Vincent Neiger LIP6, Sorbonne Université, France

designing and exploiting fast algorithms for univariate polynomial matrices

Journées Nationales de Calcul Formel Centre International de Rencontre Mathématiques Marseille Luminy, France, 4 March 2024

outline

computer algebra

polynomial matrices

first algorithms

exercises

outline

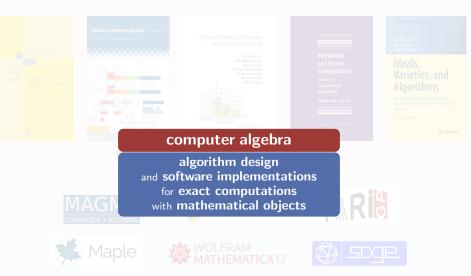
computer algebra

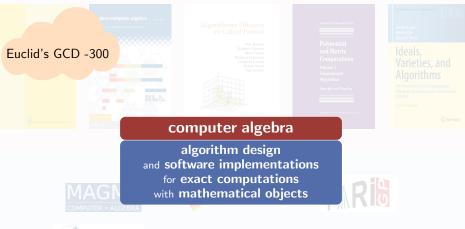
- efficient algorithms and software
- ▶ for matrices over a field
- ▶ for univariate polynomials

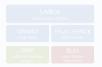
polynomial matrices

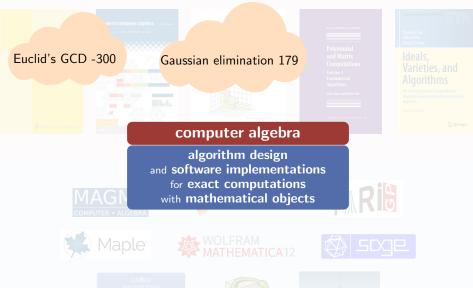
first algorithms

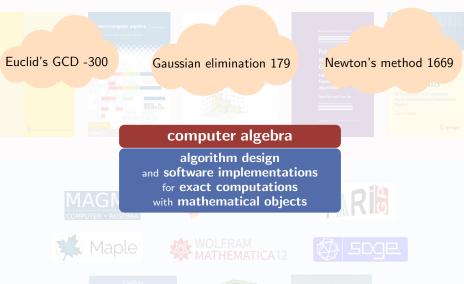
exercises

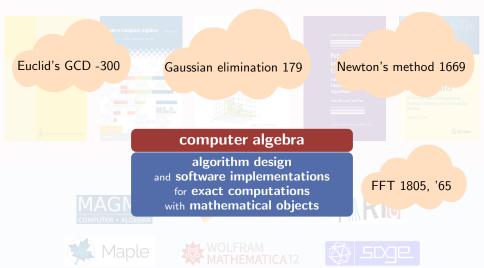


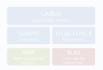


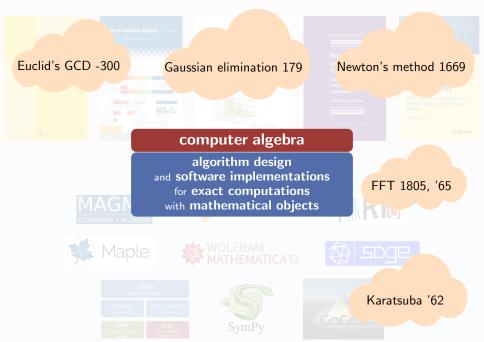


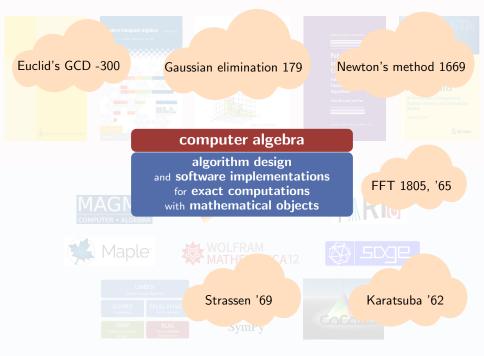


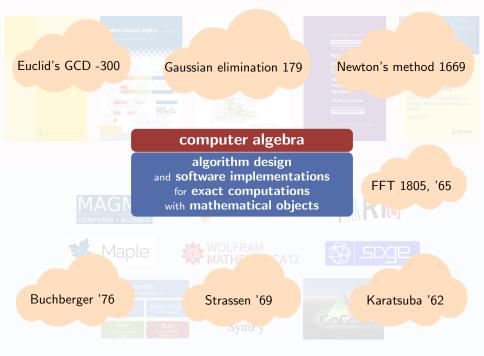


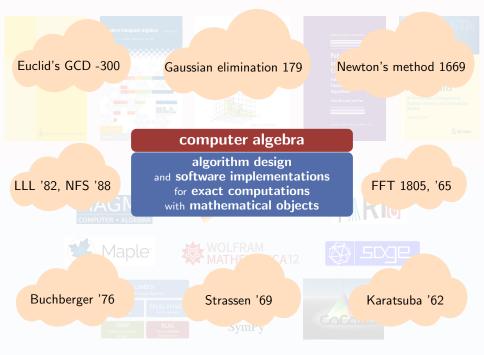












dern Computer Algebra 🔄 🖬

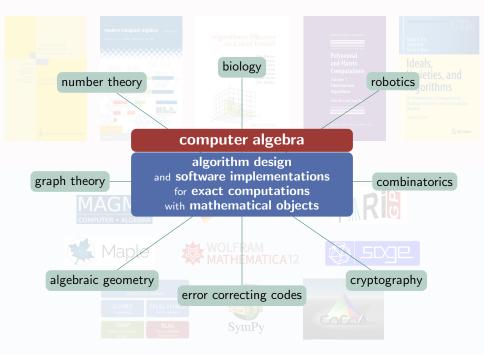
Euclid's GCD -300

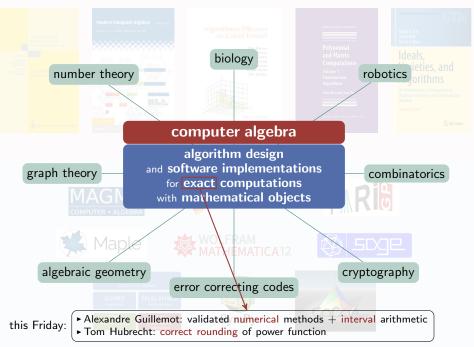
Gaussian elimination 179

Newton's method 1669

_					Dario Rei and	Vieter Pan An Introduction to Computational Algebraic Geometry and Commutative Algebra
	Pi	incipal Discoveries	of Efficient Methods of Co	mputing the D	FT	= Med., LLC
				Number of		
	Researcher(s)	Date	Sequence Lengths	DFT Values	Application	
	C. F. Gauss [10]	1805	Any composite integer	Ali	Interpolation of orbits of celestial bodies	
	F. Carlini [28]	1828	12	-	Harmonic analysis of barometric pressure	FFT 1805, '65
	A. Smith [25]	1846	4, 8, 16, 32	5 or 9	Correcting deviations in compasses on ships	11111003, 05
	J. D. Everett [23]	1860	12	5	Modeling underground temperature deviations	
_	C. Runge [7]	1903	2"k	All	Harmonic analysis of functions	
	K. Stumpff [16]	1939	2"k, 3"k	All	Harmonic analysis of functions	
	Danielson and Lanczos [5]	1942	2"	All	X-ray diffraction in crystals	
	L. H. Thomas [13]	1948	Any integer with relatively prime factors	All	Harmonic analysis of functions	
	I. J. Good [3]	1958	Any integer with relatively prime factors	All	Harmonic analysis of functions	
	Cooley and Tukey [1]	1965	Any composite integer	All	Harmonic analysis of functions	Karatsuba '62
	S. Winograd [14]	1976	Any integer with relatively prime factors	All	Use of complexity theory for harmonic analysis	the state of the s

Fuclid's GCD -300 Newton's method 1669 Gaussian elimination 179 Principal Discoveries of Efficient Methods of Computing the DFT Number of Researcher(s) Sequence Lengths **DFT Values** Application Date C. F. Gauss [10] 1805 Any composite integer Ali Interpolation of orbits of celestial bodies F. Carlini [28] 1828 12 Harmonic analysis of -FFT 1805, '65 barometric pressure A. Smith [25] 1846 4.8.16.32 5 or 9 Correcting deviations in compasses on ships I. D. Everett [23] 1860 12 5 Modeling underground temperature deviations C. Runge [7] 1903 2nk All Harmonic analysis of functions K. Stumpff [16] 2"k. 3"k 1939 All Harmonic analysis of functions Danielson and 1942 2" All X-ray diffraction in Lanczos [5] crystals L. H. Thomas [13] 1948 All Harmonic analysis of Any integer with relatively prime factors functions Any integer with I. I. Good [3] 1958 All Harmonic analysis of relatively prime factors functions Karatsuba '62 Cooley and 1965 Any composite integer Harmonic analysis of All Tukey [1] functions S. Winograd [14] 1976 Any integer with All Use of complexity theory relatively prime factors for harmonic analysis





error correcting codes

cryptographic protocols

XXth-XXIst centuries : digital data & interconnected networks integrity – confidentiality

discrete structures: exact and intensive computations

- ▶ matrices of large size, with sparsity or structure
- ▶ polynomials and polynomial matrices in one variable
- polynomials in several variables

goal of computer algebra fast algorithms : complexity & efficient implementations error correcting codes

cryptographic protocols

XXth-XXlst centuries : digital data & interconnected networks integrity – confidentiality

discrete structures: exact and intensive computations

- ▶ matrices of large size, with sparsity or structure
- polynomials and polynomial matrices in one variable
- polynomials in several variables

goal of computer algebra fast algorithms : complexity & efficient implementations

general methodology: reductions to efficient basic operations

measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field \mathbb{K}

low complexity boundlow execution time

low memory usage, power consumption, ...

 $\begin{array}{l} \mbox{prime field } \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \\ \mbox{field extension } \mathbb{F}_p[x]/\langle f(x)\rangle \\ \mbox{rationals } \mathbb{Q}, \mbox{ number fields, } \dots \end{array}$

measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field $\mathbb K$

low complexity boundlow execution time

low memory usage, power consumption, ...

 $\begin{array}{l} \mbox{prime field } \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \\ \mbox{field extension } \mathbb{F}_p[x]/\langle f(x)\rangle \\ \mbox{rationals } \mathbb{Q}, \mbox{ number fields, } \ldots \end{array}$

algebraic complexity (upper) bounds \rightsquigarrow count number of operations in \mathbb{K}

- standard complexity model for algebraic computations
- \checkmark often well correlated to implementation timings (e.g. over $\mathbb{K}=\mathbb{F}_p)$
- **?** ignores coefficient growth (e.g. over $\mathbb{K} = \mathbb{Q}$)

measuring efficiency

efficient algorithms for polynomials, matrices, power series, \ldots with coefficients in some base field $\mathbb K$

low complexity boundlow execution time

low memory usage, power consumption, ...

