Vincent Neiger

designing and exploiting fast algorithms for univariate polynomial matrices

Journées Nationales de Calcul Formel
Centre International de Rencontre Mathématiques
Marseille Luminy, France, 4 March 2024

outline

computer algebra
polynomial matrices
first algorithms
exercises

outline

computer algebra
polynomial matrices
first algorithms
exercises

Ideals,
Varieties, and Algorithms
An introduction to Computational
An introduction to Computational
Algebraic Geometry and Commutative
Algebraic Geometry and Commutative Algebra
Fourth Edition

Undergradate Terbin Matiernuta

David A. Cox
John Little
Donal O'Shea
Ideals, Varieties, and Algorithms
An Introduction to Computational An introduction to computational
Algebraic Geometry and Commutative Algebraic Geometry and Commutative Algebra
Fourth Edition

Maple

Euclid's GCD -300

Gaussian elimination 179
-

computer algebra

algorithm design
and software implementations
for exact computations
with mathematical objects

Gaussian elimination 17
Newton's method 1669

computer algebra

algorithm design
and software implementations for exact computations with mathematical objects

Gaussian elimination 17
Newton's method 1669

computer algebra

algorithm design
and software implementations for exact computations with mathematical objects

Gaussian elimination 179
Newton's method 1669

computer algebra

algorithm design
and software implementations
for exact computations with mathematical objects

Karatsuba '62

Gaussian elimination 17
Newton's method 1669

computer algebra

algorithm design
and software implementations for exact computations with mathematical objects

\square	Strassen '69
\square	\square
Symiy	

Principal Discoveries of Efficient Methods of Computing the DFT				
Researcher(s)		Sequence Lengths	Number of DFT Values	Application
C. F. Gauss [10]	1805	Any composite integer	All	Interpolation of orbits of celestial bodies
F. Carlini [28]	1828	12	-	Harmonic analysis of barometric pressure
A. Smith [25]	1846	4,8,16,32	5 or 9	Correcting deviations in compasses on ships
J. D. Everett [23]	1860	12	5	Modeling underground temperature deviations
C. Runge [7]	1903	$2^{n k}$	All	Harmonic analysis of functions
K. Stumpff [16]	1939	$2^{n} k, 3^{n} k$	All	Harmonic analysis of functions
Danielson and Lanczos [5]	1942	2^{n}	All	X -ray diffraction in crystals
L. H. Thomas [13]	1948	Any integer with relatively prime factors	All	Harmonic analysis of functions
I. J. Good [3]	1958	Any integer with relatively prime factors	All	Harmonic analysis of functions
Cooley and Tukey [1]	1965	Any composite integer	All	Harmonic analysis of functions
S. Winograd [14]	1976	Any integer with relatively prime factors	All	Use of complexity theory for harmonic analysis

XXth-XXIst centuries: digital data \& interconnected networks integrity - confidentiality
discrete structures: exact and intensive computations

- matrices of large size, with sparsity or structure
- polynomials and polynomial matrices in one variable
- polynomials in several variables
goal of computer algebra
fast algorithms : complexity \& efficient implementations

XXth-XXIst centuries : digital data \& interconnected networks integrity - confidentiality
discrete structures: exact and intensive computations

- matrices of large size, with sparsity or structure
- polynomials and polynomial matrices in one variable
- polynomials in several variables
goal of computer algebra
fast algorithms : complexity \& efficient implementations

general methodology: reductions to efficient basic operations

- IntMul: integer multiplication \rightarrow MatMul: matrix multiplication - PolMul: univariate polynomial multiplication

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption,
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$
field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\mathfrak{f}(x)\rangle$ rationals \mathbb{Q}, number fields, ...

