Vincent Neiger	LIP6,	Sorbonne	Université,	France
----------------	-------	----------	-------------	--------

joint work with		
Bruno Salvy, Gilles Villard Inria/CNRS,	ENS Lyon,	France
Seung Gyu Hyun, Éric Schost	Waterloo,	Canada

faster modular composition of polynomials

Algorithmic Number Theory seminar Institut de Mathématiques de Bordeaux, France 23 January 2024

outline

context and contribution

minimal polynomial

modular composition

implementation aspects

outline

context and contribution

- complexity and software
- minpoly & modular composition
- summary of contributions

minimal polynomial

modular composition

implementation aspects

"fast": measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field \mathbb{K}

low complexity boundlow execution time

low memory usage, power consumption, ...

 $\begin{array}{l} \mbox{prime field } \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \\ \mbox{field extension } \mathbb{F}_p[x]/\langle f(x)\rangle \\ \mbox{rational numbers } \mathbb{Q} \end{array}$

"fast": measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field $\mathbb K$

low complexity boundlow execution time

low memory usage, power consumption, ...

prime field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ field extension $\mathbb{F}_p[x]/\langle f(x)\rangle$ rational numbers \mathbb{Q}

algebraic complexity bounds

- \rightsquigarrow count number of operations in $\mathbb K$
 - standard complexity model for algebraic computations
 - \bullet accurate for finite fields $\mathbb{K} = \mathbb{F}_p$
 - ${\ensuremath{\rlapareal}}$ ignores coefficient growth, e.g. over $\mathbb{K}=\mathbb{Q}$

"fast": measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field \mathbb{K}

low complexity boundlow execution time

low memory usage, power consumption, ...

prime field $\mathbb{F}_p=\mathbb{Z}/p\mathbb{Z}$ field extension $\mathbb{F}_p[x]/\langle f(x)\rangle$ rational numbers \mathbb{Q}

practical performance

 \rightsquigarrow measure software running time

this talk:

- ${\scriptstyle \blacktriangleright}$ working over $\mathbb{K}=\mathbb{F}_p$ with word-size prime p
- ► Intel Core i7-7600U @ 2.80GHz, no multithreading

modular composition

polynomials a, f, g, h univariate over \mathbb{K}

$\begin{array}{c} \mbox{modular composition} \\ \mbox{given } g, \, a, \, h, \, \mbox{compute } h(a) \mbox{ mod } g \end{array}$

modular composition

polynomials a, f, g, h univariate over \mathbb{K}

$\begin{array}{c} \mbox{modular composition} \\ \mbox{given } g, \ a, \ h, \ \mbox{compute } h(a) \ \mbox{mod } g \end{array}$

minimal polynomial given g, a, compute f such that $f(a) = 0 \mod g$

modular composition

polynomials a, f, g, h univariate over \mathbb{K}

$\begin{array}{c} \mbox{modular composition} \\ \mbox{given } g, \ a, \ h, \ \mbox{compute } h(a) \ \mbox{mod } g \end{array}$

minimal polynomial given g, a, compute f such that $f(a) = 0 \mod g$

related problems: power projections & inverse composition

[reminder] matrices: multiplication

$$\mathbf{M} = \begin{bmatrix} 28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28 \end{bmatrix} \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text{ matrix over } \mathbb{K} \text{ (here } \mathbb{F}_{97} \text{)}$$

fundamental operations on $m\times m$ matrices:

- $\scriptstyle \bullet \mbox{ addition is "quadratic": } O(m^2) \mbox{ operations in } \mathbb{K}$
- naive multiplication is cubic: $O(m^3)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

[reminder] polynomials: multiplication

 $p = 87x^7 + 74x^6 + 60x^5 + 46x^4 + 16x^3 + 41x^2 + 86x + 69$

 $p\in \mathbb{K}[x]_{<8} \quad \longrightarrow \text{univariate polynomial in } x \text{ of degree} <8 \text{ over } \mathbb{K}$

fundamental operations on polynomials of degree < d:

- $\scriptstyle \bullet$ addition and Horner's evaluation are linear: O(d)
- ► naive multiplication is quadratic: O(d²)

 $[\mathsf{Karatsuba'62}] \qquad \mathsf{M}(d) \in \mathsf{O}(d^{1.58})$

breakthrough: subquadratic polynomial multiplication

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

- change of representation by evaluation-interpolation
- used in practice as soon as $d \approx 100$ ($\mathbb{K} = \mathbb{F}_p$)
- FFT techniques using (virtual) roots of unity