 $\begin{array}{l} \mbox{prime field } \mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \\ \mbox{field extension } \mathbb{F}_p[x]/\langle f(x)\rangle \\ \mbox{rationals } \mathbb{Q}, \mbox{ number fields, } \ldots \end{array}$

A strongly influenced by the quality of the implementation

this talk:

- ${\scriptstyle \blacktriangleright}$ working over $\mathbb{K}=\mathbb{F}_p$ with word-size prime p
- ► Intel Core i7-7600U @ 2.80GHz, no multithreading

matrices: multiplication

$$\mathbf{M} = \begin{bmatrix} 28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28 \end{bmatrix} \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text{ matrix over } \mathbb{K} \text{ (here } \mathbb{F}_{97} \text{)}$$

fundamental operations on $m\times m$ matrices:

- ${\scriptstyle \bullet} \, \text{addition} \text{ is "quadratic"} \colon O(m^2) \text{ operations in } \mathbb{K}$
- naive multiplication is cubic: $O(m^3)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

matrices: multiplication

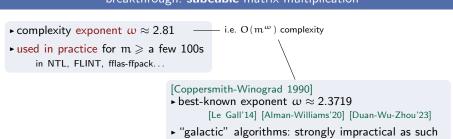
$$\mathbf{M} = \begin{bmatrix} 28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28 \end{bmatrix} \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text{ matrix over } \mathbb{K} \text{ (here } \mathbb{F}_{97} \text{)}$$

fundamental operations on $m\times m$ matrices:

- ${\scriptstyle \bullet} \, \text{addition} \, \text{ is "quadratic"} \colon O(m^2) \, \text{operations in } \mathbb{K}$
- naive multiplication is cubic: $O(m^3)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

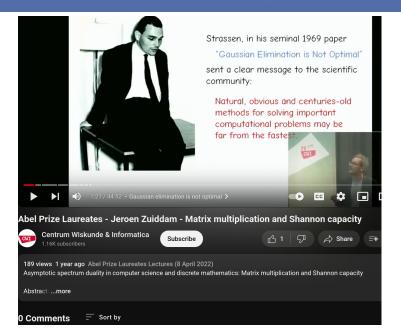


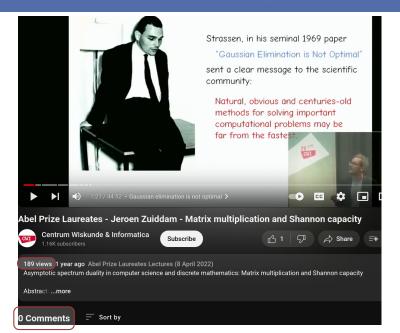
Strassen, in his seminal 1969 paper

"Gaussian Elimination is Not Optimal"

sent a clear message to the scientific community:

Natural, obvious and centuries-old methods for solving important computational problems may be far from the fastest.





Justin Bieber - Sorry (PURPOSE : The Movement)	PSY - GANGNAM STYLE(강남스타일) M/V		
Justin Bieber → Subscribe	officialpsy * Subscribe ௴ 28M 与 ⇒ Share ····		
3.772.923.806 views 8 years ago #JustinBieber #Vevo #Sorry Purposé Available Everywhere Now! Times: http://smartuf.ll/PurposeDi?iQid=VE	5,064,558,413 views 11 years ago #양남스타일 #PSY #GANGNAMSTYLE PSY - 'LLUVIT' M/V @ ● • • PSY - 'LLUVIT' M/V PSY - 'New Face' M/V @ ● • • PSY - 'New Face' M/V more		
Stream & Add To Your Spotify Playlist. http://smarturi.it/sPurpose?IQId=VEV0more			
874,077 Comments \Xi Sort by	5.360.274 Comments Sort by		

Justin Bieber - Sorry (PURPOSE : The Movement)	PSY - GANGNAM STYLE(강남스타일) M/V officialpsy - Subserito Subseri
Justin Bieber - Subscribe 🖒 16M 🖓 🏟 Share …	18.6M subscribers
3,772,923,806 views 8 years ago #JustinBieber #Vevo #Sorry Purpose' Available Everywhere Now! ITunes.http://smarturl.it/PurposeDix?ID(d=VE Stream 8,40d To Your Spotify Purykis: http://smarturl.it/sPurpose?IQ(d=VEV0more	5,064,558,413 views 11 years ago #강남소티얼 #PSY #GANGNAMSTYLE PSY - LLUX IT M/X @ • PSY - *LLUX IT M/V PSY - New Face' M/X @ • PSY - New Face' M/V more
Stream & Aud to Your spoury Playinst, http://smartun.it/sPurposeriqiu=vevomore	
874.077 Comments = Sort by	5 360 274 Comments Sort by

take-home messages:

- \blacktriangleright bibliometric indicators measure quantity, and there exist counterexamples to "quantity = quality"
- design fast algorithms for the most basic routines
- design efficient reductions to them for other tasks \rightarrow LinSys, Det, Inverse

 \rightarrow MatMul

polynomials: multiplication

 $p = 87x^7 + 74x^6 + 60x^5 + 46x^4 + 16x^3 + 41x^2 + 86x + 69$

 $p\in \mathbb{K}[x]_{<8} \quad \longrightarrow \text{univariate polynomial in } x \text{ of degree} <8 \text{ over } \mathbb{K}$

fundamental operations on polynomials of degree < d:

- $\scriptstyle \bullet$ addition and Horner's evaluation are linear: O(d)
- naive multiplication is quadratic: $O(d^2)$

 $[\mathsf{Karatsuba'62}] \qquad \mathsf{M}(d) \in \mathsf{O}(d^{1.58})$

breakthrough: subquadratic polynomial multiplication

polynomials: multiplication

 $p = 87x^7 + 74x^6 + 60x^5 + 46x^4 + 16x^3 + 41x^2 + 86x + 69$

 $p\in \mathbb{K}[x]_{<8} \quad \longrightarrow \text{univariate polynomial in } x \text{ of degree} <8 \text{ over } \mathbb{K}$

fundamental operations on polynomials of degree < d:

- $\scriptstyle \bullet$ addition and Horner's evaluation are linear: O(d)
- naive multiplication is quadratic: $O(d^2)$

 $[\mathsf{Karatsuba'62}] \qquad \mathsf{M}(d) \in \mathsf{O}(d^{1.58})$

breakthrough: subquadratic polynomial multiplication

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

- change of representation by evaluation-interpolation
- \blacktriangleright used in practice as soon as $d\approx 100$
- FFT techniques using (virtual) roots of unity

note: $M(d) \in O(d \log(d))$ if provided a "good" root of unity

318 long IsFFTPrime(long n, long& w)
319 + 74 lines: {
393
394
395 static
396 void NextFFTPrime(long& q, long& w, long index)
397 + 45 lines: {
442
443
444 long CalcMaxRoot(long p)
445 + 13 lines: {
458
459
460
461
462 + 5 lines: #ifndef NTL_WIZARD_HACK
468 void UseFFTPrime(long index)
469 + 36 lines: {
505 506
500 507 + 15 lines: #ifdef NTL FFT LAZYMUL
522
522
523
525
526 +2687 lines: #ifdef NTL FFT LAZYMUL
3213
ORMAL 👌 🎙 main 👌 software/ntl/src/FFT.cpp M +

▶ small prime FFT in NTL: \rightsquigarrow about **5500 lines** of C++ \rightsquigarrow target operation: FFT (including 1200 lines for vectorized version and 1100 for machine word arithmetic...)

3250 void DivRem(zz_pX& q, zz_pX& r, const zz_pX& a, 3258 void div(zz_pX& q, const zz_pX& a, const zz_pX& 3266 void div(zz_pX& q, const zz_pX& a, zz_p b) 3274 void rem(zz_pX& r, const zz_pX& a, const zz_pX& 3275 +--- 6 lines: {-3284 long operator==(const zz_pX& a, long b) 3306 long operator==(const zz_pX& a, zz_p b) 3319 void power(zz_pX& x, const zz_pX& a, long e) 3361 void reverse(zz_pX& x, const zz_pX& a, long hi) 3376 NTL END IMPL NORMAL main > software/ntl/src/lzz pX.cpp

► small prime FFT in NTL: → about 5500 lines of C++ → target operation: FFT (including 1200 lines for vectorized version and 1100 for machine word arithmetic...)

• polynomials in $\mathbb{Z}/p\mathbb{Z}[x]$: \rightsquigarrow about **5500 lines** as well

- → target operations include:
- . multiplication, truncated inversion, division,
- . interpolation, multipoint evaluation,
- . XGCD, Berlekamp-Massey, resultant,
- . power projection, modular composition, ...

```
3165 void FFTDiv(zz pX& g, const zz pX& a, const zz pX& b)
3166 {
        long n = deq(b);
        long m = deg(a):
        long k:
3184
        zz_pX P1, P2, P3;
3185
3186
        CopyReverse(P3. b. 0. n):
3187
        InvTrunc(P2, P3, m-n+1):
3188
        CopyReverse(P1, P2, 0, m-n);
        k = NextPowerOfTwo(2*(m-n)+1):
        fftRep R1(INIT SIZE, k), R2(INIT SIZE, k);
3193
3194
        TofftRep(R1, P1, k);
3195
        TofftRep(R2. a. k. n. m):
        mul(R1, R1, R2);
        FromfftRep(g, R1, m-n, 2*(m-n));
```

small prime FFT in NTL:
→ about 5500 lines of C++
→ target operation: FFT
(including 1200 lines for vectorized version and 1100 for machine word arithmetic...)
polynomials in Z/pZ[x]:
→ about 5500 lines as well

- \rightsquigarrow target operations include:
- . multiplication, truncated inversion, division,
- . interpolation, multipoint evaluation,
- . XGCD, Berlekamp-Massey, resultant,
- . power projection, modular composition, ...
- ▶ reductions are often
- . concise and readable
- . close to the pseudocode

```
3165 void FFTDiv(zz pX& q, const zz pX& a, const zz pX& b)
3166 {
        long n = deq(b);
       long m = deg(a):
        long k:
3183
3184
        zz_pX P1, P2, P3;
3185
3186
        CopyReverse(P3. b. 0. n):
3187
        InvTrunc(P2, P3, m-n+1):
3188
        CopyReverse(P1, P2, 0, m-n);
3189
3190
        k = NextPowerOfTwo(2*(m-n)+1):
3191
3192
        fftRep R1(INIT SIZE, k), R2(INIT SIZE, k);
3193
3194
        TofftRep(R1, P1, k);
3195
        TofftRep(R2, a, k, n, m);
3196
        mul(R1, R1, R2);
        FromfftRep(g, R1, m-n, 2*(m-n));
```

```
\blacktriangleright \mathfrak{m} \leftarrow \mathsf{deg}(A) \text{ and } \mathfrak{n} \leftarrow \mathsf{deg}(B)
```

```
• if m < n, return (0, A)
```

```
• set reversals \tilde{A} \leftarrow x^m A(1/x)
and \tilde{B} \leftarrow x^n B(1/x)
• find \tilde{Q} = \tilde{A}/\tilde{B} \mod x^{m-n+1} by
power series inversion and product
• reverse \tilde{Q} to obtain Q
```

reductions strike back

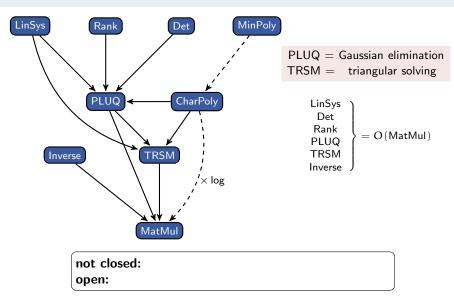
concentrate efforts on: basic routines + good reductions