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption,

```
prime field }\mp@subsup{\mathbb{F}}{p}{}=\mathbb{Z}/\textrm{p}\mathbb{Z
field extension }\mp@subsup{\mathbb{F}}{\mathfrak{p}}{}[x]//{f(x)
rationals \mathbb{Q}, number fields,...
```

algebraic complexity (upper) bounds
\rightsquigarrow count number of operations in \mathbb{K}
16 standard complexity model for algebraic computations
${ }^{16}$ often well correlated to implementation timings (e.g. over $\mathbb{K}=\mathbb{F}_{\mathfrak{p}}$)

- ignores coefficient growth (e.g. over $\mathbb{K}=\mathbb{Q}$)

measuring efficiency

efficient algorithms for polynomials, matrices, power series, ... with coefficients in some base field \mathbb{K}

- low complexity bound
- low execution time
low memory usage, power consumption, ...
prime field $\mathbb{F}_{\mathfrak{p}}=\mathbb{Z} / \mathrm{p} \mathbb{Z}$
field extension $\mathbb{F}_{\mathfrak{p}}[\mathrm{x}] /\langle\mathfrak{f}(\mathrm{x})\rangle$ rationals \mathbb{Q}, number fields, ...
practical performance
\rightsquigarrow measure software running time
! strongly influenced by the quality of the implementation
this talk:
- working over $\mathbb{K}=\mathbb{F}_{p}$ with word-size prime p
- Intel Core i7-7600U @ 2.80 GHz , no multithreading

matrices: multiplication

$$
\mathbf{M}=\left[\begin{array}{cccc}
28 & 68 & 75 & 70 \\
38 & 25 & 75 & 55 \\
24 & 1 & 56 & 28
\end{array}\right] \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4 \text { matrix over } \mathbb{K}\left(\text { here } \mathbb{F}_{97}\right)
$$

fundamental operations on $m \times m$ matrices:
-addition is "quadratic": $\mathrm{O}\left(\mathrm{m}^{2}\right)$ operations in \mathbb{K}

- naive multiplication is cubic: $\mathrm{O}\left(\mathrm{m}^{3}\right)$
[Strassen'69]
breakthrough: subcubic matrix multiplication

matrices: multiplication

$\mathbf{M}=\left[\begin{array}{cccc}28 & 68 & 75 & 70 \\ 38 & 25 & 75 & 55 \\ 24 & 1 & 56 & 28\end{array}\right] \in \mathbb{K}^{3 \times 4} \longrightarrow 3 \times 4$ matrix over \mathbb{K} (here \mathbb{F}_{97})
fundamental operations on $m \times m$ matrices:

- addition is "quadratic": $\mathrm{O}\left(\mathrm{m}^{2}\right)$ operations in \mathbb{K}
- naive multiplication is cubic: $\mathrm{O}\left(\mathrm{m}^{3}\right)$

[Strassen'69]

breakthrough: subcubic matrix multiplication

- complexity exponent $\omega \approx 2.81$ - i.e. $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ complexity
- used in practice for $m \geqslant$ a few 100 s in NTL, FLINT, fflas-ffpack...
[Coppersmith-Winograd 1990]
- best-known exponent $\omega \approx 2.3719$
[Le Gall'14] [Alman-Williams'20] [Duan-Wu-Zhou'23]
- "galactic" algorithms: strongly impractical as such

reductions: a new hope

Strassen, in his seminal 1969 paper "Gaussian Elimination is Not Optimal" sent a clear message to the scientific community:

Natural, obvious and centuries-old methods for solving important computational problems may be far from the fastest.

reductions: a new hope

Abel Prize Laureates - Jeroen Zuiddam - Matrix multiplication and Shannon capacity

Centrum Wiskunde \& Informatica
1.16 K subscribers

189 views 1 year ago Abel Prize Laureates Lectures (8 April 2022)
Asymptotic spectrum duality in computer science and discrete mathematics: Matrix multiplication and Shannon capacity

Abstract ..more

0 Comments $\overline{=}$ Sort by

reductions: a new hope

(1:21/44:52. Gaussian elimination is not coses)

Strassen, in his seminal 1969 paper
"Gaussian Elimination is Not Optimal" sent a clear message to the scientific community:

Natural, obvious and centuries-old methods for solving important computational problems may be far from the fastest.

Abel Prize Laureates - Jeroen Zuiddam - Matrix multiplication and Shannon capacity

Centrum Wiskunde \& Informatica
1.16 K subscribers

Subscribe

189 views 1 year ago Abel Prize Laureates Lectures (8 April 2022)
Asymptotic spectrum duality in computer science and discrete mathematics: Matrix multiplication and Shannon capacity

Abstract ..more

reductions: a new hope

Justin Bieber - Sorry (PURPOSE : The Movement)
F Justin Bieber :
Subscribe
$\because 16 \mathrm{M} \mid \boldsymbol{\vartheta} \Rightarrow$ Share \cdots

3,772,923,806 views 8 years ago \#JustinBieber \#Vevo \#Sorry
'Purpose' Available Everywhere Now!
iTunes: http://smarturl.it/PurposeDlx?lQid=VE.
Stream \& Add To Your Spotify Playlist: http://smarturl.it/sPurpose?IQid=VEVO.

