Vincent Neiger

joint work with
Bruno Salvy, Gilles Villard
Seung Gyu Hyun, Éric Schost
U. Waterloo, Canada

faster modular composition of polynomials

Algorithmic Number Theory seminar Institut de Mathématiques de Bordeaux, France 23 January 2024

outline

context and contribution
minimal polynomial
modular composition
implementation aspects

outline

context and contribution
> minimal polynomial
modular composition
implementation aspects

- complexity and software
- minpoly \& modular composition
- summary of contributions

"fast": measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption
prime field $\mathbb{F}_{p}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$
field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\boldsymbol{f}(\mathrm{x})\rangle$ rational numbers \mathbb{Q}

"fast": measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
 - low execution time

low memory usage, power consumption
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$ field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\boldsymbol{f}(\mathrm{x})\rangle$ rational numbers \mathbb{Q}
algebraic complexity bounds
\rightsquigarrow count number of operations in \mathbb{K}
16 standard complexity model for algebraic computations
16 accurate for finite fields $\mathbb{K}=\mathbb{F}_{\mathfrak{p}}$
© ignores coefficient growth, e.g. over $\mathbb{K}=\mathbb{Q}$

"fast": measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption,
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$ field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\mathfrak{f}(\mathrm{x})\rangle$ rational numbers \mathbb{Q}
practical performance
\rightsquigarrow measure software running time
this talk:
- working over $\mathbb{K}=\mathbb{F}_{p}$ with word-size prime p
- Intel Core i7-7600U @ 2.80 GHz , no multithreading

modular composition

polynomials a, f, g, h univariate over \mathbb{K}

modular composition given g, a, h, compute $h(a) \bmod g$

polynomials $\mathrm{a}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ univariate over \mathbb{K}

> modular composition given g, a, h, compute $h(a) \bmod g$

minimal polynomial
given g, a, compute f such that $f(a)=0 \bmod g$

polynomials $\mathrm{a}, \mathrm{f}, \mathrm{g}, \mathrm{h}$ univariate over \mathbb{K}

modular composition given g, a, h, compute $h(a) \bmod g$

minimal polynomial
 given g, a, compute f such that $f(a)=0 \bmod g$

related problems: power projections \& inverse composition

[reminder] matrices: multiplication

$\mathbf{M}=\left[\begin{array}{cccc}28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28\end{array}\right] \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4$ matrix over $\mathbb{K}\left(\right.$ here $\left.\mathbb{F}_{97}\right)$
fundamental operations on $m \times m$ matrices:

- addition is "quadratic": $\mathrm{O}\left(\mathrm{m}^{2}\right)$ operations in \mathbb{K}
- naive multiplication is cubic: $\mathrm{O}\left(\mathrm{m}^{3}\right)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

- complexity exponent $\omega \approx 2.81$ - i.e. $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ complexity
- used in practice for $m \geqslant$ a few 100s in NTL, FLINT, fflas-ffpack...
- best-known exponent $\omega \approx 2.373$
[Le Gall'14] [Alman-Williams'20]
- "galactic" algorithms: strongly impractical as such

[reminder] polynomials: multiplication

$$
p=87 x^{7}+74 x^{6}+60 x^{5}+46 x^{4}+16 x^{3}+41 x^{2}+86 x+69
$$

$$
\mathrm{p} \in \mathbb{K}[x]_{<8} \quad \longrightarrow \text { univariate polynomial in } x \text { of degree }<8 \text { over } \mathbb{K}
$$

fundamental operations on polynomials of degree $<\mathrm{d}$:

- addition and Horner's evaluation are linear: $\mathrm{O}(\mathrm{d})$
- naive multiplication is quadratic: $\mathrm{O}\left(\mathrm{d}^{2}\right)$

$$
\left[\text { Karatsuba'62] } \quad \mathrm{M}(\mathrm{~d}) \in \mathrm{O}\left(\mathrm{~d}^{1.58}\right)\right.
$$

breakthrough: subquadratic polynomial multiplication

[Schönhage-Strassen'71] [Nussbaumer'80] [Cantor-Kaltofen'91] $\quad \mathrm{M}(\mathrm{d}) \in \mathrm{O}(\mathrm{d} \log (\mathrm{d}) \log \log (\mathrm{d}))$
breakthrough: quasi-linear polynomial multiplication
research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

- change of representation by evaluation-interpolation
- used in practice as soon as $\mathrm{d} \approx 100 \quad\left(\mathbb{K}=\mathbb{F}_{\mathfrak{p}}\right)$
note: $\mathrm{M}(\mathrm{d}) \in \mathrm{O}(\mathrm{d} \log (\mathrm{d}))$
if provided a "good" root of unity
-FFT techniques using (virtual) roots of unity
sage: M. degree matrix (shifts $=[-1,2]$, row wise $=$ False
$\left[\begin{array}{lll}0 & -2 & -1\end{array}\right]$
$\left[\begin{array}{llll}5 & -2 & -2\end{array}\right]$
hermite_form(include_zero_rows=True, transformation=False)
Return the Hermite form of this matrix.
The Hermite form is also normalized, i.e., the pivot polynomials are monic.
INPUT:
- include_zero_rows - boolean (default: True); if false, the zero rows in the outputi deleted
- transformation - boolean (default: False); if True, return the transformation mat

OUTPUT:

VecLong rem_order(order);
// indices of columns/orders that remain to be dealt with Vectong rem_index(cdim);
std:itiota(rem_index,begin(), ren_index.end(), 0);
I/ all along the algorithm, shift $=$ shifted row degrees of approximant // (initialty, input shift = shifted row degree of the identity matrix)

```
whtle (not rem_order, empty())
```

\{
/++ Invariant:

* - appbas ts a shift-ordered weak Popoy approximant basis for (pmat, reached_order) where doneorder ts the tuple such that

* -->reached_order $[j]==$ order[j] for j not appearing in ren_index * - shift $==$ the "input shift"-row degree of appbas

matrices software
 polynomials

```
sage: M.<x> = GF(7) []
sage: A = natrix(M, 2, 3, lx, 1, 2`x, x, 1+x, 2])
sage: A hermite form()
[\begin{array}{cccc}{x}&{x}&{I}&{2*x]}\end{array}][\begin{array}{lll}{0}&{0}&{0}\end{array})
- - 5*x + 2]
sage: A.hermite form(transformation=True)
    x llllll
sage: A = natrix(M, 2, 3, lx, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite form(transformation=True, include zero rows=False)
(1 x 12*x], %% 41)
sage: H,U=A.hermite_forn(transformation=True, include_zero_rows=True); H,U
[ x 1 1 2*x] [04 4]
[ [00 0}00],[\begin{array}{lll}{5}&{1}\end{array}
sage: U * A == H
True
sage: H, U = A.hermite_forn(transformation=True, include_zero rows=False)
sage: U' A
| < 1 2*x]
sage: U-A == H
True
```