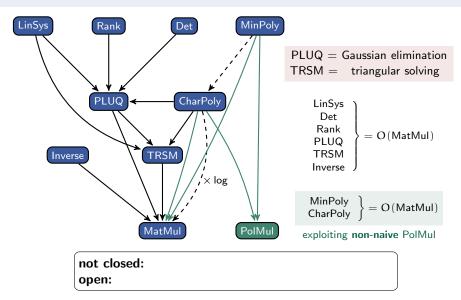
```
3165 void FFTDiv(zz pX& q, const zz pX& a, const zz pX& b)
3166 {
        long n = deq(b);
       long m = deg(a):
        long k:
3172 +---- 4 lines: if (m < n) {--
3183
3184
        zz_pX P1, P2, P3;
3185
3186
        CopyReverse(P3, b, 0, n);
3187
        InvTrunc(P2, P3, m-n+1):
3188
        CopyReverse(P1, P2, 0, m-n);
3190
        k = NextPowerOfTwo(2*(m-n)+1):
3192
        fftRep R1(INIT SIZE, k), R2(INIT SIZE, k);
3193
3194
        TofftRep(R1, P1, k);
3195
        TofftRep(R2. a. k. n. m):
        mul(R1, R1, R2);
        FromfftRep(g, R1, m-n, 2*(m-n));
```

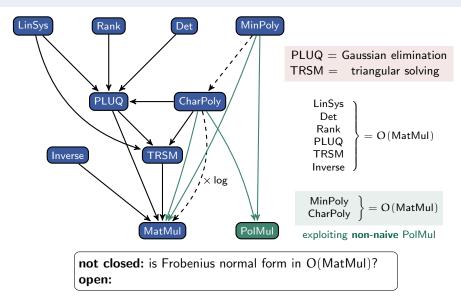
```
\blacktriangleright \mathfrak{m} \leftarrow \mathsf{deg}(A) \text{ and } \mathfrak{n} \leftarrow \mathsf{deg}(B)
```

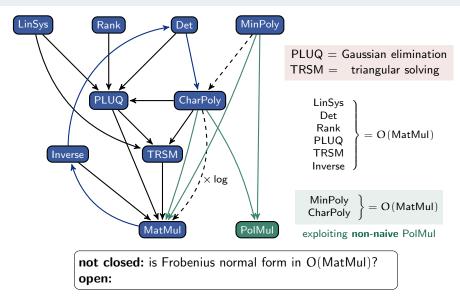
```
• if m < n, return (0, A)
```

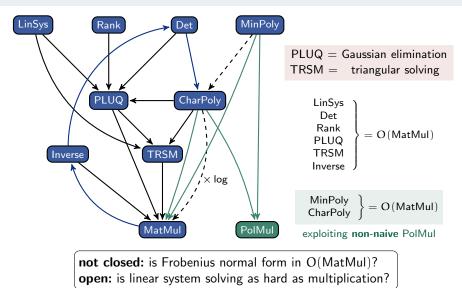
```
• set reversals \tilde{A} \leftarrow x^m A(1/x)
and \tilde{B} \leftarrow x^n B(1/x)
• find \tilde{Q} = \tilde{A}/\tilde{B} \mod x^{m-n+1} by
power series inversion and product
• reverse \tilde{Q} to obtain Q
```











bonus: some notes/references

[Jeannerod-Pernet-Storjohann 2013] doi.org/10.1016/j.jsc.2013.04.004

- explicit reductions between inversion & MatMul & Gaussian elimination / echelonization
- ► constants in the O(·) complexities when using classical matrix multiplication (w = 3) or Strassen's multiplication

"not closed": it is open, but

 there is a randomized algorithm for Frobenius form computation which has complexity O(MatMul)

[Pernet-Storjohann 2007] http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf

recent developments give new insight concerning core operations typically used in Frobenius form algorithms charpoly in O(MatMul): [Neiger-Pernet 2021] doi.org/10.1016/S0885-064X(22)00005-X Krylov iterates in O(MatMul): [Neiger-Pernet-Villard 2024] hal.science/hal-04445355

most problems have quasi-linear complexity

thanks to reductions to PolMul — did we mention the importance of good reductions?

- addition f + g, multiplication f * g
- division with remainder f = qg + r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- $\textbf{ interpolation } f(\alpha_1), \dots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

most problems have quasi-linear complexity

thanks to reductions to PolMul — did we mention the importance of good reductions?

$O(\mathsf{M}(d))$

- \blacktriangleright addition f+g, multiplication $f\ast g$
- $\blacktriangleright \mbox{division}$ with remainder f=qg+r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

most problems have quasi-linear complexity

thanks to reductions to PolMul — did we mention the importance of good reductions?

$O(\mathsf{M}(d))$

- \blacktriangleright addition f+g, multiplication $f\ast g$
- \blacktriangleright division with remainder f=qg+r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

- $O(M(d) \log(d))$ • multipoint eval. $f \mapsto f(\alpha_1), \dots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence

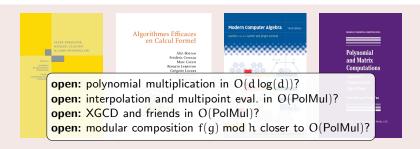
most problems have quasi-linear complexity

thanks to reductions to PolMul — did we mention the importance of good reductions?

$O(\mathsf{M}(d))$

- \blacktriangleright addition f+g, multiplication $f\ast g$
- \blacktriangleright division with remainder f=qg+r
- truncated inverse $f^{-1} \mod x^d$
- extended GCD fu + gv = gcd(f, g)

- $O(M(d) \log(d))$ • multipoint eval. $f \mapsto f(\alpha_1), \dots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod x^d$
- minpoly of linearly recurrent sequence



bonus: some notes/references

polynomial multiplication in $O(d \log(d))$?

- remains open over an arbitrary field, concerning algebraic complexity
- solved when the field possesses suitable roots of unity for FFT
- method of choice in practice (using several primes and CRT if needed) when working over prime finite fields Z/pZ
- recent progress in the bit complexity model [Harvey-van der Hoeven 2019] https://doi.org/10.1016/j.jco.2019.03.004 [Harvey-van der Hoeven 2022] https://doi.org/10.1145/3505584

interpolation and multipoint evaluation in O(PolMul)?

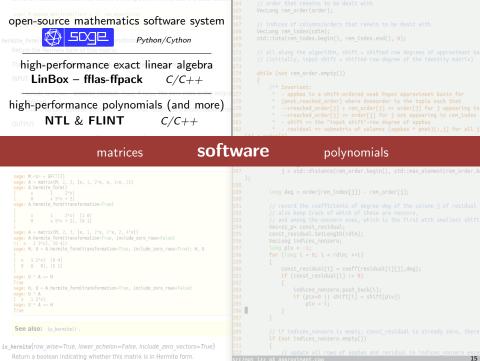
- remains open for an arbitrary set of points, with no assumption, but:
- by design, solved for FFT points, when available
- more generally, solved for points forming a geometric sequence [Bostan-Schost 2005] https://doi.org/10.1016/j.jco.2004.09.009
- in many applications of interpolation/evaluation, one can choose the points, in which case O(PolMul) is feasible

<pre>tage: kdgree_matrix(shifts-[:1,2], row_wise-False) [6 -2 -1] [5 -2 -2] hemite_form(include_zero_rows=True, transformation=False) Return the Hermite form of this matrix. The Hermite form is also normalized, i.e., the pivot polynomials are monic. INPUT: include_zero_rows - boolean (default: rrue); if False, the zero rows in the outpu deleted transformation - boolean (default: False); if True, return the transformation ma OUTPUT:</pre>	<pre>178 * (pmit,reached_order) where denoerder is the tuple such that 179 *>reached_order[j] + rem_order[j] = order[j] for j appearing in 180 *>reached_order[j] = order[j] for j not appearing in rem_index 181 * -shift == the "input shift"-row degree of applas 182 * - residual == submatrix of columns (applas * pmat)[:,]] for all j 182 * - residual == submatrix of columns (applas * pmat)[:,]] for all j</pre>
$\begin{array}{c} \mbox{matrices} \\ \label{eq:product} \end{tabular} \\ \mbox{sequence} & \mbox{Model} \end{tabular} \\ \mbox{sequence} & \mbox{sequence} $	Ware polynomials 197 j = std::distance(ren_order.begin(), std::max_element(ren_order.b 199 long deg = order[ren_index[j]] - ren_order[j]; 199 // record the coefficients of degree deg of the column j of residual; 192 // also keep track of which of these are monzero, 193 // and among the nonzero meet, which is the first with smallest shift 194 Veccar_procest_residual; 195 const_residual;Settength(rdm); 196 for (long t = 0; t < rdin; ++1) 197 const_residual[t] = coeff(residual[t][j],deg); 201 const_residual[t] = 0; 202 { 103 if (cions_residual; exoth(ti); 204 if (cions_residual[t] = 0) 205 ptv = t; 206

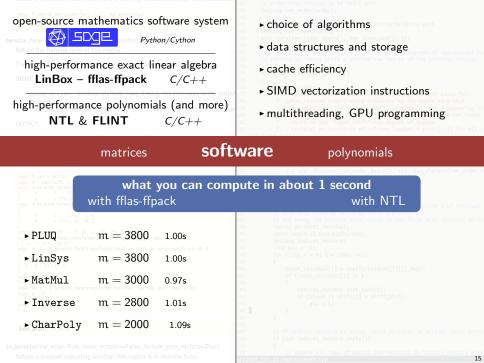
See also: is_hermite().

is_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.