PSY - GANGNAM STYLE(강남스타일) M/V
28)
officialpsy :
18.6 M subscribers

Subscribe
$\because 28 \mathrm{M} \|$ Share
$5,064,558,413$ views 11 years ago \#감남스타일 \#PSY \#GANGNAMSTYLE
PSY-'ILUVIT' M/V @ . •PSY - 'I LUV IT' M/V
PSY-'New Face' M/V @ . . PSY - 'New Face' M/V
...more

5,360,274 Comments $\overline{=}$ Sort by

reductions: a new hope

Justin Bieber - Sorry (PURPOSE : The Movement)
8 Justin Bieber :
72.6 M subscribers

Subscribe

3,772,923,806 views 8 years ago \#JustinBieber \#Vevo \#Sorry
'Purpose' Available Everywhere Now!
iTunes: http://smarturl.it/PurposeDlx?lQid=VE.
Stream \& Add To Your Spotify Playlist: http://smarturl.it/sPurpose?IQid=VEVO.
.more

PSY - GANGNAM STYLE(강남스타일) M/V
©
officialpsy :
18.6M subscribers

Subscribe
(1) 28M
\Downarrow
Share

5,064,558,413 views 11 years ago \#감남스타일 \#PSY \#GANGNAMSTYLE
PSY-'ILUV IT' M/V @ . • PSY - 'I LUV IT' M/V
PSY - 'New Face' M/V @ . . PSY - 'New Face' M/V
...more
$5,360,274$ Comments $\overline{=}$ Sort by

take-home messages:

- bibliometric indicators measure quantity, and there exist counterexamples to "quantity $=$ quality"
- design fast algorithms for the most basic routines
\rightarrow MatMul
- design efficient reductions to them for other tasks \rightarrow LinSys, Det, Inverse

polynomials: multiplication

$p=87 x^{7}+74 x^{6}+60 x^{5}+46 x^{4}+16 x^{3}+41 x^{2}+86 x+69$
$p \in \mathbb{K}[x]_{<8} \quad \longrightarrow$ univariate polynomial in x of degree <8 over \mathbb{K}
fundamental operations on polynomials of degree $<\mathrm{d}$:

- addition and Horner's evaluation are linear: $\mathrm{O}(\mathrm{d})$
- naive multiplication is quadratic: $\mathrm{O}\left(\mathrm{d}^{2}\right)$

$$
\text { [Karatsuba'62] } \quad M(d) \in O\left(d^{1.58}\right)
$$

breakthrough: subquadratic polynomial multiplication

polynomials: multiplication

$$
p=87 x^{7}+74 x^{6}+60 x^{5}+46 x^{4}+16 x^{3}+41 x^{2}+86 x+69
$$

$p \in \mathbb{K}[x]_{<8} \quad \longrightarrow$ univariate polynomial in x of degree <8 over \mathbb{K}
fundamental operations on polynomials of degree $<\mathrm{d}$:

- addition and Horner's evaluation are linear: $\mathrm{O}(\mathrm{d})$
- naive multiplication is quadratic: $\mathrm{O}\left(\mathrm{d}^{2}\right)$

$$
\left[\text { Karatsuba'62] } \quad \mathrm{M}(\mathrm{~d}) \in \mathrm{O}\left(\mathrm{~d}^{1.58}\right)\right.
$$

breakthrough: subquadratic polynomial multiplication
[Schönhage-Strassen'71] [Nussbaumer'80] [Cantor-Kaltofen'91] $\quad \mathrm{M}(\mathrm{d}) \in \mathrm{O}(\mathrm{d} \log (\mathrm{d}) \log \log (\mathrm{d}))$
breakthrough: quasi-linear polynomial multiplication
research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

- change of representation by evaluation-interpolation
- used in practice as soon as $\mathrm{d} \approx 100$

$$
\begin{aligned}
& \text { note: } M(d) \in O(d \log (d)) \\
& \text { if provided a "good" root of unity }
\end{aligned}
$$