note: $M(d) \in O(d \log(d))$ if provided a "good" root of unity

segme M.degree_matrix(shifts=[-1,2], row_wise=False) [\$ - 2 - 2] bermite_form(include_zero_rows=True, transformation=False) Return the Hermite form of this matrix. The Hermite form is also normalized, i.e., the pivot polynomials are monic. INPUT: • include_zero_rows - boolean (default: true); if false, the zero rows in the output deleted • transformation - boolean (default: False); if True, return the transformation mat OUTPUT: matrices	<pre>14 // order that remains to be dealt with 15 Vectong rem_order(order); 16 16 17 // indices of columns/orders that remain to be dealt with 16 Vectong rem_index(cdin); 17 // all along the algorithm, shift = shifted row degrees of approximant basis 17 // all along the algorithm, shift = shifted row degrees of approximant basis 17 // initially, input shift = shifted row degrees of approximant basis 17 // initially, input shift = shifted row degrees of approximant basis 17 // initially, input shift = shifted row degrees of approximant basis 17 // initially, input shift = shifted row degrees of approximant basis 17 // invariant: 17 // - applas is a shift-ordered weak Popov approximant basis for 18 // -sreached_order[]] = rom_order[]] = order[]] for j appearing in 18 // -sreached_order[]] = roder[]] = roder[]] for j appearing in rem_index 18 // -sreached_order[]] = roder[]] for in a appearing in rem_index 18 // - shift = the "input shift"-row degree of apphas 19 // enderett Ware polynomials </pre>
<pre>sage: H.cox - 6f(7)[] sage: A = attrix(H, 2, 3, [x, 1, 2'x, x, 1*x, 2]) sage: A.hernite [oral] [</pre>	<pre>197</pre>

is_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.

open-source mathematics software system Image: Source mathematics software system Python/Cython high-performance exact linear algebra LinBox – fflas-ffpack C/C++ high-performance polynomials (and more) FLINT & NTL C/C++	 choice of algorithms data structures and storage cache efficiency SIMD vectorization instructions multithreading, GPU programming 			
matrices sof t	tware polynomials			
<pre>sage: Hco.= GF(J)[] sage: A.=matrix(W, j, j, k, l, 2'x, x, 1:x, 2]) sage: A.=matrix(W, j, j, k, l, 2'x, x, 1:x, 2]) sage: A.=matrix(K, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2, 4'x)) sage: U * A ==H The A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2'x, 2, 4'x) sage: U * A ==H The A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2'x, 2', 4'x) Sage: U * A ==H The A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2', 4'x)) sage: U * A ==H The A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2'x, 2', 4'x)) sage: U * A ==H The A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2', 4'x)) sage: U * A ==H The A.=matrix(F, 2, 3, l, 1, 2'x, 2'x, 2', 4'x) sage: U * A ==H The A.=matrix(F, 2', 3, l, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,</pre>	<pre></pre>			
s_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indication whether this matrix is in Hermite form	211 { 212 // update all rows of appbas and residual in indices_nonzero exce			

open-source mathematics software system Python/Cython high-performance exact linear algebra LinBox – fflas-ffpack $C/C++$ high-performance polynomials (and more) FLINT & NTL $C/C++$			em re)	 choice of algorithms data structures and storage cache efficiency SIMD vectorization instructions multithreading, GPU programming 			
	matrices	SO	oftwa	ire	polynomials		
sage: $M. \infty = GF(7)[]$ sage: $A = matrix(M, 2)$ sage: A .hermite form() [$x = \overline{1} = 2$ $0 = x 5^{x} x + 3$ sage: A .hermite_form(t)	what with fflas-ffp	you can co ack	omput	e in about 1	second with NTL	column j of re	
► PLUQ	m = 3800	1.00s	193 194 195 196	► PolMul	$d=7 imes10^{6}$	1.03s	
► LinSys	m = 3800	1.00s	197 198 199	► Division	$d=4\times 10^{6}$	0.96s	
► MatMul	m = 3000	0.97s	200 201 202	► XGCD	$d=2\times 10^5$	0.99s	
► Inverse	m = 2800	1.01s	203 204 205 206	► MinPoly	$d=2\times 10^5$	1.10s	
► CharPoly	m = 2000	1.09s	207 208 209 210 211	► MPeval	$d = 1 \times 10^4$	1.01s	

Return a boolean indicating whether this matrix is in Hermite form.

univariate polynomials: computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

$O(\mathsf{M}(d))$

- \blacktriangleright addition f+g, multiplication $f\ast g$
- division with remainder f = qg + r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

$O(\mathsf{M}(d) \mathsf{log}(d))$

- multipoint eval. $f \mapsto f(x_1), \ldots, f(x_d)$
- $\textbf{ interpolation } f(x_1), \dots, f(x_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

univariate polynomials: computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul

$O(\mathsf{M}(d))$

- \blacktriangleright addition f+g, multiplication $f\ast g$
- \blacktriangleright division with remainder f=qg+r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

$O(\mathsf{M}(d) \mathsf{log}(d))$

- multipoint eval. $f \mapsto f(x_1), \ldots, f(x_d)$
- $\textbf{ interpolation } f(x_1), \dots, f(x_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

univariate polynomials: open problems

$\begin{array}{c} \mbox{modular composition} \\ \mbox{given } g, \ a, \ h, \ \mbox{compute } h(a) \ \mbox{mod } g \end{array}$

minimal polynomial given g, a, compute f such that $f(a) = 0 \mod g$

related problems: power projections & inverse composition

The year is 2024 A.D.

Basic Polynomial Algebra is entirely occupied by Computer Algebraists.

Well not entirely!