212 // update all rows of appbas and residual in indices_nonzero exce src/mat_lzz_pX_approximant.cpp 15



open-source mathematics software system Python/Cython high-performance exact linear algebra LinBox – fflas-ffpack $C/C++$ high-performance polynomials (and more) NTL & FLINT $C/C++$	 choice of algorithms data structures and storage cache efficiency SIMD vectorization instructions multithreading, GPU programming 		
matrices soft	ware polynomials		
<pre>sage: H.cor = GF(7)[] sage: A = matrix(H, 2, 3, [x, 1, 2*x, x, 1*x, 2]) sage: A hermite_form([</pre>	<pre>187</pre>		
See also: is_hermite(). is_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.	208 209 // if indices_nonzero is empty, const_residual is already zero, there 210 if (not indices_nonzero.empty()) 211 { 212 // update all rows of appbas and residual in indices_nonzero exco src/mat lzz_pX approximant.cop 15		



open-source mathematics software system Python/Cython high-performance exact linear algebra LinBox – fflas-ffpack $C/C++$ high-performance polynomials (and more) NTL & FLINT $C/C++$		 choice of algorithms data structures and storage cache efficiency SIMD vectorization instructions multithreading, GPU programming 			
	matrices	soft	ware	polynomials	
<pre>sage: M.exx = GF(7)[] sage: A = matrix(M, 2, sage: A.hermite_form) i x i 2 0 x.5*x = sage: A.hermite_formit</pre>	what y with fflas-ffpa		oute in about 1	second with NTL	d::Max_eleMent(rem_order);
► PLUQ	m = 3800	1.00s	► PolMul	$d=7 imes10^{6}$	1.03s
► LinSys	m = 3800	ero_rows=True); H, U 1.00s	► Division	$d=4\times 10^{6}$	0.96s
► MatMul	m = 3000	0.97s	► XGCD	$d=2\times 10^5$	0.99s
► Inverse	m = 2800	1.01s	► MinPoly	$d=2\times 10^5$	1.10s
► CharPoly	m = 2000	1.09s	► MPeval	$d=1\times 10^4$	1.01s
		e_zero_vectors=True)	210 if (not indices_no 211 { 212 // undate all		ual in indicar poptare avec

src/mat_lzz_pX_approximant.c

Return a boolean indicating whether this matrix is in Hermite for

open-source mathematics software system Python/Cython high-performance exact linear algebra LinBox – fflas-ffpack $C/C++$ high-performance polynomials (and more) NTL & FLINT $C/C++$		 choice of algorithms data structures and storage cache efficiency SIMD vectorization instructions multithreading, GPU programming 			
	matrices	soft	ware	polynomials	
$\begin{array}{c} \text{sage: } \text{M}\text{-}\infty\text{= }\text{GF(7)}[1]\\ \text{sage: } \text{A}\text{=}\text{matrix}(\text{M}, 2]\\ \text{sage: } \text{A}\text{-}\text{hermite}\text{form}[1]\\ [x 1 2]\\ [0 x 5^{*}x + \\ \text{sage: } \text{A}\text{-}\text{hermite}\text{form}(t) \end{array}$	what y with fflas-ffpa		pute in about 1	. second with NTL	nolumn j of residual
► PLUQ	m = 3800	1.00s	► PolMul	$d=7 imes10^{6}$	1.03s
► LinSys	m = 3800	zero_rows=True); H, U 1.00s	► Division	$d=4\times 10^{6}$	0.96s
► MatMul	m = 3000	0.97s	► XGCD	$d=2\times 10^5$	0.99s
sage: U * A	m = 2800	1.01s	► MinPoly	$d=2\times 10^5$	1.10s
► Inverse	m = 2000		200		

is_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.

matrix exponentiation

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0 output: A^k

matrix exponentiation

• repeated squaring: $O(m^{\omega} \log(k))$

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0 output: A^k

matrix exponentiation

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0output: A^k

- repeated squaring: $O(m^{\omega} \log(k))$
- \blacktriangleright using Frobenius form: $O(m^{\varpi} \log(m) \log \log(m))$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Storjohann 2001]

• improvement with polynomial matrices: $O(m^{\omega} \log \log(m)^2)$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

matrix exponentiation

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0

output: A^k

can we reach $O(m^{\omega})$?

- repeated squaring: $O(m^{\omega} \log(k))$
- ▶ using Frobenius form: $O(m^{\omega} \log(m) \log \log(m))$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Storjohann 2001]
- $\label{eq:constraint} \begin{array}{l} \textbf{ improvement with polynomial matrices:} \\ O(m^\omega \log \log(m)^2) \text{ if } \log(k) \in O(m) \\ \\ \text{[Giesbrecht 1995] [Neiger-Pernet-Villard 2024]} \end{array}$

matrix exponentiation

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0

output: A^k

can we reach $O(m^{\omega})$?

• repeated squaring: $O(m^{\omega} \log(k))$

▶ using Frobenius form: $O(m^{\omega} \log(m) \log \log(m))$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Storjohann 2001]

Find the improvement with polynomial matrices: $O(m^{\omega} \log \log(m)^2)$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

Krylov iterates

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ output: $v, Av, \dots, A^{m-1}v$

matrix exponentiation

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0

output: A^k

can we reach $O(m^{\omega})$?

• repeated squaring: $O(m^{\omega} \log(k))$

▶ using Frobenius form: $O(m^{\omega} \log(m) \log \log(m))$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Storjohann 2001]

Find the improvement with polynomial matrices: $O(m^{\omega} \log \log(m)^2)$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

Krylov iterates

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ output: $v, Av, \dots, A^{m-1}v$

• repeated matrix-vector products: $O(m^3)$

• via repeated squaring: $O(m^{\omega} \log(m))$ [Keller-Gehrig 1985]

matrix exponentiation

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0

output: A^k

can we reach $O(m^{\omega})$?

• repeated squaring: $O(m^{\omega} \log(k))$

▶ using Frobenius form: $O(m^{\omega} \log(m) \log \log(m))$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Storjohann 2001]

Find the improvement with polynomial matrices: $O(m^{\omega} \log \log(m)^2)$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

Krylov iterates

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$

output: $v, Av, \ldots, A^{m-1}v$

• repeated matrix-vector products: $O(m^3)$

• via repeated squaring: $O(m^{\omega} \log(m))$ [Keller-Gehrig 1985]

► with polynomial matrices: O(m^ω) [Zhou-Labahn-Storjohann 2012][Neiger-Pernet 2021]

matrix exponentiation

input: matrix $A \in \mathbb{K}^{m \times m}$, integer k > 0

output: A^k

can we reach $O(m^{\omega})$?

• repeated squaring: $O(m^{\omega} \log(k))$

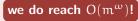
▶ using Frobenius form: $O(m^{\omega} \log(m) \log \log(m))$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Storjohann 2001]

Find the improvement with polynomial matrices: $O(m^{\omega} \log \log(m)^2)$ if $\log(k) \in O(m)$ [Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

Krylov iterates

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$

output: ν , $A\nu$, . . . , $A^{m-1}\nu$



... can we do better?

• repeated matrix-vector products: $O(m^3)$

• via repeated squaring: $O(m^{\omega} \log(m))$ [Keller-Gehrig 1985]

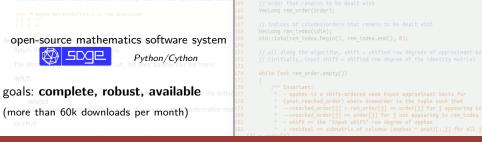
with polynomial matrices: O(m^ω) [Zhou-Labahn-Storjohann 2012][Neiger-Pernet 2021]

<pre>sage: M.degree_matrix(shifts=[-1,2], row_wise=false) [0 -2 -1] [5 -2 -2]</pre>	
mite_form(include_zero_rows=True, transformation=False)	
The Hermite form is also normalized, i.e., the pivot polynomials are monic.	<pre>// (initially, input shift = shifted row degree of the identity matrix) while (not rem_order.empty())</pre>
 include zero_rows - boolean (default: True); if False, the zero rows in the output deleted transformation - boolean (default: False); if True, return the transformation mat 	
OUTPUT:	

software development for polynomial matrices

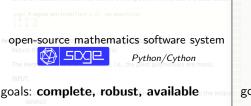
<pre>sage: H.coc = GF(7)[] sage: A = matrix(H, 2, 3, [x, 1, 2"x, x, 1=x, 2]) sage: A hermite [orm[transformation=True] [x] = 1 = 2"x] [1 0] 0 = x 5"x + 2], [0 1] sage: A hermite [orm[transformation=True, include_zero_rows=False] [[x] = 1 = 2"x], [0 4] sage: A = matrix(H, 2, 3, [x, 1, 2"x, 2"x, 2, 4"x]) sage: A hermite [orm[transformation=True, include_zero_rows=False] [[x] = 1 = 2"x], [0 4] sage: A = matrix[] [0 4] [0 = 0 = 0], [1 1] sage: H = A Hermite True</pre>	<pre>197 j = std::distance(rem_order.begin(), std::max_element(rem_order.b); 188 long deg = order[rem_index[j]] - rem_order[j]; 190 // record the coefficients of degree deg of the column j of residual 191 // also keep track of which of these are nonzero; 193 // and among the nonzero ones, which is the first with smallest shift 194 Veczz_p> const_residual; 195 const_residual.SetLength(rd(m); 196 VecLong ind(zes_nonzero; 197 long plv = -1; 198 for (long i = 0; t < rdin; ++1) 199 {</pre>
Trie Sage: W, U – A. hermite_formitransformation-True, include_zero_rows-False) [x = 1_2*1] Sage: U – X — H True	<pre>202 { 203 indices_nonzero.push_back(i); 204 if (pive0 shift[i] < shift[piv]) 205 piv = i; 206 207 } </pre>
See also: is hermite().	
ermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.	218 if (not indices_nonzero.enpty()) 211 { 212 // update all rows of appbas and residual in indices_nonzero exce src/nat_lzz_pX_approximant.cpp 17

is H



software development for polynomial matrices

<pre>sage: Hcox = GF(7)[1] sage: A = matrix(H, 2, 3, [x, 1, 2*x, x, 1*x, 2]) sage: A.hemite form(1</pre>	<pre>137 j = std::distance(rem_order.begin(), std::nax_element(rem_order.); 138 139 long deg = order[rem_index[j]] - rem_order[j]; 199 191 // record the coefficients of degree deg of the column j of residual 192 // also keep track of which of these are nonzero, 193 // and among the nonzero ones, which is the first with smallest shif 194 Vecczt zp. coast residual; 195 const_residual.setLength(rdin); 196 Veccnog indices_nonzero; 197 long piv = -1; 198 for (long t = 0; t < rdin; ++1) 19</pre>
See also: is_hermite() .	
_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True) Return a boolean indicating whether this matrix is in Hermite form.	210 if (not indices_nonzero.empty()) 211 (212 // update all rows of appbas and residual in indices_nonzero exc src/nat_trz_pX_approximant.cpp 17 17



(more than 60k downloads per month)

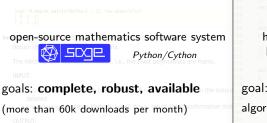
// order that remains to be dealt with VecLong rem_order(order);

high-performance exact linear algebra LinBox – fflas-ffpack C/C++

goal: **optimized basic operations** algorithms, vectorization, multithreading

software development for polynomial matrices

See also: is_hermite(). 17

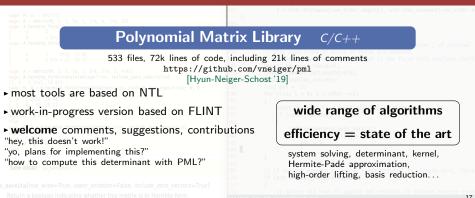


// order that remains to be dealt with
VecLong rem_order(order);

high-performance exact linear algebra LinBox – fflas-ffpack C/C++

goal: **optimized basic operations** algorithms, vectorization, multithreading

software development for polynomial matrices



outline

computer algebra

- efficient algorithms and software
- ▶ for matrices over a field
- ▶ for univariate polynomials

polynomial matrices

first algorithms

exercises

outline

computer algebra

polynomial matrices

- \blacktriangleright efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- basic definitions and properties
- use in various situations
- ▶ seen as matrices / seen as polynomials

first algorithms

exercises

basic definitions and properties

$$\mathbb{K}[\mathbf{x}]^{m \times n} = \text{set of } m \times n \text{ matrices over } \mathbb{K}[\mathbf{x}]$$

called polynomial matrices in what follows
$$\begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix} \in \mathbb{K}[\mathbf{x}]^{3 \times 3}$$