-FFT techniques using (virtual) roots of unity

reductions strike back

```
318 long IsFFTPrime(long n, long& w)
319 +-- 74 lines:
393
394
3 9 5 \text { static}
3 9 6 \text { void NextFFTPrime(long\& q, long\& w, long index)}
397 +-- 45 lines:
4 4 2
4 4 3
444 long CalcMaxRoot(long p)
445
4 5 8
4 5 9
4 6 0
4 6 1
    462 +-- 5 lines: #ifndef NTL_WIZARD_HACK
    4 6 7
    4 6 8 \text { void UseFFTPrime(long index)}
    469 +-- 36 lines: {
    505
    506
    507 +-- 15 lines: #ifdef NTL_FFT_LAZYMUL
    522
    523
    524
    525
    526 +--2687 lines: #ifdef NTL_FFT_LAZYMUL
3213
- small prime FFT in NTL: \(\rightsquigarrow\) about 5500 lines of \(\mathrm{C}++\)
\(\rightsquigarrow\) target operation: FFT (including 1200 lines for vectorized version and 1100 for machine word arithmetic...)

\section*{reductions strike back}

- small prime FFT in NTL: \(\rightsquigarrow\) about 5500 lines of \(\mathrm{C}++\) \(\rightsquigarrow\) target operation: FFT (including 1200 lines for vectorized version and 1100 for machine word arithmetic. ..)
- polynomials in \(\mathbb{Z} / \mathrm{p} \mathbb{Z}[\mathrm{x}]\) :
\(\rightsquigarrow\) about 5500 lines as well
\(\rightsquigarrow\) target operations include:
. multiplication, truncated inversion, division, interpolation, multipoint evaluation, XGCD, Berlekamp-Massey, resultant, power projection, modular composition, ...

\section*{reductions strike back}
```

3165 void FFTDiv(zz_pX\& q, const zz_pX\& a, const zz_pX\& b)
3166 {
3167
3168 long n = deg(b);
3169 long m = deg(a);
3170 long k;
3 1 7 1
3172
3 1 7 6
3177
3 1 8 3
3184
3185
3186
3187
3188
3189
3190
3 1 9 1
3192
3193
3194
3195
3196
3197
3198 }

```
- small prime FFT in NTL: \(\rightsquigarrow\) about 5500 lines of \(\mathrm{C}++\) \(\rightsquigarrow\) target operation: FFT (including 1200 lines for vectorized version and 1100 for machine word arithmetic...)
- polynomials in \(\mathbb{Z} / p \mathbb{Z}[x]\) :
\(\rightsquigarrow\) about 5500 lines as well
\(\rightsquigarrow\) target operations include:
. multiplication, truncated inversion, division,
. interpolation, multipoint evaluation,
. XGCD, Berlekamp-Massey, resultant,
. power projection, modular composition, ...
- reductions are often
. concise and readable close to the pseudocode

\section*{reductions strike back}
```

3165 void FFTDiv(zz_pX\& q, const zz_px\& a, const zz_pX\& b)
3166 {
3167
3168 long n = deg(b);
3169 long m = deg(a);
3 1 7 0 long k;
3 1 7 1
3172
3 1 7 6
3177
3183
3 1 8 4
3185
3186 CopyReverse(P3, b, 0, n);
3187 InvTrunc(P2, P3, m-n+1);
3188 CopyReverse(P1, P2, 0, m-n);
3189
3 1 9 0
3191
3192
3193
3194
3 1 9 5
3196
3197 FromfftRep(q, R1, m-n, 2*(m-n));
3198 }

```
- \(m \leftarrow \operatorname{deg}(A)\) and \(n \leftarrow \operatorname{deg}(B)\)
\(\rightarrow\) if \(m<n\), return \((0, A)\)
- set reversals \(\tilde{A} \leftarrow x^{m} A(1 / x)\) and \(\tilde{B} \leftarrow x^{n} B(1 / x)\)
- find \(\tilde{Q}=\tilde{A} / \tilde{B} \bmod x^{m-n+1}\) by power series inversion and product
- reverse Q to obtain Q

\section*{reductions strike back}

\section*{concentrate efforts on: basic routines + good reductions}
3197 FromfftRep(q, R1, m-n, 2*(m-n));
```

```
3165 void FFTDiv(zz_pX& q, const zz_pX& a, const zz_pX& b)
```

```
3165 void FFTDiv(zz_pX& q, const zz_pX& a, const zz_pX& b)
3166 {
3166 {
3167
3167
3168 long n = deg(b);
3168 long n = deg(b);
3169 long m = deg(a);
3169 long m = deg(a);
3170
3170
3171
3171
3172
3172
3176
3176
3177
3177
3183
3183
3184
3184
3185
3185
3186
3186
3187
3187
3188
3188
3189
3189
3 1 9 0
3 1 9 0
3191
3191
3192
3192
3193
3193
3194
3194
3195
3195
3196
```