See also: is hermite()

is_hermite(row_wise $=$ True, lower_echelon=False, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in Hermite form.

```
long deg = order[rem_index[j]] - rem_order[j];
```

If record the coefticients of degree deg of the column 3 of residual
I/ also keep track of which of these are nonzero,
// and apong the nonzero ones, which is the first with smallest shift
Vec<zz_p> const_residual;
const_residual. Setlength(rdin);
Veclong indices_nonzero;
long piv $=-1$;
for (long $\mathrm{i}=0$; $\mathrm{i}<\operatorname{rdim} ;+\mathrm{i}$)
-
const_residual[i] = coeff(residual[i][j],deg);
if (const_residual[i$]!=0$)
\{
tnđtces_nonzero.push_back(i);
if (piv<e || shift[i] < shift[piv])
$p t v=i$;
\}
\}
// tf indices_nonzero is empty, const_restidual is already zero, there
if (not indices_nonzero, empty())
[
If urdate alt rous of applas and residual in indices nonzero exce 8
open-source mathematics software system 5들

Python/Cython
high-performance exact linear algebra LinBox - fflas-ffpack $\quad C / C++$
high-performance polynomials (and more)

FLINT \& NTL $\quad C / C++$

[^0]A=\mathrm{ natrix(M)
sage: A hermite form(')
[[x - 1 2*x]
sage: A.hermite form(transformation=True)

[$$
\begin{array}{lllll}{\textrm{x}}&{1}&{2+x]}&{[1}&{0]}\\{0}&{\times}&{2*x+2]}&{[1}&{1]}\end{array}
$$]
sage: A}=\mathrm{ natrix (M, 2, 3, 7x, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite form(transformation=True, include zero rows=False)
([X 12 2 x], [0 41)
sage: H,U.= A.hermite_forn(transformation=True, include_zero_rowS=True); H,U
[x 1 2** [[04]
sage: U* A == H
True
sage: H, U = A.hermite_forn(transformation=True, include_zero rows=False)
sage: U' A
[x 1 2*x]
sage: U-A == H
True

```

\section*{See also: is hermite()}
is_hermite(row_wise \(=\) True, lower_echelon=False, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in Hermite form.
```

long deg = order[rem_index[j]] - rem_order[j];
I/ record the coeffictents of degree deg of therzolumin i of residual.
// also keep track of which of these are nonzero,
// and among the nonzerc ones, which is the first with smallest shift
Vec<zz_p> const_residual;
const_residual.Setlength(rdin):
VecLong indices_nonzero;
long piv= = 1;
for (long i = 0; i< <rdim; ++i)
[
const_residual[i] = coeff(residual[i][j],deg);
if (const_residual[i] != 0)
{
tndtces_nonzero.push_back(i);
if (piv<e || shift[t]] < shift[piv])
ptv = i;
}
}
// if indices_nonzero is empty, const_residual is already zero, there
if (not indices_nonzero,enpty())
[
open-source mathematics software system (4) 5ロ®® Python/Cython
goals: complete, robust, available (more than 60 k downloads per month)

VecLong rem_order(order);

VecLong rem_index (cdim);
std::iota(rem_index,begin () , ren_index.end (), 0); I/ atl along the algorthim, shift = shifted row degrees of approximant
** Invariant:

- appbas is : shift-ordered weak Popov approximant basts for
(nmat reachat order) where doneorder is the tuple such that

software development for polynomial matrices

open-source mathematics software system

high-performance exact linear algebra
goal: optimized basic operations
memory cost, vectorization, multithreading

$$
\text { LinBox - fflas-ffpack } \quad C / C++
$$

software development for polynomial matrices

goals: complete, robust, available (more than 60k downloads per month)

open-source mathematics software system

goals: complete, robust, available (more than 60k downloads per month)
high-performance exact linear algebra LinBox - fflas-ffpack $\quad C / C++$
goal: optimized basic operations
memory cost, vectorization, multithreading

software development for polynomial matrices

Polynomial Matrix Library C/C++

> 403 files, 59k lines of code, including 17k lines of comments
> https://github.com/vneiger/pml
> [Hyun-Neiger-Schost'19]

- current version based on NTL
- work-in-progress version based on FLINT
- welcome comments, suggestions, contributions
"hey, this doesn't work!"
"yo, plans for implementing this?"
"how to decode RS codes with PML?"
wide range of algorithms
efficiency $=$ state of the art
kernel, high-order lifting, system solving, reduced form...

multiplication

most fundamental nontrivial operation \Rightarrow must be thoroughly optimized

various algorithms + use of thresholds:

- specific code for very small size or very small degree (they arise in recursive calls)
- specific algorithm for large size \& small degree (used in matrix sequence computation for obtaining balanced bases)
- evaluation/interpolation + matrix multiplication over \mathbb{K}
(FFT points, geometric points, 3-primes FFT, ...)

		20 bit FFT prime		60 bit prime			
m	d	ours	Linbox	ratio	ours	Linbox	ratio
8	131072	$\mathbf{1 . 0 3 4}$	1.231	0.84	$\mathbf{3 . 0 6 7}$	10.48	0.29
32	8192	$\mathbf{0 . 6 5 3}$	0.776	0.84	$\mathbf{2 . 7 8 2}$	8.510	0.33
128	2048	$\mathbf{3 . 0 7 9}$	3.544	0.87	$\mathbf{2 0 . 8 4}$	38.66	0.54
512	128	$\mathbf{3 . 6 2 3}$	4.329	0.84	$\mathbf{3 1 . 5 4}$	47.17	0.67

+ middle product versions
+ allowing precomputations (for repeated multiplication with the same matrix)

fraction reconstruction

reconstruct a matrix of degree $\leqslant \mathrm{d}$ as a fraction with degrees $\leqslant \mathrm{d} / 2$
i.e. matrix version of Padé approximation: $\mathbf{F}=\mathbf{P}^{-1} \mathbf{Q} \bmod x^{d}$
\leadsto used in block Wiedemann, matrix Berlekamp-Massey, basis reduction, ...