- basic operations: addition and multiplication
 defined as usual (multiplication requires compatible dimensions)
- ${\scriptstyle \bullet }\, \mathbb{K}[x]$ is not a field

basic definitions and properties

$$\mathbb{K}[x]^{m \times n} = \text{set of } m \times n \text{ matrices over } \mathbb{K}[x]$$

called polynomial matrices in what follows
$$\begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix} \in \mathbb{K}[x]^{3 \times 3}$$

- basic operations: addition and multiplication
 defined as usual (multiplication requires compatible dimensions)
- ${\scriptstyle \bullet }\, \mathbb{K}[x]$ is not a field

 \rightsquigarrow algorithms may work in $\mathbb{K}(x)^{m \times n}$, but be careful with "degree explosion"!

examples you already know

large matrices with small degrees:

characteristic polynomial det($xI_m - M$) $\in \mathbb{K}[x]$ of a matrix $M \in \mathbb{K}^{m \times m}$ \rightsquigarrow determinant of polynomial matrix $xI_m - M \in \mathbb{K}[x]^{m \times m}$

- ▶ fastest known algorithm uses this viewpoint [N.-Pernet, 2021]
- $\scriptstyle \bullet \mbox{ gradually transforms } xI_{\mathfrak{m}} M$ to smaller matrices with larger degrees

examples you already know

large matrices with small degrees:

characteristic polynomial det $(xI_m - M) \in \mathbb{K}[x]$ of a matrix $M \in \mathbb{K}^{m \times m}$ \rightsquigarrow determinant of polynomial matrix $xI_m - M \in \mathbb{K}[x]^{m \times m}$

- ▶ fastest known algorithm uses this viewpoint [N.-Pernet, 2021]
- $\scriptstyle \bullet \mbox{ gradually transforms } xI_m-M$ to smaller matrices with larger degrees

small matrices with large degree:

extended GCD $\mathfrak{u}f + \nu g = \mathsf{gcd}(f, g)$ for polynomials $f, g \in \mathbb{K}[x]_{\leq d}$ \rightsquigarrow corresponds to a polynomial matrix transformation

$$\begin{bmatrix} u & v \\ \tilde{g} & \tilde{f} \end{bmatrix} \begin{bmatrix} f \\ g \end{bmatrix} = \begin{bmatrix} gcd(f, g) \\ 0 \end{bmatrix}$$

with the leftmost (polynomial) matrix of determinant in $\mathbb{K}\setminus\{0\}$

 fastest known "half-gcd" algorithms use this viewpoint [Knuth, 1970] [Schönhage, 1971] [Brent-Gustavson-Yun, 1980]

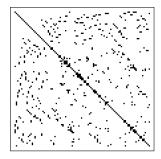
use in various situations

operations on sparse matrices

- $\scriptstyle \bullet$ solving sparse linear systems over $\mathbb K$
- ▶ computing the minimal polynomial / Frobenius form
- introducing parallelism in these computations

[Wiedemann 1986] [Coppersmith 1993] [Villard 1997]

example of sparse matrix in $\mathbb{K}^{m\times m}$ typical case: O(m) nonzero entries



uses **polynomial matrix** generator of linearly recurrent **matrix** sequence

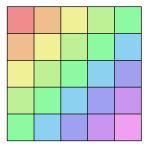
use in various situations

operations on structured matrices

- matrix-vector multiplication
- Inear system solving
- nullspace computation

[Kailath-Kung-Morf 1979] [Bostan et al. 2017]

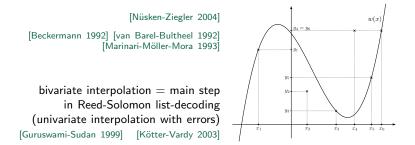
example of Hankel matrix \rightsquigarrow block-Hankel matrices \rightsquigarrow Hankel-like matrices



uses **polynomial matrix** multiplication and **matrix**-Padé approximation / **matrix**-GCD

use in various situations

bivariate interpolation and multipoint evaluation problem: given points $(\alpha_1, \beta_1), \ldots, (\alpha_n, \beta_n)$ in \mathbb{K}^2 , • given p(x, y), compute $p(\alpha_i, \beta_i)$ for $1 \le i \le n$ • find p(x, y) of small degree such that $p(\alpha_i, \beta_i) = 0$



uses **polynomial matrix** multiplication and **matrix** rational reconstruction / **algebraic approximants**

seen as matrices over $\mathbb{K}(x)$

linear algebra viewpoint:

```
matrices in \mathbb{K}[x]^{m\times n} are also in \mathbb{K}(x)^{m\times n}
```

(and $\mathbb{K}(x)$ is a field)

 \Rightarrow usual definition of addition, multiplication, determinant these do not involve division anyway (... in algorithms?)

 \Rightarrow usual definition of rank coincides with rank of free module

 \Rightarrow usual definition of inverse with inverse over $\mathbb{K}(x)$

```
seen as matrices over \mathbb{K}(x)
```

linear algebra viewpoint:

```
matrices in \mathbb{K}[x]^{m\times n} are also in \mathbb{K}(x)^{m\times n}
```

(and $\mathbb{K}(x)$ is a field)

 \Rightarrow usual definition of addition, multiplication, determinant these do not involve division anyway (... in algorithms?)

 \Rightarrow usual definition of rank coincides with rank of free module

 \Rightarrow usual definition of inverse with inverse over $\mathbb{K}(x)$

 $\begin{array}{ll} \text{inverse is over } \mathbb{K}[x] \ \Leftrightarrow \ \mathsf{det}(\mathbf{A}) \in \mathbb{K} \setminus \{\mathbf{0}\} \\ \\ \text{def.: A is unimodular} \end{array}$

```
seen as matrices over \mathbb{K}(x)
```

linear algebra viewpoint:

```
matrices in \mathbb{K}[x]^{m\times n} are also in \mathbb{K}(x)^{m\times n}
```

(and $\mathbb{K}(x)$ is a field)

 \Rightarrow usual definition of addition, multiplication, determinant these do not involve division anyway (... in algorithms?)

 \Rightarrow usual definition of rank coincides with rank of free module

 \Rightarrow usual definition of inverse with inverse over $\mathbb{K}(x)$

 \rightsquigarrow algorithms may work in $\mathbb{K}(x)^{m\times n},$ but be careful with "degree explosion"!

exercise: Gaussian elimination is exponential-time

seen as matrices over $\mathbb{K}(x)$

linear algebra viewpoint:

```
matrices in \mathbb{K}[x]^{m \times n} are also in \mathbb{K}(x)^{m \times n}
```

(and $\mathbb{K}(x)$ is a field)

viewpoint useful for definitions and properties
viewpoint hardly usable for algorithms: ignores degree growth + too coarse cost bounds

. cost of naive addition in $\mathbb{K}[x]^{m \times n} \longrightarrow O(mn)$ additions in $\mathbb{K}(x)$. cost of naive multiplication in $\mathbb{K}[x]^{m \times m} \longrightarrow O(m^3)$ ops in $\mathbb{K}(x)$

```
seen as matrices over \mathbb{K}(x)
```

linear algebra viewpoint:

```
matrices in \mathbb{K}[x]^{m \times n} are also in \mathbb{K}(x)^{m \times n}
```

(and $\mathbb{K}(x)$ is a field)

viewpoint useful for definitions and properties
viewpoint hardly usable for algorithms: ignores degree growth + too coarse cost bounds

. cost of naive multiplication in $\mathbb{K}[x]^{m\times m} \quad \longrightarrow \quad O(m^3) \text{ ops in } \mathbb{K}(x)$

for algorithms&complexity, considering the degrees of entries is essential

seen as polynomials over $\mathbb{K}^{m\times n}$

polynomial viewpoint:

 $\mathbb{K}[x]^{m\times n}$ is isomorphic to $\mathbb{K}^{m\times n}[x]$

$$\begin{split} \mathbf{A} &= \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 1 & 3\\ 5 & 1 & 3\\ 3 & 5 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 4 & 0\\ 0 & 3 & 5\\ 5 & 6 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 4\\ 0 & 5 & 0\\ 1 & 0 & 0 \end{bmatrix} \mathbf{x}^2 + \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 3 & 0 & 0 \end{bmatrix} \mathbf{x}^3 \end{split}$$

seen as polynomials over $\mathbb{K}^{m \times n}$

polynomial viewpoint:

 $\mathbb{K}[x]^{m\times n}$ is isomorphic to $\mathbb{K}^{m\times n}[x]$

$$\mathbf{A} = \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 1 & 3\\ 5 & 1 & 3\\ 3 & 5 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 4 & 0\\ 0 & 3 & 5\\ 5 & 6 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 4\\ 0 & 5 & 0\\ 1 & 0 & 0 \end{bmatrix} \mathbf{x}^2 + \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 3 & 0 & 0 \end{bmatrix} \mathbf{x}^3$$

A has degree 3; in general, $\text{deg}(AB)\leqslant \text{deg}(A)+\text{deg}(B)$ e.g. $\text{deg}(A^2)=6$, and $\text{deg}(A^3)=8$, and $\text{deg}(A^4)=11$

seen as polynomials over $\mathbb{K}^{m \times n}$

polynomial viewpoint:

 $\mathbb{K}[x]^{m\times n}$ is isomorphic to $\mathbb{K}^{m\times n}[x]$

$$\mathbf{A} = \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 1 & 3\\ 5 & 1 & 3\\ 3 & 5 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 4 & 0\\ 0 & 3 & 5\\ 5 & 6 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 4\\ 0 & 5 & 0\\ 1 & 0 & 0 \end{bmatrix} \mathbf{x}^2 + \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 3 & 0 & 0 \end{bmatrix} \mathbf{x}^3$$

degree growth enhances computational aspects

example: computing the N-th power A^N

seen as polynomials over $\mathbb{K}^{m \times n}$

polynomial viewpoint:

 $\mathbb{K}[x]^{m\times n}$ is isomorphic to $\mathbb{K}^{m\times n}[x]$

$$\begin{split} \mathbf{A} &= \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 1 & 3\\ 5 & 1 & 3\\ 3 & 5 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 4 & 0\\ 0 & 3 & 5\\ 5 & 6 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 4\\ 0 & 5 & 0\\ 1 & 0 & 0 \end{bmatrix} \mathbf{x}^2 + \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 3 & 0 & 0 \end{bmatrix} \mathbf{x}^3 \end{split}$$

degree growth enhances computational aspects

example: computing the N-th power A^N

repeated squaring:	
(A × A	(deg = 3)
$\mathbf{A}^2 imes \mathbf{A}^2$	$(deg \leqslant 6)$
₹ i	:
$\mathbf{A}^{rac{\mathrm{N}}{4}} imes \mathbf{A}^{rac{\mathrm{N}}{4}}$	$(\deg \leqslant \frac{3N}{4})$
$\mathbf{A}^{\frac{N}{2}} \times \mathbf{A}^{\frac{N}{2}}$	$(\deg \leq \frac{3N}{2})$

seen as polynomials over $\mathbb{K}^{m \times n}$

polynomial viewpoint:

 $\mathbb{K}[x]^{m\times n}$ is isomorphic to $\mathbb{K}^{m\times n}[x]$

$$\begin{split} \mathbf{A} &= \begin{bmatrix} 3x+4 & x^3+4x+1 & 4x^2+3\\ 5 & 5x^2+3x+1 & 5x+3\\ 3x^3+x^2+5x+3 & 6x+5 & 2x+1 \end{bmatrix} \\ &= \begin{bmatrix} 4 & 1 & 3\\ 5 & 1 & 3\\ 3 & 5 & 1 \end{bmatrix} + \begin{bmatrix} 3 & 4 & 0\\ 0 & 3 & 5\\ 5 & 6 & 2 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 & 0 & 4\\ 0 & 5 & 0\\ 1 & 0 & 0 \end{bmatrix} \mathbf{x}^2 + \begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0\\ 3 & 0 & 0 \end{bmatrix} \mathbf{x}^3 \end{split}$$

- natural notion of degree of a polynomial matrix
- $\label{eq:addition} \begin{array}{l} \bullet \mbox{ addition of } \mathbf{A}, \mathbf{B} \in \mathbb{K}[x]^{m \times n} \mbox{ is in } O(mnd) \mbox{ operations in } \mathbb{K} \\ \mbox{ where } d = \min(\mbox{deg}(\mathbf{A}), \mbox{deg}(\mathbf{B})) \end{array}$

seen as polynomials over $\mathbb{K}^{m\times n}$

polynomial viewpoint:

 $\mathbb{K}[x]^{m\times n}$ is isomorphic to $\mathbb{K}^{m\times n}[x]$

```
when m = n, \mathbb{K}^{m \times m} is a (non-commutative) ring
```

derived from univariate polynomial algorithms:

• truncated inversion via power series & Newton iteration condition for invertibility? complexity?