3196

```
```

3168 long n = deg(b);

```
3168 long n = deg(b);
3169 long m = deg(a);
3169 long m = deg(a);
    long k;
    long k;
    long k;
    *m}\leftarrow\operatorname{deg}(A)\mathrm{ and n}\leftarrow\operatorname{deg}(B
    *m}\leftarrow\operatorname{deg}(A)\mathrm{ and n}\leftarrow\operatorname{deg}(B
    - if m < n, return (0,A)
    - if m < n, return (0,A)
    - set reversals \tilde{A}\leftarrow\mp@subsup{x}{}{m}A(1/x)
    - set reversals \tilde{A}\leftarrow\mp@subsup{x}{}{m}A(1/x)
        and \tilde{B}\leftarrow\mp@subsup{x}{}{n}}\textrm{B}(1/x
        and \tilde{B}\leftarrow\mp@subsup{x}{}{n}}\textrm{B}(1/x
    - find }\tilde{Q}=\tilde{A}/\tilde{B}\operatorname{mod}\mp@subsup{x}{}{m-n+1}\mathrm{ by
    - find }\tilde{Q}=\tilde{A}/\tilde{B}\operatorname{mod}\mp@subsup{x}{}{m-n+1}\mathrm{ by
    TofftRep(R1, P1, k);
    TofftRep(R1, P1, k);
        TofftRep(R2, a, k, n, m);
        TofftRep(R2, a, k, n, m);
        mul(R1, R1, R2);
        mul(R1, R1, R2);
    power series inversion and product
    power series inversion and product
    - reverse Q to obtain Q
    - reverse Q to obtain Q
        zz_pX P1, P2, P3;
        zz_pX P1, P2, P3;
        CopyReverse(P3, b, 0, n);
        CopyReverse(P3, b, 0, n);
        InvTrunc(P2, P3, m-n+1);
        InvTrunc(P2, P3, m-n+1);
        CopyReverse(P1, P2, 0, m-n);
        CopyReverse(P1, P2, 0, m-n);
    k = NextPowerOfTwo(2*(m-n)+1);
    k = NextPowerOfTwo(2*(m-n)+1);
    fftRep R1(INIT_SIZE, k), R2(INIT_SIZE, k);
```

```
    fftRep R1(INIT_SIZE, k), R2(INIT_SIZE, k);
```

```
3198 \}

\section*{matrices: main computational problems}
reductions of most problems to matrix multiplication


\section*{not closed: open:}

\section*{matrices: main computational problems}
reductions of most problems to matrix multiplication


\section*{not closed: open:}

\section*{matrices: main computational problems}
reductions of most problems to matrix multiplication

not closed: is Frobenius normal form in \(\mathrm{O}(\mathrm{MatMul})\) ? open:

\section*{matrices: main computational problems}
reductions of most problems to matrix multiplication

not closed: is Frobenius normal form in \(\mathrm{O}(\mathrm{MatMul})\) ? open:

\section*{matrices: main computational problems}
reductions of most problems to matrix multiplication

not closed: is Frobenius normal form in \(\mathrm{O}(\mathrm{MatMul})\) ? open: is linear system solving as hard as multiplication?

\section*{bonus: some notes/references}
[Jeannerod-Pernet-Storjohann 2013] doi.org/10.1016/j.jsc.2013.04.004
- explicit reductions between inversion \& MatMul \& Gaussian elimination / echelonization
- constants in the \(\mathrm{O}(\cdot)\) complexities when using classical matrix multiplication \((\omega=3)\) or Strassen's multiplication
"not closed" : it is open, but
- there is a randomized algorithm for Frobenius form computation which has complexity O (MatMul)
[Pernet-Storjohann 2007] http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf
- recent developments give new insight concerning core operations typically used in Frobenius form algorithms charpoly in O (MatMul): [Neiger-Pernet 2021] doi.org/10.1016/S0885-064X(22)00005-X Krylov iterates in O(MatMul): [Neiger-Pernet-Villard 2024] hal.science/hal-04445355

\section*{polynomials: main computational problems}

\section*{most problems have quasi-linear complexity}
thanks to reductions to PolMul - did we mention the importance of good reductions?
- addition \(\mathrm{f}+\mathrm{g}\), multiplication \(\mathrm{f} * \mathrm{~g}\)
- division with remainder \(\mathrm{f}=\mathrm{qg}+\mathrm{r}\)
- truncated inverse \(f^{-1} \bmod x^{d}\)
- extended GCD \(\mathrm{fu}+\mathrm{gv}=\operatorname{gcd}(\mathrm{f}, \mathrm{g})\)
- multipoint eval. \(f \mapsto f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right)\)
- interpolation \(\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}\)
- Padé approximation \(\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod \mathrm{x}^{\mathrm{d}}\)
- minpoly of linearly recurrent sequence


\section*{polynomials: main computational problems}