- using M-Basis / PM-Basis [Giorgi-Jeannerod-Villard 2003]
- performance similar to or better than state-of-the-art (LinBox)
\rightsquigarrow depends on: bitsize of p, matrix dimensions, matrix degrees
- interpolant variants also implemented, and often slightly faster

m	n	d	ours	Linbox	ratio
8	4	131072	$\mathbf{6 . 0 9 1}$	12.74	0.48
32	16	8192	$\mathbf{3 . 6 0 2}$	5.665	0.64
128	64	2048	$\mathbf{1 3 . 6 1}$	18.66	0.73
512	256	256	$\mathbf{3 2 . 0 8}$	37.31	0.86

m	n	d	M	$\mathrm{M}-\mathrm{I}$	d	PM	$\mathrm{PM}-\mathrm{I}$	PM -lg
8	4	32	$4.31 \mathrm{e}-4$	$\mathbf{3 . 5 4 e}-\mathbf{4}$	32768	$\mathbf{4 . 3 6}$	20.7	$\mathbf{4 . 3 8}$
32	16	32	$9.41 \mathrm{e}-3$	$\mathbf{6 . 4 7 e - 3}$	4096	$\mathbf{6 . 9 1}$	17.0	$\mathbf{6 . 1 8}$
128	64	32	0.333	$\mathbf{0 . 2 2 9}$	1024	31.9	41.7	$\mathbf{2 5 . 7}$
256	128	32	2.49	$\mathbf{1 . 4 6}$	256	33.3	28.1	$\mathbf{2 4 . 2}$

linear system solving over $\mathbb{F}_{\mathfrak{p}}[x]$

- Dixon's method turned out as the most efficient [Dixon 1982]
- kernel based solver is not far behind, and more general
- high-order lifting solver [Storjohann 2003] seems slower

m	d	Dixon	high-order lifting	kernel
16	1024	$\mathbf{0 . 6 9 5}$	2.39	1.96
32	1024	$\mathbf{2 . 8 8}$	13.8	8.06
128	512	$\mathbf{3 7 . 2}$	266	84.2

determinant

- expansion by minors for small dimensions
- evaluation/interpolation at sufficiently many points
- solving a linear system with random right-hand side [Pan, 1988]
-triangularizing the matrix via kernel bases [Labahn-Neiger-Zhou, 2017]

m	d	minors	evaluation	linsolve	triangular
4	65536	$\mathbf{0 . 6 7 3}$	1.90	5.78	$\mathbf{0 . 6 8 6}$
16	4096	∞	3.75	$\mathbf{3 . 5 2}$	6.12
32	4096	∞	26.5	$\mathbf{1 5 . 3}$	32.4
64	2048	∞	109	$\mathbf{3 5 . 9}$	71.0
128	512	∞	out of memory	$\mathbf{4 0 . 7}$	71.8

context and contribution
minimal polynomial
modular composition
implementation aspects

- complexity and software
- minpoly \& modular composition
- summary of contributions
- minimal polynomial...
- using power projections...
- and blocking + baby step-giant step
- previously existing algorithms
- approach for generic input
- randomizing via change of basis
- framework for polynomial matrices
- matrix fraction reconstruction
- system solving and determinant

conclusion and perspectives

faster algorithms: minimal polynomial \& modular composition

- also for power projections and inverse composition
- improved cost bound $\mathrm{O}^{\sim}\left(\mathrm{n}^{(\omega+2) / 3}\right)$ (generic or randomized)
- baby steps-giant steps + univariate polynomial matrices
elaborating upon Villard's block Wiedemann with structured projections
- competitive practical performance for large degrees

perspectives \& open questions

- improve practical performance further and wider
- further study impacts on related topics

Guruswami-Sudan decoding, bivariate resultants, algebraic approximants, guessing, ...

- open: exploit bivariate multiplication to reach $\mathrm{O}^{\sim}\left(\mathrm{n}^{(\omega+3) / 4}\right)$?
- very much open: any new idea towards quasi-linear complexity??

[^0]:

 Veclong rem order(order)

 Vectong rem_index(cdim); std::iota(rem_index.begin(), ren_index.end(), 0);

 Whtle (not rem_order.empty())
 \{ mon-nvariant
 appbas ts a shift-ordered weak Popov approximant basts for
 (pmat, reached_order) where doneorder ts the tuple such that
 ->reached_order[f]
 shift $=$ order[j] $=$ "Ine order[j] for 3 not appearing in ren inde

 ## polynomials
 matrices
 software

 open-source mathematics software system
 5ロㄹ Python/Cython
 high-performance exact linear algebra

 $$
 \text { LinBox - fflas-ffpack } \quad C / C++
 $$

 high-performance polynomials (and more)
 FLINT \& NTL $\quad C / C++$

 - choice of algorithms
 - data structures and storage
 - cache efficiency
 - SIMD vectorization instructions
 - multithreading, GPU programming

 ## matrices
 software
 polynomials

 long deg = order[rem_index[j]] - rem_order[j];
 // record the coefficients of degree deg of the co
 // also keep track of which of these are nonzero,
 // and among the nonzero ones, which is the first
 Vecezz_p> const, residual;
 const_residual. SetLength(rdim);
 VecLong indices_nonzero;
 long ptv $=1$;
 for (long $\mathrm{i}=0$; $\mathrm{i}<$ rdim; ++i)
 [const_residual[$[\mathrm{i}]=$ coeff(residual[[i][j], deg);
 indices_nonzero.push_back(i);
 if (piv<0 || shift[i] < shift[piv])
 open-source mathematics software system
 5ロㄹ Python/Cython
 high-performance exact linear algebra
 $$
 \text { LinBox - fflas-ffpack } \quad C / C++
 $$
 high-performance polynomials (and more) FLINT \& NTL $\quad C / C++$

 - choice of algorithms
 - data structures and storage
 - cache efficiency
 - SIMD vectorization instructions
 - multithreading, GPU programming

 ## matrices
 software
 polynomials

 ## what you can compute in about 1 second with fflas-ffpack with NTL

 -PLUQ $\quad \mathrm{m}=3800 \quad 1.00$ s

 - LinSys $\quad \mathrm{m}=3800$ 1.00s
 - MatMul $\quad m=3000 \quad 0.97 \mathrm{~s}$
 - Inverse $\quad \mathrm{m}=2800 \quad 1.01 \mathrm{~s}$
 - CharPoly m=2000 1.09s

 | - PolMul | $d=7 \times 10^{6}$ | 1.03 s |
 | :--- | :--- | :--- |
 | - Division | $d=4 \times 10^{6}$ | 0.96 s |
 | - XGCD | $d=2 \times 10^{5}$ | 0.99 s |
 | - MinPoly | $d=2 \times 10^{5}$ | 1.10 s |
 | - MPeval | $d=1 \times 10^{4}$ | 1.01 s |