► fast Euclidean division with remainder conditions for feasibility? complexity?

seen as polynomials over $\mathbb{K}^{m \times n}$

polynomial viewpoint:

```
\mathbb{K}[x]^{m\times n} is isomorphic to \mathbb{K}^{m\times n}[x]
```

algorithmically fruitful viewpoint, with some limitations

ignores heterogeneous degrees of matrix entries consider $\mathbf{A} = \begin{bmatrix} f(x) & a_{01} & \cdots \\ a_{10} & a_{11} \\ \vdots & \ddots \end{bmatrix} \in \mathbb{K}[x]^{m \times m}$, f(x) of degree d, other entries in \mathbb{K} • data structure: d + 1 matrices in $\mathbb{K}^{m \times m}$ • size of representation: $m^2(d + 1) \rightarrow m^2 + d$? • adding two such matrices: $O(m^2(d + 1)) \rightarrow m^2 + d$?

outline

computer algebra

polynomial matrices

- \blacktriangleright efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- basic definitions and properties
- use in various situations
- ▶ seen as matrices / seen as polynomials

first algorithms

exercises

outline

computer algebra

polynomial matrices

first algorithms

- ${\scriptstyle \blacktriangleright}$ efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques

exercises

fast multiplication

naive multiplication: $O(m^3d^2)$ operations in \mathbb{K}

 $O(\mathfrak{m}^{\omega}M(d))?$

fast multiplication

naive multiplication: $O(m^3d^2)$ operations in $\mathbb K$

 $O(\mathfrak{m}^{\omega}M(\mathfrak{d}))?$

On fast multiplication of polynomials over arbitrary algebras

David G. Cantor¹ and Erich Kaltofen²*

 ¹ Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA
 ² Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

Received January 22, 1988 / May 10, 1991

1 Introduction

In this paper we generalize the well-known Schönhage-Strassen algorithm for multiplying large integers to an algorithm for multiplying polynomials with coefficients from an arbitrary, not necessarily commutative, not necessarily associative, algebra \mathscr{A} . Our main result is an algorithm to multiply polynomials of degree < n in $O(n \log n)$ algebra multiplications and $O(n \log n \log \log n)$ algebra additions/subtractions (we count a subtraction as an addition). The constant implied by the "O" does not depend upon the algebra \mathscr{A} . The parallel complexity of our algorithm, i.e., the depth of the corresponding arithmetic circuit, is

fast multiplication

naive multiplication: $O(m^3d^2)$ operations in $\mathbb K$

On fast multiplication of polynomials over arbitrary algebras

David G. Cantor¹ and Erich Kaltofen²*

 ¹ Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA
 ² Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

Received January 22, 1988 / May 10, 1991

1 Introduction

multiplication in $\mathbb{K}^{m \times m}[x]$ with degree $\leq d$:

• $O(d \log(d))$ multiplications in $\mathbb{K}^{m \times m}$ • $O(d \log(d) \log \log(d))$ additions in $\mathbb{K}^{m \times m}$

 $MM(m, d) \in O(m^{\omega} d \log(d) + m^2 d \log(d) \log \log(d))$

 $O(m^{\omega}M(d))?$

In this paper we generalize the well-known Schönhage-Strassen algorithm for multiplying large integers to an algorithm for multiplying polynomials with coefficients from an arbitrary, not necessarily commutative, not necessarily associative, algebra \mathscr{A} . Our main result is an algorithm to multiply polynomials of degree < n in $O(n \log n)$ algebra multiplications and $O(n \log n \log \log n)$ algebra additions/subtractions (we count a subtraction as an addition). The parallel complexity of our algorithm, i.e., the depth of the corresponding arithmetic circuit, is

exploiting evaluation-interpolation

exercise: multiplication, determinant, inversion 1. adapting the evaluation-interpolation paradigm to matrices in $\mathbb{K}[x]^{m \times m}$,

give an explicit multiplication algorithm

give a determinant algorithm

▶ give an inversion algorithm

computing the inverse over the fractions $\mathbb{K}(\boldsymbol{x})$

2. for each of these algorithms,

 ${\scriptstyle \bullet}$ give a required lower bound on the cardinality of ${\mathbb K}$

▶ state and prove an upper bound on the **complexity**

hint: use known degree bounds on the output

exploiting evaluation-interpolation

exercise: multiplication, determinant, inversion 1. adapting the evaluation-interpolation paradigm to matrices in $\mathbb{K}[x]^{m \times m}$,

give an explicit multiplication algorithm

give a determinant algorithm

▶ give an inversion algorithm

computing the inverse over the fractions $\mathbb{K}(\boldsymbol{x})$

2. for each of these algorithms,

 ${\scriptstyle \bullet}$ give a required lower bound on the cardinality of ${\mathbb K}$

state and prove an upper bound on the complexity

 $\begin{array}{l} \mbox{multiplication: for large enough } \mathbb{K},\\ \mbox{MM}(m,d)\in O(m^{\omega}d+m^2M(d)) \ \mbox{[Bostan-Schost 2005]} \end{array}$

 \rightsquigarrow better than $\mathfrak{m}^{\omega}\mathsf{M}(d)$

exploiting evaluation-interpolation

exercise: multiplication, determinant, inversion 1. adapting the evaluation-interpolation paradigm to matrices in $\mathbb{K}[x]^{m\times m}$,

give an explicit multiplication algorithm

give a determinant algorithm

▶ give an **inversion** algorithm

computing the inverse over the fractions $\mathbb{K}(\boldsymbol{x})$

2. for each of these algorithms,

 ${\scriptstyle \blacktriangleright}$ give a required lower bound on the cardinality of ${\mathbb K}$

► state and prove an upper bound on the **complexity**

	evaluation-interpolation, large ${\mathbb K}$	best known, unconditional
determinant	$O^{\sim}(\mathfrak{m}^{\omega+1}\mathfrak{d})$	$O^{\sim}(\mathfrak{m}^{\omega}\mathfrak{d})$
inversion	$O(m^{\omega+1}d)$	$O^{(m^3d)}$
	reductions to PolMul&MatMul	reductions to PolMatMul

extending algorithms for polynomials

truncated inversion — from book "AECF"

3. Calculs rapides sur les séries

Entrée Un entier N > 0, F mod X^N une série tronquée. **Sortie** $F^{-1} \mod X^N$. Si N = 1, alors renvoyer f_0^{-1} , où $f_0 = F(0)$. Sinon : 1. Calculer récursivement l'inverse G de F mod X^[N/2]. 2. Renvoyer G + (1 – GF)G mod X^N.

Algorithme 3.2 – Inverse de série par itération de Newton.

Convergence quadratique pour l'inverse d'une série formelle

Lemme 3.2 Soient A un anneau non nécessairement commutatif, $F \in A[[X]]$ une série formelle de terme constant inversible et G une série telle que $G - F^{-1} = O(X^n)$ $(n \ge 1)$. Alors la série

$$\mathcal{N}(G) = G + (1 - GF)G \tag{3.2}$$

vérifie $\mathcal{N}(G) - F^{-1} = O(X^{2n})$.

62

extending algorithms for polynomials

truncated inversion — results

consider a (square) polynomial matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

• A is invertible as a power series \Leftrightarrow its constant term $\mathbf{A}(0) \in \mathbb{K}^{m \times m}$ is invertible

 $\label{eq:computing A} \begin{array}{l} \mbox{is invertible as a power series,} \\ \mbox{computing } \mathbf{A}^{-1} \mbox{ mod } x^N \mbox{ costs } O(\mathsf{MM}(m,N)) \mbox{ operations in } \mathbb{K} \end{array}$

- ▶ no additional log: $MM(m, \frac{N}{2}) + MM(m, \frac{N}{4}) + MM(m, \frac{N}{8}) + \cdots$
- excellent reduction to PolMatMul!
- ▶ timings with the Polynomial Matrix Library:

m	d	PolMatMul	TruncInv
10	20000	0.203	0.551
20	5000	0.225	0.639
40	2500	0.528	1.424
80	1250	1.227	3.653

extending algorithms for polynomials

division with remainder

problem: given $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{m \times m}[x]$, compute $\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{m \times m}[x]$ such that $\mathbf{A} = \mathbf{B}\mathbf{Q} + \mathbf{R}$ and $\deg(\mathbf{R}) < \deg(\mathbf{B})$

... are we not missing an assumption?

extending algorithms for polynomials

division with remainder

problem: given $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{m \times m}[x]$, compute $\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{m \times m}[x]$ such that $\mathbf{A} = \mathbf{B}\mathbf{Q} + \mathbf{R}$ and $\deg(\mathbf{R}) < \deg(\mathbf{B})$

... are we not missing an assumption?

rule 1: dividing by zero is generally a bad idea
rule 2: if you think you need to divide by zero, refer to rule 1
rule 3: neglecting to check that something is not zero does not make it nonzero
etc. etc.

extending algorithms for polynomials

division with remainder

problem: given $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{m \times m}[x]$, compute $\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{m \times m}[x]$ such that $\mathbf{A} = \mathbf{B}\mathbf{Q} + \mathbf{R}$ and $\deg(\mathbf{R}) < \deg(\mathbf{B})$

... are we not missing an assumption?

for a polynomial $p \in \mathcal{A}[x]$, over some ring \mathcal{A} , division by p is feasible • if p is monic (leading coefficient $1_{\mathcal{A}}$)