most problems have quasi-linear complexity
thanks to reductions to PolMul - did we mention the importance of good reductions?
\(O(M(d))\)
- addition \(\mathrm{f}+\mathrm{g}\), multiplication \(\mathrm{f} * \mathrm{~g}\)
- division with remainder \(f=q g+r\)
- truncated inverse \(f^{-1} \bmod x^{d}\)
- extended GCD \(\mathrm{fu}+\mathrm{g} v=\operatorname{gcd}(\mathrm{f}, \mathrm{g})\)
- multipoint eval. \(f \mapsto f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right)\)
- interpolation \(\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}\)
- Padé approximation \(\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod x^{\mathrm{d}}\)
- minpoly of linearly recurrent sequence


\section*{polynomials: main computational problems}
most problems have quasi-linear complexity
thanks to reductions to PolMul - did we mention the importance of good reductions?
\(O(M(d))\)
\(\mathrm{O}(\mathrm{M}(\mathrm{d}) \log (\mathrm{d}))\)
- addition \(\mathrm{f}+\mathrm{g}\), multiplication \(\mathrm{f} * \mathrm{~g}\)
- division with remainder \(f=q g+r\)
- truncated inverse \(f^{-1} \bmod x^{d}\)
- extended GCD \(f u+g v=\operatorname{gcd}(f, g)\)
- multipoint eval. \(f \mapsto f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right)\)
- interpolation \(\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}\)
- Padé approximation \(\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod x^{\mathrm{d}}\)
- minpoly of linearly recurrent sequence


\section*{polynomials: main computational problems}
most problems have quasi-linear complexity
thanks to reductions to PolMul - did we mention the importance of good reductions?
\(O(M(d))\)
\(O(M(d) \log (d))\)
- addition \(\mathrm{f}+\mathrm{g}\), multiplication \(\mathrm{f} * \mathrm{~g}\)
- division with remainder \(f=q g+r\)
- truncated inverse \(f^{-1} \bmod x^{d}\)
- extended GCD \(\mathrm{fu}+\mathrm{gv}=\operatorname{gcd}(\mathrm{f}, \mathrm{g})\)
- multipoint eval. \(f \mapsto f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{d}\right)\)
- interpolation \(\mathrm{f}\left(\alpha_{1}\right), \ldots, \mathrm{f}\left(\alpha_{\mathrm{d}}\right) \mapsto \mathrm{f}\)
- Padé approximation \(\mathrm{f}=\frac{\mathrm{p}}{\mathrm{q}} \bmod x^{\mathrm{d}}\)
- minpoly of linearly recurrent sequence


\section*{bonus: some notes/references}
polynomial multiplication in \(\mathrm{O}(\mathrm{d} \log (\mathrm{d}))\) ?
- remains open over an arbitrary field, concerning algebraic complexity
- solved when the field possesses suitable roots of unity for FFT
- method of choice in practice (using several primes and CRT if needed) when working over prime finite fields \(\mathbb{Z} / \mathrm{p} \mathbb{Z}\)
- recent progress in the bit complexity model
[Harvey-van der Hoeven 2019] https://doi.org/10.1016/j.jco.2019.03.004
[Harvey-van der Hoeven 2022] https://doi.org/10.1145/3505584
interpolation and multipoint evaluation in O (PolMul)?
- remains open for an arbitrary set of points, with no assumption, but:
- by design, solved for FFT points, when available
- more generally, solved for points forming a geometric sequence [Bostan-Schost 2005] https://doi.org/10.1016/j.jco.2004.09.009
- in many applications of interpolation/evaluation, one can choose the points, in which case O (PolMul) is feasible
sage: M. degree matrix (shifts \(=[-1,2]\), row wise \(=\) False
\(\left[\begin{array}{lll}0 & -2 & -1\end{array}\right]\)
\(\left[\begin{array}{llll}5 & -2 & -21\end{array}\right.\)
hermite_form(include_zero_rows=True, transformation=False)
Return the Hermite form of this matrix.
The Hermite form is also normalized, i.e., the pivot polynomials are monic.
INPUT:
- include_zero_rows - boolean (default: True); if False, the zero rows in the output1 deleted
- transformation - boolean (default: False); if True, return the transformation mat:

OUTPUT:

VecLong rem_order(order);
// tindices of columns/orders that remain to be dealt with Veclong rem_index (cdim);
std::iota(rem index, begin(), ren_index,end(), 0);
// all along the algorthm, shift = shifted row degrees of approximant // (initially, input shift = shifted row degree of the identity matrix)
```