 ## univariate polynomials: computational problems

 most problems have quasi-linear complexity
 thanks to reductions to PolMul
 $O(M(d))$
 $\mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

 - addition $\mathrm{f}+\mathrm{g}$, multiplication $\mathrm{f} * \mathrm{~g}$
 - division with remainder $\mathrm{f}=\mathrm{qg}+\mathrm{r}$
 - truncated inverse $f^{-1} \bmod x^{d}$
 - extended GCD $\mathrm{fu}+\mathrm{g} v=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$
 - multipoint eval. $f \mapsto f\left(x_{1}\right), \ldots, f\left(x_{d}\right)$
 - interpolation $\mathrm{f}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{d}}\right) \mapsto \mathrm{f}$
 - Padé approximation $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod \chi^{\mathrm{d}}$
 - minpoly of linearly recurrent sequence

 ## univariate polynomials: computational problems

 most problems have quasi-linear complexity
 thanks to reductions to PolMul
 $O(M(d))$
 $\mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))$

 - addition $\mathrm{f}+\mathrm{g}$, multiplication $\mathrm{f} * \mathrm{~g}$
 - division with remainder $f=q g+r$
 - truncated inverse $f^{-1} \bmod x^{d}$
 - extended GCD $\mathrm{fu}+\mathrm{g} v=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$
 - multipoint eval. $f \mapsto f\left(x_{1}\right), \ldots, f\left(x_{d}\right)$
 - interpolation $\mathrm{f}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{d}}\right) \mapsto \mathrm{f}$
 - Padé approximation $\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod x^{\mathrm{d}}$
 - minpoly of linearly recurrent sequence

 ## univariate polynomials: open problems

 ## modular composition

 given g, a, h, compute $h(a) \bmod g$
 ## minimal polynomial

 given g, a, compute f such that $f(a)=0 \bmod g$related problems: power projections \& inverse composition

 The year is 2024 A.D.
 Basic Polynomial Algebra is entirely occupied by Computer Algebraists.
 Well not entirely!
 One small village of indomitable open problems still holds out against the invaders. And life is not easy for the scientists who garrison the fortified camps of ISSAC, JNCF, Inria, CNRS...

 ## complexity improvements

 [V.Neiger - B.Salvy - É.Schost - G.Villard, J.ACM 2024]
 for generic input || using randomization

 ## $\left.\begin{array}{l}\text { minimal polynomial } \\ \text { modular composition }\end{array}\right\}$ in $\mathrm{O}^{\sim}\left(\mathrm{n}^{(\omega+2) / 3}\right)$

 $$
 \text { exponent }(\omega+2) / 3: \quad 1.67 \text { for } \omega=3, \quad 1.6 \text { for } \omega=2.8, \quad 1.46 \text { for } \omega=2.38
 $$

 previous work (composition)
 \rightarrow naive: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$

 - [Brent-Kung 1978]: O($\left.\mathrm{n}^{(\omega+1) / 2}\right)$

 $$
 \text { exponent }(\omega+1) / 2: \quad 2 \text { for } \omega=3
 $$

 previous work (minpoly)

 - naive: $\mathrm{O}^{\sim}\left(\mathrm{n}^{\omega}\right)$ or $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$
 - [Shoup 1994]: $\mathrm{O}\left(\mathrm{n}^{(\omega+1) / 2}\right)$
 1.9 for $\omega=2.8, \quad 1.69$ for $\omega=2.38$
 breakthough [Kedlaya-Umans 2011]:
 composition in $\mathrm{O}^{\sim}(n \log (q))$ bit operations, over $\mathbb{K}=\mathbb{F}_{\mathrm{q}}$
 quasi-linear bit complexity, yet currently impractical [van der Hoeven-Lecerf 2020]

 ## software improvements

 ## efficient implementation for the minimal polynomial for large degrees, outperforms the state of the art

 implementation for modular composition: work in progress
 field $\mathbb{K}=\mathbb{F}_{p}$, prime p with 60 bits Intel Core i7-7600U @ 2.80 GHz
 random input polynomials \Rightarrow "generic"

 | | general prime | | FFT prime | |
 | :---: | :---: | :---: | :---: | :---: |
 | n | NTL | new | NTL | new |
 | 5 k | 0.349 | 0.496 | 0.130 | 0.208 |
 | 20 k | 3.13 | 3.19 | 1.21 | 1.39 |
 | 80 k | 31.5 | 23.6 | 13.9 | 10.7 |
 | 320 k | 311 | 178 | 158 | 91.0 |

 uses many types of computations on matrices over $\mathbb{K}[x]$
 \rightsquigarrow relies on the Polynomial Matrix Library

 - multiplication for various parameters
 - matrix-Padé approximation
 - matrix division with remainder
 - determinant
 - system solving
 - kernel
 https://github.com/vneiger/pml

 ## outline

 context and contribution
 > minimal polynomial
 modular composition
 implementation aspects

 - complexity and software
 - minpoly \& modular composition
 - summary of contributions

 ## outline

 context and contribution
 minimal polynomial

 - complexity and software
 - minpoly \& modular composition
 - summary of contributions
 - minimal polynomial.
 - using power projections...
 - and blocking + baby step-giant step
 modular composition
 implementation aspects

 ## [reminder] minimal polynomial $\bmod g(x)$

 ideal $\mathcal{J}=\langle\mathrm{g}(\mathrm{x}), \mathrm{y}-\mathrm{a}(\mathrm{x})\rangle$:
 set of all $F(x, y)$ such that $F(x, a(x))=0 \bmod g(x)$

 ## minimal polynomial $=f(y)$ of smallest degree in J

 > example: $f(y)=(y-1)^{16}$ is the minpoly of $a(x)=x^{2}+1$ modulo $g(y)=x^{32}$
 relation to bivariate resultant, and specific ideal bases

 $$
 \mathcal{J}=\langle g(x), y-a(x)\rangle=\langle f(y), x-b(y)\rangle
 $$

 ## using power projections

 [Shoup 1994, 1999]
 0 . choose random vector $\left[\ell_{1} \cdots \ell_{n}\right] \in \mathbb{K}^{n}$
 \rightarrow defines a linear form $\ell: \mathbb{K}[x] /\langle\mathrm{g}\rangle \rightarrow \mathbb{K}$