 ${\scriptstyle \bullet}$ and more generally if the leading coefficient of p is invertible in ${\cal A}$

assumption: the leading coefficient of ${\bf B}$ is invertible in $\mathbb{K}^{m\times m}$

recall $B = B_0 + B_1 x + \dots + B_d x^d$ with $B_i \in \mathbb{K}^{m \times m}$

extending algorithms for polynomials

division with remainder

problem: given $A, B \in \mathbb{K}^{m \times m}[x]$ with lc(B) invertible, compute $Q, R \in \mathbb{K}^{m \times m}[x]$ such that $A = BQ + R \quad \text{and} \quad \text{deg}(R) < \text{deg}(B)$

• under this assumption, the usual fast Euclidean algorithm works

► recall:

1. reverse the equation,

2. compute quotient by truncated inverse multiplication

$$\mathbf{\tilde{Q}} = \mathbf{\tilde{B}}^{-1}\mathbf{\tilde{A}} \mod \mathbf{x}^{d_{A}-d_{B}+1}$$

3. deduce remainder

$$\textbf{ complexity is } O(\underbrace{\mathsf{MM}(m, d_{\mathbf{A}} - d_{\mathbf{B}})}_{\text{find } Q} + \underbrace{\mathsf{MM}(m, d_{\mathbf{B}})}_{\text{find } R})$$

extending algorithms for polynomials

division with remainder

problem: given A, B $\in \mathbb{K}^{m \times m}[x]$ with lc(B) invertible, compute Q, R $\in \mathbb{K}^{m \times m}[x]$ such that A = BQ + R and deg(R) < deg(B)

dA	d _B I	PolMatMul TruncInv		QuoRem
		in deg d_B	in deg d_B	
0000 2	20000	0.203	0.551	1.873
0000	5000	0.225	0.639	2.164
5000	2500	0.528	1.424	6.468
2500	1250	1.227	3.653	15.59
	0000 2 0000 5000	0000 20000 0000 5000 5000 2500	$\begin{array}{c c} & & & & & \\ & & & & & \\ \hline 0000 & 20000 & 0.203 \\ 0000 & 5000 & 0.225 \\ 5000 & 2500 & 0.528 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

extending algorithms for polynomials

division with remainder

problem: given $\mathbf{A}, \mathbf{B} \in \mathbb{K}^{m \times m}[x]$ with lc(\mathbf{B}) invertible, compute $\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{m \times m}[x]$ such that $\mathbf{A} = \mathbf{B}\mathbf{Q} + \mathbf{R}$ and deg(\mathbf{R}) < deg(\mathbf{B})

44	<pre>// step 1: reverse input matrices</pre>
45	<pre>row_reverse(Brev, B, rdegB);</pre>
46	<pre>row_reverse(buf, A, rdegA);</pre>
47	
48	<pre>// step 2: compute quotient</pre>
49	// Qrev = Brev^{-1} R mod X^{d+1}
50	<pre>solve_series(Qrev, Brev, buf, d+1);</pre>
51	reverse(Q, Qrev, d);
52	
53	<pre>// step 3: deduce remainder</pre>
54	// R = A - B*Q
55	<pre>multiply(buf, B, Q);</pre>
56	sub(R, A, buf);

- ▶ an efficient reduction, again
- ▶ rdegA vs. degree d?
- ▶ row_reverse vs. reverse ?
- ▶ refinement of matrix degree:
 row- or column-wise degrees
 → improves applicability & complexity

e.g. division by $B=\,\text{diag}(x^{d_1},\ldots,x^{d_m})$

refined degree measures - generalized division

row degree of a polynomial matrix = the list of the maximum degree in each of its rows

$$\begin{split} \text{for } \mathbf{A} &= (\mathfrak{a}_{i,j}) \in \mathbb{K}[x]^{m \times n}, \\ \text{rdeg}(\mathbf{A}) &= (\text{rdeg}(\mathbf{A}_{1,*}), \dots, \text{rdeg}(\mathbf{A}_{m,*})) \\ &= \begin{pmatrix} \max_{1 \leqslant j \leqslant n} \text{deg}(\mathbf{A}_{1,j}), & \dots, & \max_{1 \leqslant j \leqslant n} \text{deg}(\mathbf{A}_{m,j}) \end{pmatrix} \in \mathbb{Z}^m \end{split}$$

refined degree measures - generalized division

row degree of a polynomial matrix = the list of the maximum degree in each of its rows

column degree of a polynomial matrix = the list of the maximum degree in each of its columns

refined degree measures - generalized division

row degree of a polynomial matrix = the list of the maximum degree in each of its rows

column degree of a polynomial matrix = the list of the maximum degree in each of its columns

 $\begin{array}{c} \mathsf{sum of degrees of all entries} \leqslant \begin{array}{c} n \times \mathsf{sum of row degrees} \\ m \times \mathsf{sum of column degrees} \end{array} \leqslant \mathsf{mn} \times \mathsf{global degree} \end{array}$

refined degree measures - generalized division

row degree of a polynomial matrix = the list of the maximum degree in each of its rows

column degree of a polynomial matrix = the list of the maximum degree in each of its columns

 $\begin{array}{l} \mbox{sum of degrees of all entries} \leqslant \begin{array}{l} n\times\mbox{ sum of row degrees} \\ m\times\mbox{ sum of column degrees} \\ \mbox{with notation:} \\ \hline \\ \sum_{i,j} deg(a_{ij}) \leqslant \begin{array}{l} n|rdeg(\mathbf{A})| \\ m|cdeg(\mathbf{A})| \\ \mbox{with degree matrix} \\ \begin{pmatrix} 100 & 5 & 20 & 1 \end{pmatrix} \\ \end{array} \end{array} \qquad \begin{array}{l} \mbox{determinant of } \mathbf{A}: degree \leqslant 126 \end{array}$

100	5	20	1	determinant of ${f A}$: degree $\leqslant 126$
100	5	20	1	
100	5	20	1	\rightsquigarrow better than naive bound $4 \deg(\mathbf{A}) = 400$
100	5	20 20 20 20	1/	

refined degree measures - generalized division

row degree of a polynomial matrix = the list of the maximum degree in each of its rows

column degree of a polynomial matrix = the list of the maximum degree in each of its columns

$$\begin{array}{l} \mbox{sum of degrees of all entries} \leqslant & n \times \mbox{ sum of row degrees} \\ & with notation: \\ \hline & \sum_{i,j} deg(\mathfrak{a}_{ij}) \leqslant & n | r deg(\mathbf{A}) | \\ & m | c deg(\mathbf{A}) | \\ \end{array} \leqslant & m n deg(\mathbf{A}) \end{array}$$

more general division with remainder:

- $\mbox{ } \mathsf{take} \mathsf{ for } \mathsf{lc}(\mathbf{B}) \mathsf{ row-wise} \mathsf{ leading coefficients}$
- $\scriptstyle \bullet$ if lc(B) is invertible, division by B is feasible
- with row-wise degree bounds on remainder

$$\begin{bmatrix} 4x^3 + 2x + 2 & 6x^3 + 2x^2 + 5 \\ 4x^2 + 2 & 3x^3 + x + 3 \end{bmatrix} \\ = \begin{bmatrix} x & 0 \\ 0 & 2x^2 \end{bmatrix} \mathbf{Q} + \begin{bmatrix} 2 & 5 \\ 2 & x + 3 \end{bmatrix}$$

partial linearization techniques

reduce unbalanced degrees to some average degree

where degree means row degree, column degree, or related refined measures

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

typical properties:

from a matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ with $D = |\mathsf{rdeg}(\mathbf{A})| \ll m \, \mathsf{deg}(\mathbf{A})$ construct a matrix $\bar{\mathbf{A}} \in \mathbb{K}[x]^{m' \times m'}$ with

- ${\scriptstyle \bullet}\, a$ slight increase of matrix dimension: $m \leqslant m' \leqslant 2m$
- a strong decrease of matrix degree: $deg(\bar{\mathbf{A}}) \leqslant 2\frac{D}{m}$
- preservation of the features targeted by our computations

examples:

- product AB easily deduced from product $\bar{A}\bar{B}$
- ${\scriptstyle \bullet}$ preservation of the determinant ${\sf det}({\bf A})={\sf det}(\bar{{\bf A}})$
- ${\scriptstyle \bullet}$ inverse of $\bar{\mathbf{A}}$ contains inverse of \mathbf{A} as submatrix

▶...

partial linearization techniques

reduce unbalanced degrees to some average degree

basic illustration:

what would be the cost of the "naive" multiplication? $\rightsquigarrow O(m^2 \mathsf{M}(md))$

algorithm:

[Lecerf 2001 (in communication + software)]

partial linearization techniques

reduce unbalanced degrees to some average degree

basic illustration:

what would be the cost of the "naive" multiplication? $\rightsquigarrow O(m^2 \mathsf{M}(md))$

algorithm:

[Lecerf 2001 (in communication + software)]

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{\bar{U}} \end{bmatrix} \begin{bmatrix} \mathbf{\bar{U}} \end{bmatrix} \begin{bmatrix} \mathbf{\bar{U}} \\ \mathbf{x}^{d} \\ \mathbf{x}^{2d} \\ \vdots \end{bmatrix}$$

where the columns of $\bar{U} \in \mathbb{K}[x]^{m \times m}$ form the $x^d\mbox{-adic expansion}$ of u \Rightarrow here $\mbox{deg}(\bar{U}) < d$

partial linearization techniques

reduce unbalanced degrees to some average degree

basic illustration:

 $\begin{array}{l} \textbf{ iet } \mathbf{A} \in \mathbb{K}[x]^{m \times m} \text{ of degree} < d, \\ \textbf{ iet } \mathbf{u} \in \mathbb{K}[x]^{m \times 1} \text{ of degree} < md, \\ \\ \text{then the matrix-vector product } \mathbf{Au} \text{ can be computed in} \\ \\ MM(m,d) + O(m^2d) \text{ operations in } \mathbb{K} \end{array}$

what would be the cost of the "naive" multiplication? $\rightsquigarrow O(m^2 \mathsf{M}(md))$

algorithm:

[Lecerf 2001 (in communication + software)]

m	d	md	via PolMatMul	matrix-vector
10	20000	200000	0.203	0.368
20	5000	100000	0.225	0.683
40	2500	100000	0.528	2.481
80	1250	100000	1.227	9.592

outline

computer algebra

polynomial matrices

first algorithms

- ${\scriptstyle \blacktriangleright}$ efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques

exercises

outline

computer algebra

polynomial matrices

first algorithms

exercises

- efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques
- evaluation-interpolation-based algorithms
- Krylov iterates via repeated squaring
- Krylov iterates in MatMul time

evaluation-interpolation-based algorithms

exercise: multiplication, determinant, inversion 1. adapting the evaluation-interpolation paradigm to matrices in $\mathbb{K}[x]^{m \times m}$,

- give an explicit multiplication algorithm
- give a determinant algorithm

▶ give an **inversion** algorithm

computing the inverse over the fractions $\mathbb{K}(\boldsymbol{x})$

2. for each of these algorithms,

 ${\scriptstyle \bullet}$ give a required lower bound on the cardinality of ${\mathbb K}$