One small village of indomitable open problems still holds out against the invaders. And life is not easy for the scientists who garrison the fortified camps of ISSAC, JNCF, Inria, CNRS...

complexity improvements

[V.Neiger - B.Salvy - É.Schost - G.Villard, J.ACM 2024]

for generic input $\parallel\mbox{using randomization}$

$$\left. \begin{array}{l} \mbox{minimal polynomial} \\ \mbox{modular composition} \end{array} \right\} \mbox{in } O\ (n^{(\omega+2)/3}) \end{array} \right. \label{eq:optimal}$$

exponent $(\omega + 2)/3$: 1.67 for $\omega = 3$, 1.6 for $\omega = 2.8$, 1.46 for $\omega = 2.38$

previous work (composition) ► naive: O[~](n²)

• [Brent-Kung 1978]: $O(n^{(\omega+1)/2})$

previous work (minpoly) • naive: $O^{\sim}(n^{\omega})$ or $O^{\sim}(n^2)$ • [Shoup 1994]: $O(n^{(\omega+1)/2})$

exponent $(\omega + 1)/2$: 2 for $\omega = 3$, 1.9 for $\omega = 2.8$, 1.69 for $\omega = 2.38$

breakthough [Kedlaya-Umans 2011]: composition in $O^{\sim}(n \log(q))$ bit operations, over $\mathbb{K} = \mathbb{F}_q$

quasi-linear bit complexity, yet currently impractical [van der Hoeven-Lecerf 2020]

software improvements

efficient implementation for the minimal polynomial for large degrees, outperforms the state of the art

implementation for modular composition: work in progress

		genera	l prime	FFT prime	
field $\mathbb{K} = \mathbb{F}_{p}$, prime p with 60 bits	n	NTL	new	NTL	new
Intel Core i7-7600U @ 2.80GHz	5k	0.349	0.496	0.130	0.208
	20k	3.13	3.19	1.21	1.39
random input polynomials \Rightarrow "generic"	80k	31.5	23.6	13.9	10.7
	320k	311	178	158	91.0

uses many types of computations on matrices over $\mathbb{K}[x]$ \rightsquigarrow relies on the Polynomial Matrix Library

- multiplication for various parameters
- matrix-Padé approximation
- matrix division with remainder

https://github.com/vneiger/pml

- ► determinant
- ▶ system solving
- ▶ kernel

outline

context and contribution

- complexity and software
- minpoly & modular composition
- summary of contributions

minimal polynomial

modular composition

implementation aspects

outline

context and contribution

complexity and software

- minpoly & modular composition
- summary of contributions

minimal polynomial

- minimal polynomial...
- using power projections...
- \blacktriangleright and blocking + baby step-giant step

modular composition

implementation aspects

[reminder] minimal polynomial mod g(x)

ideal $\mathcal{I} = \langle g(x), y - a(x) \rangle$: set of all F(x, y) such that $F(x, a(x)) = 0 \mod g(x)$

minimal polynomial = f(y) of smallest degree in \mathcal{I}

example: $f(y) = (y - 1)^{16}$ is the minpoly of $a(x) = x^2 + 1$ modulo $g(y) = x^{32}$

using power projections

 $\begin{array}{c} [\text{Shoup 1994, 1999}]\\ \textit{0. choose random vector } [\ell_1 & \cdots & \ell_n] \in \mathbb{K}^n \\ & \rightarrow \text{ defines a linear form } \ell : \mathbb{K}[x]/\langle g \rangle \rightarrow \mathbb{K} \end{array}$

- 1. compute linear recurrent sequence $\ell(1), \ell(a \mod g), \dots, \ell(a^{2n-1} \mod g)$
- 2. compute minimal recurrence relation f(y) via Berlekamp-Massey / Padé approximation

 $\begin{array}{c} \mbox{minpoly } f(y) \\ \label{eq:f} \ensuremath{\left\{ \begin{array}{c} \downarrow \\ f(a) = 0 \mbox{ mod } g \\ \ensuremath{\left\{ \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\}} \\ f(y) = \mbox{relation for } (a^k \mbox{ mod } g))_k \\ \ensuremath{\left\{ \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\}} \\ f(y) = \mbox{relation for } (\ell(a^k \mbox{ mod } g))_k \end{array} \end{array}$

using power projections

- $\ell(1), \ell(a \mod g), \dots, \ell(a^{2n-1} \mod g)$
- 2. compute minimal recurrence relation f(y) via Berlekamp-Massey / Padé approximation

 $\begin{array}{c} \mbox{minpoly } f(y) \\ \label{eq:f} \ensuremath{\left\{ \begin{array}{c} \downarrow \\ f(a) = 0 \mbox{ mod } g \\ \ensuremath{\left\{ \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\}} \\ f(y) = \mbox{relation for } (a^k \mbox{ mod } g)_k \\ \ensuremath{\left\{ \begin{array}{c} \downarrow \\ \downarrow \end{array} \right\}} \\ f(y) = \mbox{relation for } (\ell(a^k \mbox{ mod } g))_k \end{array} \end{array}$

- - -

 \rightarrow related to algorithm of [Wiedemann 1986]:

$$\ell(a^k \bmod g) = \begin{bmatrix} \ell_1 & \cdots & \ell_n \end{bmatrix} \mathbf{A}^k \begin{bmatrix} 1 \\ \vdots \\ 0 \end{bmatrix}$$

where $\mathbf{A} \in \mathbb{K}^{n \times n}$ is the "multiplication matrix" of a(x) modulo g(x)

for generic a(x) and $g(0) \neq 0$, choose $\ell = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}$ then $\ell(a^k \mod g) = \text{constant coeff of } a^k \mod g$

new minpoly algorithm: blocking & baby-step giant-step

block Wiedemann approach [Coppersmith 1994]

iterating projection by $1\times n$ vector on powers $A^0, A^1, \ldots, A^{2n-1}$ \Rightarrow iterating projection by $m\times n$ matrix on powers $A^0, A^1, \ldots, A^{2d-1}$