 1. compute linear recurrent sequence $\ell(1), \ell(a \bmod g), \ldots, \ell\left(a^{2 n-1} \bmod g\right)$
 2. compute minimal recurrence relation $f(y)$ via Berlekamp-Massey / Padé approximation

 $$
 \begin{gathered}
 \text { minpoly } f(y) \\
 \Downarrow \\
 f(a)=0 \bmod g \\
 \Downarrow \\
 f(y)=\text { relation for }\left(a^{k} \bmod g\right)_{k} \\
 \Downarrow \\
 f(y)=\text { relation for }\left(\ell\left(a^{k} \bmod g\right)\right)_{k}
 \end{gathered}
 $$

 ## using power projections

 [Shoup 1994, 1999]
 0 . choose random vector $\left[\ell_{1} \cdots \ell_{n}\right] \in \mathbb{K}^{n}$
 \rightarrow defines a linear form $\ell: \mathbb{K}[x] /\langle\mathrm{g}\rangle \rightarrow \mathbb{K}$

 1. compute linear recurrent sequence $\ell(1), \ell(a \bmod g), \ldots, \ell\left(a^{2 n-1} \bmod g\right)$
 2. compute minimal recurrence relation $f(y)$ via Berlekamp-Massey / Padé approximation

 $$
 \begin{gathered}
 \text { minpoly } f(y) \\
 \Downarrow \\
 f(a)=0 \bmod g
 \end{gathered}
 $$

 $$
 f(y)=\text { relation for }\left(a^{k} \bmod g\right)_{k}
 $$ \Downarrow $\mathrm{f}(\mathrm{y})=$ relation for $\left(\ell\left(\mathrm{a}^{\mathrm{k}} \bmod g\right)\right)_{\mathrm{k}}$

 \rightarrow related to algorithm of [Wiedemann 1986]:

 $$
 \ell\left(a^{\mathrm{k}} \bmod \mathrm{~g}\right)=\left[\begin{array}{lll}
 \ell_{1} & \cdots & \ell_{n}
 \end{array}\right] \quad \mathbf{A}^{\mathrm{k}}\left[\begin{array}{c}
 1 \\
 0 \\
 \vdots \\
 0
 \end{array}\right]
 $$

 where $\mathbf{A} \in \mathbb{K}^{n \times n}$ is the "multiplication matrix" of $a(x)$ modulo $g(x)$
 for generic $a(x)$ and $g(0) \neq 0$, choose $\ell=\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]$
 then $\ell\left(a^{k} \bmod g\right)=$ constant coeff of $a^{k} \bmod g$

 ## new minpoly algorithm: blocking \& baby-step giant-step

 block Wiedemann approach [Coppersmith 1994]
 iterating projection by $1 \times n$ vector on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 n-1}$
 \Rightarrow iterating projection by $\mathrm{m} \times \mathfrak{n}$ matrix on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 \mathrm{~d}-1}$ choose $\mathrm{m} \ll \mathrm{n}$ and take $\mathrm{d}=\mathrm{n} / \mathrm{m}$

 ## new minpoly algorithm: blocking \& baby-step giant-step

 block Wiedemann approach [Coppersmith 1994]
 iterating projection by $1 \times n$ vector on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 n-1}$
 \Rightarrow iterating projection by $\mathrm{m} \times \mathfrak{n}$ matrix on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 \mathrm{~d}-1}$

 $$
 \text { choose } \mathrm{m} \ll \mathrm{n} \text { and take } \mathrm{d}=\mathrm{n} / \mathrm{m}
 $$

 1. compute linear recurrent matrix sequence:

 $$
 \mathbf{I}_{m}, \quad\left[\begin{array}{ll}
 \mathbf{I}_{m} & \mathbf{0}
 \end{array}\right] \mathbf{A}\left[\begin{array}{c}
 \mathbf{I}_{m} \\
 \mathbf{0}
 \end{array}\right], \ldots, \quad\left[\begin{array}{ll}
 \mathbf{I}_{m} & \mathbf{0}
 \end{array}\right] \mathbf{A}^{2 \mathrm{~d}-1}\left[\begin{array}{c}
 \mathbf{I}_{\mathrm{m}} \\
 \mathbf{0}
 \end{array}\right]
 $$

 2. compute minimal matrix recurrence relation $\mathbf{P}(y) \in \mathbb{K}[y]^{m \times m}$ via matrix-Berlekamp-Massey / matrix-Padé, complexity $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)$

 # new minpoly algorithm: blocking \& baby-step giant-step

 block Wiedemann approach [Coppersmith 1994] iterating projection by $1 \times n$ vector on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 n-1}$
 \Rightarrow iterating projection by $\mathrm{m} \times \mathfrak{n}$ matrix on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 \mathrm{~d}-1}$

 $$
 \text { choose } \mathrm{m} \ll \mathrm{n} \text { and take } \mathrm{d}=\mathrm{n} / \mathrm{m}
 $$

 1. compute linear recurrent matrix sequence:

 $$
 \mathbf{I}_{m}, \quad\left[\begin{array}{ll}
 \mathbf{I}_{m} & \mathbf{0}
 \end{array}\right] \mathbf{A}\left[\begin{array}{c}
 \mathbf{I}_{m} \\
 \mathbf{0}
 \end{array}\right], \quad \ldots, \quad\left[\begin{array}{ll}
 \mathbf{I}_{m} & \mathbf{0}
 \end{array}\right] \mathbf{A}^{2 \mathrm{~d}-1}\left[\begin{array}{c}
 \mathbf{I}_{\mathrm{m}} \\
 \mathbf{0}
 \end{array}\right]
 $$

 2. compute minimal matrix recurrence relation $\mathbf{P}(y) \in \mathbb{K}[y]^{m \times m}$ via matrix-Berlekamp-Massey / matrix-Padé, complexity $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)$
 step 1: computing coefficient i of $\chi^{j} a^{k} \bmod g$, for $i, j<m, k<2 d$ \rightarrow new baby-step giant-step in $\mathrm{O}^{\sim}\left(\mathrm{md}^{(\omega+1) / 2}\right)$

 - $f(y)=\operatorname{det}(\mathbf{P}(y))$ is the minimal polynomial of a modulo g
 - $\mathbf{P}(\mathrm{y})$ is a good basis of $\mathcal{J}=\langle\mathrm{g}(\mathrm{x}), \mathrm{y}-\mathrm{a}(\mathrm{x})\rangle$ good: $\operatorname{deg}(P) \leqslant d$, Popov form, predictable degrees, \ldots