Witte(not remorder.enpty:\)

```
र
/** Invariant:
* - appbas is shift-ordered weak Popoy approximant basts for (pmat, reached_order) where doneorder is the tuple such that
* -->reached_order[j] + ren_order[j] \(==\) order[j] for \(j\) appearing
* \(->r e a c h e d\) order \([j]==\operatorname{order}[j]\) for \(j\) not appearing in rem_index - shift \(==\) the "input shift"-row degree of appbas

\section*{matrices \\ software \\ polynomials}
```

sage: M.<x> = GF(7) []
sage: A = natrix(M, 2, 3, lx, 1, 2`x, x, 1+x, 2])
sage: A hermite form()
[x I I 2*x]
[0 < 5*x + 2]
sage: A.hermite form(trans formation=True)
x llllllll
sage: A}=\mathrm{ natrix(M, 2, 3, 7x, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite form(transformation=True, include zero rows=False)
\&% x 12*x1, %% 41)
sage: H,U=A.hermite_forn(transformation=True, include_zero_rows=True); H,U
[x 1 2*x] [04]
[0}00000],[$$
\begin{array}{ll}{0}&{1}\end{array}
$$
sage: U* A == H
True
saga: H,U = A.hermite_form(transformation=True, include_zero_rows=False)
sage: U' A
| x 1 2*x]
sage: U-A == H
True

```

\section*{See also: is hermite()}
is_hermite(row_wise \(=\) True, lower_echelon=False, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in Hermite form.
```