choose $m \ll n$ and take d = n/m

new minpoly algorithm: blocking & baby-step giant-step

 $\begin{array}{ll} \mbox{block Wiedemann approach} & [\mbox{Coppersmith 1994}] \\ \mbox{iterating projection by } 1 \times n \mbox{ vector on powers } \mathbf{A}^0, \mathbf{A}^1, \dots, \mathbf{A}^{2n-1} \\ \Rightarrow \mbox{iterating projection by } m \times n \mbox{ matrix on powers } \mathbf{A}^0, \mathbf{A}^1, \dots, \mathbf{A}^{2d-1} \end{array}$

choose $m \ll n$ and take d = n/m

1. compute linear recurrent matrix sequence:

$$\mathbf{I}_{m}, \begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \end{bmatrix} \mathbf{A} \begin{bmatrix} \mathbf{I}_{m} \\ \mathbf{0} \end{bmatrix}, \dots, \begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \end{bmatrix} \mathbf{A}^{2d-1} \begin{bmatrix} \mathbf{I}_{m} \\ \mathbf{0} \end{bmatrix}$$

 $\begin{array}{ll} \text{2. compute minimal matrix recurrence relation } \mathbf{P}(y) \in \mathbb{K}[y]^{m \times m} \\ \text{via matrix-Berlekamp-Massey / matrix-Padé, complexity } \mathbf{O}\tilde{}(m^{\omega}d) \end{array} \end{array}$

new minpoly algorithm: blocking & baby-step giant-step

 $\begin{array}{ll} \mbox{block Wiedemann approach} & [\mbox{Coppersmith 1994}] \\ \mbox{iterating projection by } 1 \times n \mbox{ vector on powers } \mathbf{A}^0, \mathbf{A}^1, \dots, \mathbf{A}^{2n-1} \\ \Rightarrow \mbox{iterating projection by } m \times n \mbox{ matrix on powers } \mathbf{A}^0, \mathbf{A}^1, \dots, \mathbf{A}^{2d-1} \end{array}$

choose $m \ll n$ and take d = n/m

1. compute linear recurrent matrix sequence:

$$\mathbf{I}_{m}, \begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \end{bmatrix} \mathbf{A} \begin{bmatrix} \mathbf{I}_{m} \\ \mathbf{0} \end{bmatrix}, \dots, \begin{bmatrix} \mathbf{I}_{m} & \mathbf{0} \end{bmatrix} \mathbf{A}^{2d-1} \begin{bmatrix} \mathbf{I}_{m} \\ \mathbf{0} \end{bmatrix}$$

2. compute minimal matrix recurrence relation $\mathbf{P}(y) \in \mathbb{K}[y]^{m \times m}$ via matrix-Berlekamp-Massey / matrix-Padé, complexity $O^{\sim}(m^{\omega}d)$

step 1: computing coefficient i of $x^j a^k \mod g$, for i, j < m, $k < 2d \rightarrow$ **new baby-step giant-step** in $O^{\sim}(md^{(\omega+1)/2})$

• $f(y) = det(\mathbf{P}(y))$ is the minimal polynomial of a modulo g • $\mathbf{P}(y)$ is a good basis of $\mathfrak{I} = \langle g(x), y - a(x) \rangle$

good: $\mathsf{deg}(\mathsf{P}) \leqslant d,$ Popov form, predictable degrees, \ldots

[reminder] polynomial matrices

 \rightsquigarrow $m\times m$ matrix versions of these problems

- \blacktriangleright some problems&techniques shared with matrices over $\mathbb K$
- some problems&techniques specific to entries in $\mathbb{K}[x]$

polynomial matrices: main computational problems

reductions of most problems to polynomial matrix multiplication

matrix $m \times m$ of degree d of "average" degree $\frac{D}{m}$

classical matrix operations

- multiplication
- ► inversion O[~](m³d)
- kernel, system solving
- rank, determinant

univariate relations

Hermite-Padé approximation

 $\begin{array}{rcl} \to & O^{\sim}(\mathfrak{m}^{\omega} d) \\ \to & O^{\sim}(\mathfrak{m}^{\omega} \frac{\mathsf{D}}{\mathfrak{m}}) \end{array} \end{array}$

- vector rational interpolation
- ▶ syzygies, modular equations

transformation to normal forms

- triangularization: Hermite form
- ► row reduction: Popov form
- diagonalization: Smith form

polynomial matrices: two open questions

deterministic Smith form

- complexity $O^{(m^{\omega}d)}$ [Storjohann'03]
- ► Las Vegas randomized algorithm
- ${\scriptstyle \blacktriangleright}$ requires large field ${\mathbb K}$

deterministic algo in $O(m^{\omega}d)$?

polynomial matrices: two open questions

deterministic Smith form

- complexity $O^{(m^{\omega}d)}$ [Storjohann'03]
- Las Vegas randomized algorithm
 requires large field K

deterministic algo in $O^{(m^{\omega}d)}$?

algebraic approximants

$$p_1a_1 + p_2a_2 + \dots + p_ma_m = 0 \mod f(y)$$

$$\downarrow structured a_i's$$

$$p_11 + p_2a + \dots + p_ma^{m-1} = 0 \mod f(y)$$

- most algorithms ignore the structure
- ► recent progress [Villard'18]+this talk
- restrictive: genericity, specific m

how to leverage this structure?