 ## [reminder] polynomial matrices

 $\mathbf{A}=\left[\begin{array}{ccc}3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\ 5 & 5 x^{2}+3 x+1 & 5 x+3 \\ 3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1\end{array}\right] \in \mathbb{K}[x]^{3 \times 3}$
 3×3 matrix of degree 3 with entries in $\mathbb{K}[x]=\mathbb{F}_{7}[x]$
 operations on $\mathbb{K}[x]_{<d}^{m \times m}$

 - combination of matrix and polynomial computations
 - addition in $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)$, naive multiplication in $\mathrm{O}\left(\mathrm{m}^{3} \mathrm{~d}^{2}\right)$
 [Cantor-Kaltofen'91]
 multiplication in $\mathrm{O}\left(m^{\omega} \mathrm{d} \log (\mathrm{d})+m^{2} \mathrm{~d} \log (\mathrm{~d}) \log \log (\mathrm{d})\right)$

 $$
 \in \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \subset \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)
 $$

 2×2 matrices in XGCD, Padé approximation, Berlekamp-Massey, Toeplitz linear systems...
 $\rightsquigarrow \mathrm{m} \times \mathrm{m}$ matrix versions of these problems

 - some problems\&techniques shared with matrices over \mathbb{K}
 - some problems\&techniques specific to entries in $\mathbb{K}[x]$

 ## polynomial matrices: main computational problems

 reductions of most problems to polynomial matrix multiplication

 $$
 \begin{aligned}
 \text { matrix } \mathrm{m} \times \mathrm{m} \text { of degree } \mathrm{d} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \\
 \text { of "average" degree } \frac{\mathrm{D}}{\mathrm{~m}} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right)
 \end{aligned}
 $$

 classical matrix operations

 - multiplication
 - inversion $\quad \mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$
 - kernel, system solving
 -rank, determinant
 univariate relations
 - Hermite-Padé approximation
 - vector rational interpolation
 - syzygies, modular equations
 transformation to normal forms
 -triangularization: Hermite form
 - row reduction: Popov form
 -diagonalization: Smith form

 ## polynomial matrices: two open questions

 ## deterministic Smith form

 $$
 \left[\begin{array}{lll}
 \mathbf{A}
 \end{array}\right] \longrightarrow\left[\begin{array}{llll}
 \mathrm{s}_{1} & & & \\
 & \mathrm{~s}_{2} & & \\
 & & \ddots & \\
 & & s_{m}
 \end{array}\right] \begin{aligned}
 & \text { - complexity } \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \text { [Storjohann'03] } \\
 & \\
 & \\
 & \\
 & \\
 & s_{i+1} \text { divides } s_{i}
 \end{aligned} \quad \begin{aligned}
 & \text { - Las Vegas randomized algorithm } \\
 & \text { - requires large field } \mathbb{K}
 \end{aligned}
 $$

 ## polynomial matrices: two open questions

 ## deterministic Smith form

 ## algebraic approximants

 - most algorithms ignore the structure
 - recent progress [Villard'18]+this talk
 - restrictive: genericity, specific m how to leverage this structure?

 ## outline

 context and contribution
 minimal polynomial

 - complexity and software
 - minpoly \& modular composition
 - summary of contributions
 - minimal polynomial.
 - using power projections...
 - and blocking + baby step-giant step
 modular composition
 implementation aspects

 ## outline

 ## context and contribution

 ## minimal polynomial

 modular composition

 - complexity and software
 - minpoly \& modular composition
 - summary of contributions
 - minimal polynomial.
 - using power projections...
 - and blocking + baby step-giant step
 - previously existing algorithms
 - approach for generic input
 - randomizing via change of basis
 input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
 $h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
 in practice: constant-factor speedup via precomputations on a and g

 ## naive via Horner evaluation

 ## classical composition algorithms

 baby-step giant-step algorithm
 input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
 $h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
 in practice: constant-factor speedup via precomputations on a and g

 ## naive via Horner evaluation

 ## classical composition algorithms

 ## baby-step giant-step algorithm

 [Paterson-Stockmeyer 1971, Brent-Kung 1978]
 rely on matrix multiplication using "slices" of length $v=\sqrt{n}$ $h(y)=S_{0}(y)+y^{v} S_{1}(y)+y^{2 v} S_{2}(y)+\cdots+y^{(v-1) v} S_{v-1}(y)$
 define $\alpha=a^{\nu} \bmod g$

 $$
 h(a)=S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \bmod g
 $$

 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{3 / 2}\right)$ for $\mathrm{O}(\sqrt{\mathrm{n}})$ multiplications by a and α modulo g $+\mathrm{O}\left(\mathrm{n}^{(\omega+1) / 2}\right)$ for matrix multiplication
 in practice: much faster than naive approach

 - $\mathrm{O}^{\sim}\left(\mathrm{n}^{3 / 2}\right)$ regime lasts until largish n
 input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
 $h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

 ## naive via Horner evaluation

 ## classical composition algorithms

 ## baby-step giant-step algorithm

 | // Horner evaluation $\mathrm{h}(\mathrm{a})$, modulo g | n | Horner | Horner with precomputations | NTL built-in Brent-Kung |
 | :---: | :---: | :---: | :---: | :---: |
 | zz_pX b; | 100 | 0.00229 | 0.00227 | 0.000441 |
 | $\mathrm{b}=\operatorname{coeff}(\mathrm{h}, \mathrm{n}-1)$; | 200 | 0.0162 | 0.00691 | 0.00110 |
 | for (long $\mathrm{k}=\mathrm{n}-2 ; \mathrm{k}>=0$; - k) | 400 | 0.117 | 0.0278 | 0.00312 |
 | $\mathrm{b}=(\mathrm{a} * \mathrm{~b})$ \% g; | 800 | 0.637 | 0.116 | 0.00944 |
 | $\mathrm{b}=\mathrm{b}+\operatorname{coeff}(\mathrm{h}, \mathrm{k})$; | 1600 | 2.52 | 0.515 | 0.0281 |
 | I | 3200 | 10.4 | 2.23 | 0.0884 |
 | | 6400 | 45.8 | 9.61 | 0.273 |

 field $\mathbb{K}=\mathbb{F}_{p}$, prime p with 60 bits
 NTL 11.4.3 on Intel Core i7-7600U @ 2.80 GHz
 input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
 $h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