▶ state and prove an upper bound on the **complexity**

hint: use known degree bounds on the output

evaluation-interpolation: multiplication

given A and B in $\mathbb{K}[x]^{m \times m}$ of degree $\leq d$, we know that $\mathbf{C} = \mathbf{AB}$ has degree at most 2d, so: 1. pick points: pairwise distinct $\alpha_1, \ldots, \alpha_{2d+1} \in \mathbb{K}$ Card(\mathbb{K}) $\geq 2d + 1$ 2. evaluate: $\mathbf{A}(\alpha_i)$ and $\mathbf{B}(\alpha_i)$, for $i = 1, \ldots, 2d + 1$ O($\mathfrak{m}^2\mathsf{M}(d) \log(d)$) 3. multiply: $\mathbf{A}(\alpha_i)\mathbf{B}(\alpha_i)$, for $i = 1, \ldots, 2d + 1$ O($\mathfrak{m}^{\omega}d$) 4. interpolate: find C in $\mathbb{K}[x]^{m \times m}$ of degree $\leq 2d$ such that $\mathbf{C}(\alpha_i) = \mathbf{A}(\alpha_i)\mathbf{B}(\alpha_i)$, for $i = 1, \ldots, 2d + 1$ O($\mathfrak{m}^2\mathsf{M}(d) \log(d)$) 5. return C

excellent algorithm:

- . linear in d in the term $\mathfrak{m}^{\omega}d$ (recall Cantor-Kaltofen: $\mathfrak{m}^{\omega}d\log(d))$
- . exponent $\boldsymbol{\omega}$ of matrix multiplication
- . the $m^2\mathsf{M}(d)\mathsf{log}(d)$ term can be improved via points in geometric sequence
- . downside: restriction on $\mathbb K$ (large degrees + small finite fields does happen)

evaluation-interpolation: determinant

 $\begin{array}{ll} \mbox{given } \mathbf{A} \mbox{ in } \mathbb{K}[x]^{m\times m} \mbox{ of degree } \leqslant d, \\ \mbox{we know that } \Delta = \det(\mathbf{A}) \mbox{ has degree at most md, so:} \\ 1. \mbox{ pick points: pairwise distinct } \alpha_1, \ldots, \alpha_{md+1} \in \mathbb{K} \\ 2. \mbox{ evaluate: } \mathbf{A}(\alpha_i) \mbox{ for } i = 1, \ldots, md + 1 \\ 3. \mbox{ determinant: } \beta_i = \det(\mathbf{A}(\alpha_i)), \mbox{ for } i = 1, \ldots, md + 1 \\ 4. \mbox{ interpolate: find } \Delta \mbox{ in } \mathbb{K}[x] \mbox{ of degree } \leqslant \mbox{ md such that } \\ \Delta(\alpha_i) = \beta_i, \mbox{ for } i = 1, \ldots, md + 1 \\ 5. \mbox{ return } \Delta \end{array}$

- . quasi-linear in degree d: fast for large d, small \boldsymbol{m}
- . exponent >3 on matrix dimension $\mathfrak{m}:$ slow for large \mathfrak{m}
- . best known today: $O^{\sim}(m^{\omega}d)$

evaluation-interpolation: inversion

given A in
$$\mathbb{K}[x]^{m \times m}$$
 of degree $\leq d$,
we know that $\mathbf{C} = \mathbf{A}^{-1} = \frac{1}{\Delta} \mathbf{U}$ with
deg $(\Delta) \leq md$ and deg $(\mathbf{U}) \leq (m-1)d$, so:
0. set $n = (2m-1)d + 1$
1. pick points: pairwise distinct $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ Card $(\mathbb{K}) \geq (2m-1)d + 1$
2. evaluate: $\mathbf{A}(\alpha_i)$, for $i = 1, \ldots, n$ $O(m^3M(d)\log(d))$
3. invert: $\mathbf{A}(\alpha_i)^{-1}$, for $i = 1, \ldots, n$ $O(m^{\omega+1}d)$
4. interpolate: using Cauchy interpolation find C in $\mathbb{K}(X)^{m \times m}$ with all
numerators of degree $\leq (m-1)d$ and all denominators of degree $\leq md$
such that $\mathbf{C}(\alpha_i) = \mathbf{A}(\alpha_i)^{-1}$, for $i = 1, \ldots, n$ $O(m^2M(md)\log(md))$
5. return C

- . quasi-linear in degree d: fast for large d, small \boldsymbol{m}
- . exponent >3 on dimension m but recall size of \mathbf{A}^{-1} is typically $\Theta(m^3d)$
- . best known today: $O\ensuremath{\tilde{}}\xspace(m^3d),$ and even $O\ensuremath{\tilde{}}\xspace(m\ensuremath{\omega}\,d)$ for factorized form
- . note: one could compute $\mathsf{det}(\mathbf{A})$ to avoid Cauchy interpolation

problem (Krylov iterates):

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ integer d > 0output: $v, Av, \dots, A^{d-1}v$

kernel black box:

given a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times (m+1)}$ of rank m and degree $\leqslant 1$, one can compute a nonzero element of degree $\leqslant m$ in the right kernel of \mathbf{F} using $O(m^{\omega})$ operations in \mathbb{K}

[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

1. give an algorithm which costs $O(m^{\omega} \log(d) + m^{\omega-1}d)$ operations in \mathbb{K} , based on repeated squaring 2. prove that the generating series of $(A^k \nu)_{k \ge 0}$ rewrites as a fraction of polynomial matrices: $\sum_{k \ge 0} A^k \nu x^k = (I - xA)^{-1} \nu$ 3. using the kernel black box, give a complexity bound for finding $\lambda \in \mathbb{K}[x]$ and $\mathbf{u} \in \mathbb{K}[x]^{m \times 1}$, both of degree $\leq m$, such that $\sum_{k \ge 0} A^k \nu x^k = \mathbf{u}/\lambda$ 4. show that $(A^k \nu)_{0 \le k < d}$ can be computed in $O(m^{\omega} + mM(d))$

problem (Krylov iterates):

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ integer d > 0output: $v, Av, \dots, A^{d-1}v$

kernel black box:

given a matrix $F \in \mathbb{K}[x]^{m \times (m+1)}$ of rank m and degree $\leqslant 1$, one can compute a nonzero element of degree $\leqslant m$ in the right kernel of F using $O(m^{\omega})$ operations in \mathbb{K}

[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

1. give an algorithm which costs $O(m^\omega \log(d) + m^{\omega-1}d)$ operations in $\mathbb K,$ based on repeated squaring

for simplicity, take d a power of 2

first compute $A^2, A^4, \dots, A^{d/2}$, cost $O(m^{\omega} \log(d))$

from ν , compute $A\nu$ from $[\nu \ A\nu]$, compute $A^2[\nu \ A\nu] = [A^2\nu \ A^3\nu]$ from $[\nu \ A\nu \ A^2\nu \ A^3\nu]$, compute $A^4[\nu \ A\nu \ A^2\nu \ A^3\nu] = [A^4\nu \ A^5\nu \ A^6\nu \ A^7\nu]$ etc...

from $[A^k\nu]_{0\leqslant k< d/2},$ compute $A^{d/2}[A^k\nu]_{0\leqslant k< d/2}=[A^k\nu]_{d/2\leqslant k< d}$

problem (Krylov iterates):

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ integer d > 0output: $v, Av, \dots, A^{d-1}v$

kernel black box:

given a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times (m+1)}$ of rank m and degree ≤ 1 , one can compute a nonzero element of degree $\leq m$ in the right kernel of \mathbf{F} using $O(m^{\omega})$ operations in \mathbb{K}

[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

1. give an algorithm which costs $O(m^\omega \log(d) + m^{\omega-1}d)$ operations in $\mathbb K,$ based on repeated squaring

the first min(log(d), log(m)) products involve matrices of dimensions m or less, hence a total cost bounded by $O(m^\omega \log(d))$

the remaining products (if any) involve a lefthand operand of dimensions $m\times m$ and a righthand one of dimensions $m\times 2^k$, where k goes from about $log_2(m)$ to for $log_2(d)$ \rightsquigarrow for a given k, the product costs $O(m^{\omega-1}2^k)$ \rightsquigarrow summing this over all k, with $\sum_{k\leqslant log_2(d)}2^k\in O(d)$, gives $O(m^{\omega-1}d)$

problem (Krylov iterates):

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ integer d > 0output: $v, Av, \dots, A^{d-1}v$

kernel black box:

given a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times (m+1)}$ of rank m and degree $\leqslant 1$, one can compute a nonzero element of degree $\leqslant m$ in the right kernel of \mathbf{F} using $O(m^{\omega})$ operations in \mathbb{K}

[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

2. prove that the generating series of $(A^k v)_{k \ge 0}$ rewrites as a fraction of polynomial matrices: $\sum_{k \ge 0} A^k v x^k = (I - xA)^{-1} v$

multiply the left-hand side by I - xA, this yields v

problem (Krylov iterates):

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ integer d > 0output: $v, Av, \dots, A^{d-1}v$

kernel black box:

given a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times (m+1)}$ of rank m and degree ≤ 1 , one can compute a nonzero element of degree $\leq m$ in the right kernel of \mathbf{F} using $O(m^{\omega})$ operations in \mathbb{K}

[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

3. using the kernel black box, give a complexity bound for finding $\lambda \in \mathbb{K}[x]$ and $\mathbf{u} \in \mathbb{K}[x]^{m \times 1}$, both of degree $\leqslant m$, such that $\sum_{k \ge 0} A^k v \, x^k = \mathbf{u}/\lambda$

. consider $F=[I-xA \ -\nu];$ this matrix has degree $\leqslant 1$ and rank m (its leftmost $m\times m$ submatrix is nonsingular)

. so, in $O(\mathfrak{m}^{\omega})$, we can compute a nonzero element of degree $\leqslant m$ in its right kernel . this element can be written $[\frac{\mathbf{u}}{\lambda}]$, and $\mathbf{F}[\frac{\mathbf{u}}{\lambda}]=0$ rewrites as $(I-xA)\mathbf{u}=\nu\lambda$. observe that λ cannot be zero (otherwise, \mathbf{u} would be a nonzero vector in the right kernel of I-xA, which is not possible) . thus $(I-xA)^{-1}\nu=\frac{1}{\lambda}\mathbf{u}$

problem (Krylov iterates):

input: matrix $A \in \mathbb{K}^{m \times m}$, vector $v \in \mathbb{K}^{m \times 1}$ integer d > 0output: $v, Av, \dots, A^{d-1}v$

kernel black box:

given a matrix $\mathbf{F} \in \mathbb{K}[x]^{m \times (m+1)}$ of rank m and degree $\leqslant 1$, one can compute a nonzero element of degree $\leqslant m$ in the right kernel of \mathbf{F} using $O(m^{\omega})$ operations in \mathbb{K}

[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

4. show that $(A^k\nu)_{0\leqslant k< d}$ can be computed in $O(m^\omega+mM(d))$

. these d vectors are the first d terms of the series $\sum_{k \ge 0} A^k \nu \, x^k$. we have seen that this series is equal to $\frac{1}{\lambda} u$ (with u and λ found in $O(m^\omega)$) \rightsquigarrow it suffices to expand u/λ as a power series in precision d. since u is a vector of m entries, this costs O(mM(d))

summary

computer algebra

polynomial matrices

first algorithms

exercises

- efficient algorithms and software
- for matrices over a field
- ▶ for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques
- evaluation-interpolation-based algorithms
- Krylov iterates via repeated squaring
- Krylov iterates in MatMul time