outline

context and contribution

complexity and software

- minpoly & modular composition
- summary of contributions

minimal polynomial

- minimal polynomial...
- using power projections...
- \blacktriangleright and blocking + baby step-giant step

modular composition

implementation aspects

outline

minpoly & modular composition context and contribution summary of contributions minimal polynomial... minimal polynomial using power projections... ▶ and blocking + baby step-giant step previously existing algorithms modular composition

▶ approach for generic input

complexity and software

▶ randomizing via change of basis

implementation aspects

 $h(a) \bmod g = h_0 + h_1(a \bmod g) + h_2(a^2 \bmod g) + \dots + h_{n-1}(a^{n-1} \bmod g)$

complexity: $O^{(n^2)}$ for O(n) multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

naive via Horner evaluation

classical composition algorithms

baby-step giant-step algorithm

 $h(a) \text{ mod } g \ = \ h_0 + h_1(a \text{ mod } g) + h_2(a^2 \text{ mod } g) + \dots + h_{n-1}(a^{n-1} \text{ mod } g)$

complexity: $O^{(n^2)}$ for O(n) multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

naive via Horner evaluation

classical composition algorithms

baby-step giant-step algorithm

[Paterson-Stockmeyer 1971, Brent-Kung 1978]

rely on matrix multiplication using "slices" of length $\nu = \sqrt{n}$ $h(y) = S_0(y) + y^{\nu}S_1(y) + y^{2\nu}S_2(y) + \dots + y^{(\nu-1)\nu}S_{\nu-1}(y)$

define $\alpha = a^{\nu} \mod g$

 $h(a)=S_0(a)+\alpha S_1(a)+\alpha^2 S_2(a)+\cdots+\alpha^{\nu-1}S_{\nu-1}(a) \ \ \text{mod} \ g$

complexity: $O^{\sim}(n^{3/2})$ for $O(\sqrt{n})$ multiplications by a and α modulo g $+ O(n^{(\omega+1)/2})$ for matrix multiplication

in practice: \blacktriangleright much faster than naive approach \blacktriangleright $O^{\sim}(n^{3/2})$ regime lasts until largish n

 $h(a) \mod g = h_0 + h_1(a \mod g) + h_2(a^2 \mod g) + \dots + h_{n-1}(a^{n-1} \mod g)$

complexity: $O^{(n^2)}$ for O(n) multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

naive via Horner evaluation

classical composition algorithms

baby-step giant-step algorithm

			Horner with	NTL built-in
<pre>// Horner evaluation h(a), modulo g :</pre>	n	Horner	precomputations	Brent-Kung
zz_pX b;	100	0.00229	0.00227	0.000441
b = coeff(h, n-1);	200	0.0162	0.00691	0.00110
for (long $K = n-2; K \ge 0;K$)	400	0.117	0.0278	0.00312
د b = (a * b) % g:	800	0.637	0.116	0.00944
b = b + coeff(h, k);	1600	2.52	0.515	0.0281
}	3200	10.4	2.23	0.0884
	6400	45.8	9.61	0.273

field $\mathbb{K}=\mathbb{F}_p,$ prime p with 60 bits NTL 11.4.3 on Intel Core i7-7600U @ 2.80GHz

 $h(a) \text{ mod } g \ = \ h_0 + h_1(a \text{ mod } g) + h_2(a^2 \text{ mod } g) + \dots + h_{n-1}(a^{n-1} \text{ mod } g)$

complexity: $O^{(n^2)}$ for O(n) multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

naive via Horner evaluation

classical composition algorithms

baby-step giant-step algorithm

$$\begin{split} h(\alpha) &= S_0(\alpha) + \alpha S_1(\alpha) + \alpha^2 S_2(\alpha) + \dots + \alpha^{\nu - 1} S_{\nu - 1}(\alpha) & \text{recall: } \alpha = \alpha^{\nu} \mod g \\ &= \begin{bmatrix} 1 & \alpha & \cdots & \alpha^{\nu - 1} \end{bmatrix} \begin{bmatrix} S_0(\alpha) \\ S_1(\alpha) \\ \vdots \\ S_{\nu - 1}(\alpha) \end{bmatrix} \\ &= \begin{bmatrix} 1 & \alpha & \cdots & \alpha^{\nu - 1} \end{bmatrix} \begin{bmatrix} S_{0,0} & S_{0,1} & \cdots & S_{0,\nu - 1} \\ S_{1,0} & S_{1,1} & \cdots & S_{1,\nu - 1} \\ \vdots & \vdots & \vdots \\ S_{\nu - 1,0} & S_{\nu - 1,1} & \cdots & S_{\nu - 1,\nu - 1} \end{bmatrix} \begin{bmatrix} 1 \\ \alpha \\ \vdots \\ \alpha^{\nu - 1} \end{bmatrix} \end{split}$$

 $h(a) \text{ mod } g \ = \ h_0 + h_1(a \text{ mod } g) + h_2(a^2 \text{ mod } g) + \dots + h_{n-1}(a^{n-1} \text{ mod } g)$

complexity: $O^{(n^2)}$ for O(n) multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

naive via Horner evaluation

classical composition algorithms

baby-step giant-step algorithm

$$\begin{split} h(\alpha) &= S_0(\alpha) + \alpha S_1(\alpha) + \alpha^2 S_2(\alpha) + \dots + \alpha^{\nu-1} S_{\nu-1}(\alpha) & \text{recall: } \alpha = \alpha^{\nu} \mod g \\ &= \begin{bmatrix} 1 & \alpha & \dots & \alpha^{\nu-1} \end{bmatrix} \begin{bmatrix} S_0(\alpha) \\ S_1(\alpha) \\ \vdots \\ S_{\nu-1}(\alpha) \end{bmatrix} & \text{length } \nu \text{ vectors over } \mathbb{K}[x]_{$$