 ## naive via Horner evaluation

 ## classical composition algorithms

 ## baby-step giant-step algorithm

 $$
 \begin{aligned}
 h(a) & =S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \quad \text { recall: } \alpha=a^{v} \bmod g \\
 & =\left[\begin{array}{llll}
 1 & \alpha & \cdots & \alpha^{v-1}
 \end{array}\right]\left[\begin{array}{c}
 S_{0}(a) \\
 S_{1}(a) \\
 \vdots \\
 S_{v-1}(a)
 \end{array}\right] \\
 & =\left[\begin{array}{llll}
 1 & \alpha & \cdots & \alpha^{v-1}
 \end{array}\right]\left[\begin{array}{cccc}
 S_{0,0} & S_{0,1} & \cdots & S_{0, v-1} \\
 S_{1,0} & S_{1,1} & \cdots & S_{1, v-1} \\
 \vdots & \vdots & & \vdots \\
 S_{v-1,0} & S_{v-1,1} & \cdots & S_{v-1, v-1}
 \end{array}\right]\left[\begin{array}{c}
 1 \\
 a \\
 \vdots \\
 a^{v-1}
 \end{array}\right]
 \end{aligned}
 $$

 input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
 $h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

 ## naive via Horner evaluation

 ## classical composition algorithms

 ## baby-step giant-step algorithm

 $$
 \begin{aligned}
 h(a) & =S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \quad \text { recall: } \alpha=a^{v} \bmod g \\
 & =\left[\begin{array}{llll}
 1 & \alpha & \cdots & \alpha^{v-1}
 \end{array}\right]\left[\begin{array}{c}
 S_{0}(a) \\
 S_{1}(a) \\
 \vdots \\
 S_{v-1}(a)
 \end{array}\right] \\
 & =\left[\begin{array}{lllll}
 1 & \alpha & \cdots & \alpha^{v-1}
 \end{array}\right]\left[\begin{array}{cccc}
 S_{0,0} & S_{0,1} & \cdots & S_{0, v-1} \\
 S_{1,0} & S_{1,1} & \cdots & S_{1, v-1} \\
 \vdots & \vdots & & \vdots \\
 S_{v-1,0} & S_{v-1,1} & \cdots & S_{v-1, v-1}
 \end{array}\right]\left[\begin{array}{c}
 1 \\
 a \\
 \vdots \\
 a^{v-1}
 \end{array}\right]
 \end{aligned}
 $$

 input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
 $h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g

 ## naive via Horner evaluation

 ## classical composition algorithms

 ## baby-step giant-step algorithm

 $$
 \begin{aligned}
 h(a) & =S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \quad \text { recall: } \alpha=a^{v} \bmod g \\
 & =\left[\begin{array}{llll}
 1 & \alpha & \cdots & \alpha^{v-1}
 \end{array}\right]\left[\begin{array}{c}
 S_{0}(a) \\
 S_{1}(a) \\
 \vdots \\
 S_{v-1}(a)
 \end{array}\right] \text { length } v \text { vectors over } \mathbb{K}[x]<n \\
 & =\begin{array}{cc}
 S_{0,0} & S_{0,1} \\
 S_{1} & S_{0, v} \text { matrix over } \mathbb{K}
 \end{array} \\
 & =\text { matrix multiplication }(n \times \sqrt{n}) *(\sqrt{n} \times \sqrt{n}) *(\sqrt{n} \times n)
 \end{aligned}
 $$

 input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
 $h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
 complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
 in practice: constant-factor speedup via precomputations on a and g

 ## naive via Horner evaluation

 ## classical composition algorithms

 ## baby-step giant-step algorithm

 a bivariate extension of modular composition:
 input: $g(x)$ and $a(x)$ of degree n
 $H(x, y)$ with $\operatorname{deg}_{x}<m$ and $\operatorname{deg}_{y}<d=n / m$
 output: $H(x, a(x)) \bmod g(x)$
 case discussed until now: $m=1, d=n$

 - algorithm: generalizes Brent-Kung [Nüsken-Ziegler 2004]
 - complexity : $\mathrm{O}\left(\mathrm{md}^{(\omega+1) / 2}\right)$

 ## modular composition, step 1: matrix minpoly

 summary of the minpoly algorithm:

 - specialization of first step of bivariate resultant [Villard 2018]
 - accelerated by baby-step giant-step $\rightarrow \mathrm{O}^{\sim}\left(\mathrm{md}^{(\omega+1) / 2}+\mathrm{m}^{\omega} \mathrm{d}\right)$
 - genericity or randomization required for efficiency
 computes an $\mathfrak{m} \times \mathfrak{m}$ polynomial matrix $\mathbf{P}(y)$ of degree $\leqslant d$ whose columns are minimal polynomial vectors of a mod g
 change of representation
 univariate vector \longleftrightarrow bivariate polynomial

 $$
 \left[\begin{array}{c}
 F_{0}(y) \\
 F_{1}(y) \\
 \vdots \\
 F_{m-1}(y)
 \end{array}\right]
 $$

 $$
 \longleftrightarrow \quad F(x, y)=\sum_{i<m} F_{i}(y) x^{i}
 $$

 Popov basis of submodule
 $\mathcal{J} \cap \mathbb{K}[x, y]_{\operatorname{deg}_{x}}<m$

 Gröbner basis of ideal in $\mathbb{K}[x, y]$ $\mathcal{J}=\langle g(x), y-a(x)\rangle$

 ## modular composition, step 1: matrix minpoly

 summary of the minpoly algorithm:

 - specialization of first step of bivariate resultant [Villard 2018]
 - accelerated by baby-step giant-step $\rightarrow \mathrm{O}^{\sim}\left(\mathrm{md}^{(\omega+1) / 2}+\mathrm{m}^{\omega} \mathrm{d}\right)$
 - genericity or randomization required for efficiency
 computes an $\mathfrak{m} \times \mathfrak{m}$ polynomial matrix $\mathbf{P}(y)$ of degree $\leqslant d$ whose columns are minimal polynomial vectors of a mod g
 change of representation
 univariate vector \longleftrightarrow bivariate polynomial

 $$
 \text { columns of } P(y) \Rightarrow F(x, a)=0 \bmod g \text { i.e. } F \in \mathcal{J}
 $$

 Popov basis of submodule
 $\mathcal{J} \cap \mathbb{K}[x, y]_{\operatorname{deg}_{x}<m}$

 Gröbner basis of ideal in $\mathbb{K}[x, y]$
 $\mathcal{J}=\langle g(x), y-a(x)\rangle$

