71.8

32

outline

▶ context and contribution

▶ minimal polynomial

▶ modular composition

▶ implementation aspects

▶ complexity and software
▶minpoly & modular composition
▶ summary of contributions

▶minimal polynomial. . .
▶using power projections. . .
▶ and blocking + baby step-giant step

▶previously existing algorithms
▶ approach for generic input
▶ randomizing via change of basis

▶ framework for polynomial matrices
▶matrix fraction reconstruction
▶ system solving and determinant

33

conclusion and perspectives

faster algorithms: minimal polynomial & modular composition

▶ also for power projections and inverse composition

▶ improved cost bound O (̃n(ω+2)/3) (generic or randomized)

▶baby steps-giant steps + univariate polynomial matrices
elaborating upon Villard’s block Wiedemann with structured projections

▶ competitive practical performance for large degrees

perspectives & open questions

▶ improve practical performance further and wider

▶ further study impacts on related topics
Guruswami-Sudan decoding, bivariate resultants, algebraic approximants, guessing, . . .

▶open: exploit bivariate multiplication to reach O (̃n(ω+3)/4)?

▶ very much open: any new idea towards quasi-linear complexity??

34