 $h(a) \mod g = h_0 + h_1(a \mod g) + h_2(a^2 \mod g) + \dots + h_{n-1}(a^{n-1} \mod g)$

complexity: $O^{(n^2)}$ for O(n) multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

naive via Horner evaluation

classical composition algorithms

baby-step giant-step algorithm

 $h(a) \text{ mod } g \ = \ h_0 + h_1(a \text{ mod } g) + h_2(a^2 \text{ mod } g) + \dots + h_{n-1}(a^{n-1} \text{ mod } g)$

complexity: $O^{(n^2)}$ for O(n) multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

naive via Horner evaluation

classical composition algorithms

baby-step giant-step algorithm

a bivariate extension of modular composition:

 $\begin{array}{l} \mbox{input: } g(x) \mbox{ and } a(x) \mbox{ of degree } n \\ H(x,y) \mbox{ with } \mbox{deg}_x < m \mbox{ and } \mbox{deg}_y < d = n/m \\ \mbox{output: } H(x,a(x)) \mbox{ mod } g(x) \end{array}$

case discussed until now: $m=1,\;d=n$

- ► algorithm: generalizes Brent-Kung [Nüsken-Ziegler 2004]
- complexity : $O(md^{(\omega+1)/2})$

modular composition, step 1: matrix minpoly

summary of the minpoly algorithm:

- ▶ specialization of first step of bivariate resultant [Villard 2018]
- ▶ accelerated by baby-step giant-step $\rightarrow O^{\sim}(md^{(\omega+1)/2} + m^{\omega}d)$
- ▶ genericity or randomization required for efficiency

computes an $\mathfrak{m} \times \mathfrak{m}$ polynomial matrix $\mathbf{P}(\mathbf{y})$ of degree $\leq d$ whose columns are minimal polynomial vectors of $a \mod q$

 $\label{eq:change} \mbox{change of representation} \left| \begin{array}{c} \mbox{univariate vector} & \longleftrightarrow & \mbox{bivariate polynomial} \\ \begin{bmatrix} F_0(y) \\ F_1(y) \\ \vdots \\ F_{m-1}(y) \end{bmatrix} & \longleftrightarrow & F(x,y) = \sum_{i < m} F_i(y) x^i \end{array} \right|$

$$\begin{array}{ccc} \text{Popov basis of submodule} \\ \ensuremath{\mathbb{J}} \cap \mathbb{K}[x,y]_{\text{deg}_x < m} \end{array} & \longleftrightarrow & \ensuremath{\mathbb{J}} = \langle g(x),y-a(x) \rangle \end{array}$$

modular composition, step 1: matrix minpoly

summary of the minpoly algorithm:

- ▶ specialization of first step of bivariate resultant [Villard 2018]
- accelerated by baby-step giant-step $\rightarrow O^{\text{-}}(\mathfrak{md}^{(\omega+1)/2} + \mathfrak{m}^{\omega} d)$
- genericity or randomization required for efficiency

computes an $m \times m$ polynomial matrix P(y) of degree $\leq d$ whose columns are minimal polynomial vectors of a mod g

change of representation

tion
$$\begin{bmatrix} F_0(y) \\ F_1(y) \\ \vdots \\ F_{m-1}(y) \end{bmatrix} \longleftrightarrow F(x, y) = \sum_{i < m} F_i(y) x^i$$

columns of
$$\mathbf{P}(y) \Rightarrow F(x, a) = 0 \mod g$$
 i.e. $F \in J$

 $\begin{array}{cc} \mbox{Popov basis of submodule} \\ \mbox{$\mathbb{I}\cap\mathbb{K}[x,y]_{\deg_{x}}<m$} \end{array} & \longleftrightarrow & \mbox{$\mathbb{G}"$ Gröbner basis of ideal in $\mathbb{K}[x,y]$} \\ \mbox{$\mathbb{I}=\left\langle g(x),y-a(x)\right\rangle$} \end{array}$

modular composition, step 2: balance degrees

$ \begin{array}{l} \text{composition } h(y) \rightarrow b(x) = h(a) \ \text{mod } g \\ = h(a) + F(x, a) \\ = H(x, a) \ \text{mod } g \end{array} $	mod g	$\begin{array}{l} H(x,y) = \\ F(x,y) \ \text{ger} \end{array}$	h(y) + F(x, y) for nerated by $P(y)$	r any
step 2: find $H(x, y)$ such that	$\begin{cases} \deg_{x}(\mathbf{a}) \\ h(\mathbf{a}) \end{cases}$	H) < m, = H(x, a) 1	$\deg_y(H) < d$ mod g	