 ## modular composition, step 2: balance degrees

 $$
 \begin{aligned}
 \text { composition } h(y) \rightarrow b(x) & =h(a) \bmod g & & H(x, y)=h(y)+F(x, y) \text { for any } \\
 & =h(a)+F(x, a) \bmod g & & F(x, y) \text { generated by } \mathbf{P}(y)
 \end{aligned}
 $$

 step 2: find $H(x, y)$ such that $\left\{\begin{array}{l}\operatorname{deg}_{x}(H)<m, \operatorname{deg}_{y}(H)<d \\ h(a)=H(x, a) \bmod g\end{array}\right.$

 ## modular composition, step 2: balance degrees

 $$
 \begin{aligned}
 \text { composition } h(y) \rightarrow b(x) & =h(a) \bmod g & & H(x, y)=h(y)+F(x, y) \text { for any } \\
 & =h(a)+F(x, a) \bmod g & & F(x, y) \text { generated by } \mathbf{P}(y)
 \end{aligned}
 $$

 $$
 \text { step 2: find } H(x, y) \text { such that } \quad\left\{\begin{array}{l}
 \operatorname{deg}_{x}(H)<m, \quad \operatorname{deg}_{y}(H)<d \\
 h(a)=H(x, a) \bmod g
 \end{array}\right.
 $$

    ```
    step 3: computing H(x,a) mod g costs O~(md (\omega+1)/2)
    ```

 extending Brent\&Kung's approach [Nüsken-Ziegler'04]

 ## modular composition, step 2: balance degrees

 $$
 \text { composition } \begin{aligned}
 h(y) \rightarrow b(x) & =h(a) \bmod g \\
 & =h(a)+F(x, a) \bmod g \\
 & =H(x, a) \bmod g
 \end{aligned}
 $$

 $$
 H(x, y)=h(y)+F(x, y) \text { for any }
 $$

 $$
 F(x, y) \text { generated by } \mathbf{P}(y)
 $$

 $$
 \text { step 2: find } H(x, y) \text { such that }\left\{\begin{array}{l}
 \operatorname{deg}_{x}(H)<m, \operatorname{deg}_{y}(H)<d \\
 h(a)=H(x, a) \bmod g
 \end{array}\right.
 $$

    ```
    step 3: computing H(x,a) mod g costs O O (md (\omega+1)/2)
    ```

 extending Brent\&Kung's approach [Nüsken-Ziegler'04]
 finding $H(x, y)$: matrix division with remainder
 $\left[\begin{array}{c}h(y) \\ 0 \\ \vdots \\ 0\end{array}\right]=\mathbf{P}(y) \mathbf{Q}(y)+\left[\begin{array}{c}\mathrm{H}_{0}(y) \\ \mathrm{H}_{1}(\mathrm{y}) \\ \vdots \\ \mathrm{H}_{\mathrm{m}-1}(\mathrm{y})\end{array}\right]$ degree $<\mathrm{d}$
 complexity minimized for

 $$
 m=n^{1 / 3}, d=n^{2 / 3}
 $$

 $$
 O^{\sim}\left(n^{(\omega+2) / 3}\right)
 $$

 complexity $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)$

 ## genericity and randomization

 non-generic $a(x) \longrightarrow \begin{aligned} & \text {. } \mathcal{J} \cap \mathbb{K}[x, y]_{\operatorname{deg}_{x}<m} \text { might not genera } \\ & \text {. finding a basis of } \mathcal{J} \cap \mathbb{K}[x, y]_{\operatorname{deg}_{x}<m}\end{aligned}$
 randomization by change of basis
 take a random $\gamma \in \mathbb{K}[x] /\langle\mathrm{g}(x)\rangle$
 w.h.p. γ has minimal polynomial $\mu(y)$ of degree n
 $\Rightarrow 1, \gamma, \gamma^{2}, \ldots, \gamma^{n-1}$ is a basis of $\mathbb{K}[x] /\langle g(x)\rangle$
 \Rightarrow isomorphism $\begin{array}{cll}\mathbb{K}[x] /\langle g(x)\rangle & \rightarrow & \mathbb{K}[y] /\langle\mu(y)\rangle \\ \mathfrak{a}(x) & \mapsto & \alpha(y) \text { such that } \alpha(\gamma)=a \bmod g\end{array}$

 $$
 \begin{aligned}
 & \text { algorithm: } \\
 & \text { 1. compute } \alpha(y) \text { and } \mu(y) \\
 & \text { 2. compute } \beta(y)=h(\alpha(y)) \bmod \mu(y) \\
 & \text { 3. compute } b(x)=\beta(\gamma(x)) \bmod g(x)
 \end{aligned}
 $$

 ## outline

 ## context and contribution

 ## minimal polynomial

 modular composition

 - complexity and software
 - minpoly \& modular composition
 - summary of contributions
 - minimal polynomial.
 - using power projections...
 - and blocking + baby step-giant step
 - previously existing algorithms
 - approach for generic input
 - randomizing via change of basis
 context and contribution
 minimal polynomial
 modular composition
 implementation aspects
 - complexity and software
 - minpoly \& modular composition
 - summary of contributions
 - minimal polynomial...
 - using power projections...
 - and blocking + baby step-giant step
 - previously existing algorithms
 - approach for generic input
 - randomizing via change of basis
 - framework for polynomial matrices
 - matrix fraction reconstruction
 - system solving and determinant

    ```
    \ 5 -2-21
    ```

 hermite_form(include_zero_rows=True, transformation=False)
 Return the Hermite form of this matrix.

 The Hermite form is also normalized, i.e., the pivot polynomials are monic.
 INPUT:

 - include_zero_rows - boolean (default: True); if False, the zero rows in the outputt deleted
 - transformation - boolean (default: False); if True, return the transformation mat

 OUTPUT:

    ```
    VecLong rem_order(order);
    Veclong rem_order(order);
    ```

 // indices of columns/orders that remain to be dealt with Veclong rem_index (cdim);
 std::iota(rem_index,begin(), ren_index,end (), 0);
 // all along the algorthm, shift = shifted row degrees of approximant // (initially, input shift = shifted row degree of the identity matrix)

 ## Witte (not renorder.enpty)

 1** Invariant

 * - appbas is a shift-ordered weak popoy approximant basts for (pmat, reached_order) where doneorder is the tuple such that
 -->reached_order[j] + rem_order[j] == order[j] for j appearing $\rightarrow>r e a c h e d _o r d e r[j]==\operatorname{order}[j]$ for j not appearing in ren_index shift $==$ the "input shift"-row degree of appbas

 ## software development for polynomial matrices

    ```
    sage: M.<x> = GF(7)[]
    sage: ```