modular composition, step 2: balance degrees

 $\begin{array}{c} \mbox{composition } h(y) \rightarrow b(x) = h(a) \mbox{ mod } g \\ = h(a) + F(x,a) \mbox{ mod } g \\ = H(x,a) \mbox{ mod } g \end{array} \begin{array}{c} H(x,y) = h(y) + F(x,y) \mbox{ for any } F(x,y) \mbox{ generated by } P(y) \end{array}$ $\begin{array}{c} \mbox{ step 2: find } H(x,y) \mbox{ such that } \\ \mbox{ for } H(x,a) \mbox{ mod } g \end{array} \begin{array}{c} \mbox{ deg}_x(H) < m, \mbox{ deg}_y(H) < d \\ h(a) = H(x,a) \mbox{ mod } g \end{array}$

step 3: computing $H(x, a) \mod g \operatorname{costs} O^{-}(\operatorname{md}^{(\omega+1)/2})$

extending Brent&Kung's approach [Nüsken-Ziegler'04]

modular composition, step 2: balance degrees

 $\begin{array}{l} \mbox{composition } h(y) \rightarrow b(x) = h(a) \mbox{ mod } g \\ = h(a) + F(x, a) \mbox{ mod } g \\ = H(x, a) \mbox{ mod } g \end{array} \begin{array}{l} H(x,y) = h(y) + F(x,y) \mbox{ for any} \\ F(x,y) \mbox{ generated by } P(y) \end{array}$

step 3: computing $H(x, a) \mod g$ costs $O^{\sim}(md^{(\omega+1)/2})$

extending Brent&Kung's approach [Nüsken-Ziegler'04]

finding H(x, y): matrix division with remainder

$$\begin{bmatrix} h(y) \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{P}(y)\mathbf{Q}(y) + \begin{bmatrix} H_0(y) \\ H_1(y) \\ \vdots \\ H_{m-1}(y) \end{bmatrix} \text{ degree } < d$$

complexity $O^{(m^{\omega}d)}$

$$\begin{array}{l} \mbox{complexity minimized for} \\ m = n^{1/3}, d = n^{2/3} \\ O~(n^{(\omega+2)/3}) \end{array}$$

genericity and randomization

 $\begin{array}{l} \text{non-generic } \mathfrak{a}(x) \longrightarrow \\ . \ \mathcal{I} \cap \mathbb{K}[x,y]_{\deg_x < m} \ \text{might not generate } \mathcal{I} \ (\text{not an issue}) \\ . \ \text{finding a basis of } \mathcal{I} \cap \mathbb{K}[x,y]_{\deg_x < m} \ \text{seems more difficult} \end{array}$

randomization by change of basis

 $\begin{array}{l} \text{take a random } \gamma \in \mathbb{K}[x]/\langle g(x) \rangle \\ \text{w.h.p. } \gamma \text{ has minimal polynomial } \mu(y) \text{ of degree } n \\ \Rightarrow 1, \gamma, \gamma^2, \ldots, \gamma^{n-1} \text{ is a basis of } \mathbb{K}[x]/\langle g(x) \rangle \\ \Rightarrow \text{ isomorphism } \begin{array}{c} \mathbb{K}[x]/\langle g(x) \rangle & \rightarrow & \mathbb{K}[y]/\langle \mu(y) \rangle \\ a(x) & \mapsto & a(y) \text{ such that } a(\gamma) = a \text{ mod } g \end{array}$

algorithm:

- 1. compute $\alpha(y)$ and $\mu(y)$
- 2. compute $\beta(y) = h(\alpha(y)) \mod \mu(y)$
- 3. compute $b(x) = \beta(\gamma(x)) \mod g(x)$

outline

minpoly & modular composition context and contribution summary of contributions minimal polynomial... minimal polynomial using power projections... ▶ and blocking + baby step-giant step previously existing algorithms modular composition

▶ approach for generic input

complexity and software

▶ randomizing via change of basis

implementation aspects

outline

context and contribution

minimal polynomial

modular composition

implementation aspects

- complexity and software
- minpoly & modular composition
- summary of contributions
- minimal polynomial...
- using power projections...
- \blacktriangleright and blocking + baby step-giant step
- previously existing algorithms
- ▶ approach for generic input
- randomizing via change of basis
- framework for polynomial matrices
- matrix fraction reconstruction
- system solving and determinant

	<pre>sage: M.degree_matrix(shifts=[-1,2], row_wise=False) [0 -2 -1] [5 -2 -2]</pre>	
her	mite_form(include_zero_rows=True, transformation=False) Return the Hermite form of this matrix.	
	The Hermite form is also normalized, i.e., the pivot polynomials are monic.	
	INPUT:	
	 include_zero_rows - boolean (default: True); if False, the zero rows in the output deleted transformation - boolean (default: False); if True, return the transformation mat 	
	OUTPUT:	

software development for polynomial matrices

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>187</pre>
[x 1 2%] ange U * A H True	204 if (pive0 shift[i] < shift[piv]) 205 piv = t; 206)
See also: is_hermite().	
ermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.	<pre>210 if (not indices_nonzero.enpty()) 211 { 212 // update all rows of appbas and residual in indices_nonzero exce 5rc/nat_lrz_pX_approximant.cpp 29</pre>

is H

software development for polynomial matrices

<pre>b = 0 = 0;; s = 1 True True sage: U * A - H Armite_form(transformation-True, include_zero_rows-false) sage: U * A [x = 12*X] sage: U * A H True See also: is_hermite().</pre>	<pre>200</pre>
<pre>[0 x 5vx + 2] sage: Ahemite_form(transformation-True) (x 1 x 2vk] [1 0] 0 x 5vx + 2], [6 1] sage: A hemite_form(transformation-True, include_zero_rows-False) (x 1 zvk, [0 4]) sage: H, U = A.hemite_form(transformation-True, include_zero_rows-Frue); H, U (x 1 zvk, [0 4]) sage: H, U = A.hemite_form(transformation-True, include_zero_rows-True); H, U (x 1 zvk, [0 4])</pre>	
sage: HGD = GF(7)[] sage: A = matrix(M, 2, 3, [x, 1, 2*x, x, 1*x, 2]) sage: A.hermite form() x = 1 = 2*x	<pre>187 j = std::distance(rem_order.begin(), std::nax_element(rem_order.b); 188 189 long deg = orderfrem index[i]] - rem order[i];</pre>

// order that remains to be dealt with
VecLong rem_order(order);

high-performance exact linear algebra LinBox – fflas-ffpack C/C++

goal: **optimized basic operations** memory cost, vectorization, multithreading

software development for polynomial matrices

See also: is_hermite(). 29

high-performance exact linear algebra LinBox – fflas-ffpack C/C++

goal: optimized basic operations memory cost, vectorization, multithreading

software development for polynomial matrices

multiplication

most fundamental nontrivial operation \Rightarrow must be thoroughly optimized

various algorithms + use of thresholds:

► specific code for very small size or very small degree (they arise in recursive calls)

 specific algorithm for large size & small degree (used in matrix sequence computation for obtaining balanced bases)
 evaluation/interpolation + matrix multiplication over K (FFT points, geometric points, 3-primes FFT, ...)

		20 bit FFT prime			6	0 bit prime	2
m	d	ours	Linbox	ratio	ours	Linbox	ratio
8	131072	1.034	1.231	0.84	3.067	10.48	0.29
32	8192	0.653	0.776	0.84	2.782	8.510	0.33
128	2048	3.079	3.544	0.87	20.84	38.66	0.54
512	128	3.623	4.329	0.84	31.54	47.17	0.67

+ middle product versions

+ allowing precomputations (for repeated multiplication with the same matrix)

fraction reconstruction

reconstruct a matrix of degree $\leqslant d$ as a fraction with degrees $\leqslant d/2$

i.e. matrix version of Padé approximation: $\mathbf{F} = \mathbf{P}^{-1}\mathbf{Q} \mod x^d$ \rightsquigarrow used in block Wiedemann, matrix Berlekamp-Massey, basis reduction, ...

- ▶ using M-Basis / PM-Basis [Giorgi-Jeannerod-Villard 2003]
- ▶ performance similar to or better than state-of-the-art (LinBox)
- \rightsquigarrow depends on: bitsize of p, matrix dimensions, matrix degrees
- ▶ interpolant variants also implemented, and often slightly faster

m	n	d	ours	Linbox	ratio
8	4	131072	6.091	12.74	0.48
32	16	8192	3.602	5.665	0.64
128	64	2048	13.61	18.66	0.73
512	256	256	32.08	37.31	0.86

m	n	d	М	M-I	d	PM	PM-I	PM-lg
8	4	32	4.31e-4	3.54e-4	32768	4.36	20.7	4.38
32	16	32	9.41e-3	6.47e-3	4096	6.91	17.0	6.18
128	64	32	0.333	0.229	1024	31.9	41.7	25.7
256	128	32	2.49	1.46	256	33.3	28.1	24.2

linear system solving over $\mathbb{F}_p[x]$

- Dixon's method turned out as the most efficient [Dixon 1982]
- ▶ kernel based solver is not far behind, and more general
- ▶ high-order lifting solver [Storjohann 2003] seems slower

m	d	Dixon	high-order lifting	kernel
16	1024	0.695	2.39	1.96
32	1024	2.88	13.8	8.06
128	512	37.2	266	84.2

determinant

- expansion by minors for small dimensions
- evaluation/interpolation at sufficiently many points
- ▶ solving a linear system with random right-hand side [Pan, 1988]
- ▶ triangularizing the matrix via kernel bases [Labahn-Neiger-Zhou, 2017]

m	d	minors	evaluation	linsolve	triangular
4	65536	0.673	1.90	5.78	0.686
16	4096	∞	3.75	3.52	6.12
32	4096	∞	26.5	15.3	32.4
64	2048	∞	109	35.9	71.0
128	512	∞	out of memory	40.7	71.8

outline

context and contribution

minimal polynomial

modular composition

implementation aspects

- complexity and software
- minpoly & modular composition
- summary of contributions
- minimal polynomial...
- using power projections...
- \blacktriangleright and blocking + baby step-giant step
- previously existing algorithms
- ▶ approach for generic input
- randomizing via change of basis
- framework for polynomial matrices
- matrix fraction reconstruction
- system solving and determinant

conclusion and perspectives

faster algorithms: minimal polynomial & modular composition

- ▶ also for power projections and inverse composition
- improved cost bound $O^{(\omega+2)/3}$ (generic or randomized)

► baby steps-giant steps + univariate polynomial matrices elaborating upon Villard's block Wiedemann with structured projections

competitive practical performance for large degrees

perspectives & open questions

- ▶ improve practical performance further and wider
- further study impacts on related topics

Guruswami-Sudan decoding, bivariate resultants, algebraic approximants, guessing, \ldots

- open: exploit bivariate multiplication to reach $O^{(\omega+3)/4}$?
- ▶ very much open: any new idea towards quasi-linear complexity??