long deg = order[rem_index[j]] - rem_order[j];

```
7/ record the coeffictents of degree deg of the column 13 of residual
// also keep track of which of these are nonzero,
// and afong the nonzero ones, which is the first with smallest shift
Vec<zz_p> const_residuat;
const_residual. Setlength(rdin);
Veclong indices_nonzero;
long piv \(=-1\);
Por (Tong \(i=0 ; 1<\) rdtm; \(++i\) )
[
    const_residual[i] = coeff(residual[i][j], deg);
    if (const_residual[i] !=0)
    \{
        indices_nonzero.push_back(i);
        if (piv<0 || shift[i] < shift[piv])
                \(p t v=i ;\)
    \}
\}
// if indices_nonzero is empty, const_residual is already zero, there
if (not indices_nonzero, empty())
[
open-source mathematics software system 5들

Python/Cython
high-performance exact linear algebra LinBox - fflas-ffpack \(\quad C / C++\)
high-performance polynomials (and more) NTL \& FLINT

C/C++

VecLong rem_order(order)
VecLong rem index(cdim); std::iota(rem_index.begin(), ren_index.end(), 0);

If att atong the atgorthim, shift = shiffed row degrees of approxtmant Whtle (not rem_order.empty())

Invartant:
- appbas ts a shift-ordered weak Popov approximant basts for
(pmat, reached_order) where doneorder is the tuple such that
\(\rightarrow\) reached_order[j]

\section*{matrices \\ software \\ polynomials}

open-source mathematics software system
5ロㄹ Python/Cython
high-performance exact linear algebra
\[
\text { LinBox - fflas-ffpack } \quad C / C++
\]
high-performance polynomials (and more) NTL \& FLINT
\(C / C++\)
- choice of algorithms
- data structures and storage
- cache efficiency
- SIMD vectorization instructions
- multithreading, GPU programming

\section*{matrices \\ software \\ polynomials}

\footnotetext{
sage: \(M .\langle x>=G F(7) I\)
sage: \(A=\) natrix \((M)\)
sage: A. hermite form()
sage: A.hermite form(trans formation=True)
sage: \(A=\) natrix \((M\)
sage: A.hermite form(transformation=True, include zero_rows=False)
sage: \(H, U=\) A.hermite_forn(transformation=True, include_zero_rows=True); \(H, U\)
\(\qquad\)
sage: \(H, U=A . h e r n i t e\) forn(transformation=True, include_zero_rows=False)
sage: \(U+A\)
\(\left.1 x \cdot 2^{*} x\right\}\)
sage: \(U^{1}-A=H\)

See also: is hermite
}

Long deg = order[rem_index[j]] - rem_order[j];
// record the coefficients of degree deg of the co
// also keep track of which of these are nonzero,
// and among the nonzero ones, which is the first
Vecezz_p> const, residual;
const_residual. SetLength(rdim);
VecLong indices_nonzero;
long ptv \(=-1\);
for (long \(\mathrm{i}=0\); \(\mathrm{i}<\) rdim; ++i )
[ const_residual[ \([\mathrm{i}]=\) coeff(residual[ [i][j], deg);
if (const residual[ \(i]!=0\) )
indices_nonzero.push_back(i);
if (piv<0 || shift[i] < shift[piv])
open-source mathematics software system
5ロㄹ Python/Cython
high-performance exact linear algebra
\[
\text { LinBox - fflas-ffpack } \quad C / C++
\]
high-performance polynomials (and more) NTL \& FLINT
\(C / C++\)
- choice of algorithms
- data structures and storage
- cache efficiency
- SIMD vectorization instructions
- multithreading, GPU programming

\section*{matrices \\ software \\ polynomials}

\section*{what you can compute in about 1 second with fflas-ffpack}
-PLUQ \(\quad \mathrm{m}=3800 \quad 1.00\) s
- LinSys \(\quad \mathrm{m}=3800\) 1.00s
- MatMul \(\quad \mathrm{m}=3000 \quad 0.97 \mathrm{~s}\)
- Inverse \(\quad \mathrm{m}=2800\) 1.01s
- CharPoly m = 2000 1.09s
open-source mathematics software system
5ロㄹ Python/Cython
high-performance exact linear algebra
\[
\text { LinBox - fflas-ffpack } \quad C / C++
\]
high-performance polynomials (and more) NTL \& FLINT
\(C / C++\)
- choice of algorithms
- data structures and storage
- cache efficiency
- SIMD vectorization instructions
- multithreading, GPU programming

\section*{matrices \\ software \\ polynomials}

\section*{what you can compute in about 1 second with fflas-ffpack with NTL}
-PLUQ \(\quad \mathrm{m}=3800 \quad 1.00\) s
- LinSys \(\quad \mathrm{m}=3800\) 1.00s
- MatMul \(\quad m=3000 \quad 0.97 \mathrm{~s}\)
- Inverse \(\quad \mathrm{m}=2800\) 1.01s
- CharPoly m=2000 1.09s
\begin{tabular}{lll} 
- PolMul & \(d=7 \times 10^{6}\) & 1.03 s \\
- Division & \(d=4 \times 10^{6}\) & 0.96 s \\
- XGCD & \(d=2 \times 10^{5}\) & 0.99 s \\
- MinPoly & \(d=2 \times 10^{5}\) & 1.10 s \\
- MPeval & \(d=1 \times 10^{4}\) & 1.01 s
\end{tabular}
open-source mathematics software system
high-performance exact linear algebra
\[
\text { LinBox - fflas-ffpack } \quad C / C++
\]
high-performance polynomials (and more) NTL \& FLINT

C/C++
- choice of algorithms
- data structures and storage
- cache efficiency
- SIMD vectorization instructions
- multithreading, GPU programming
matrices software polynomials

\section*{what you can compute in about 1 second with fflas-ffpack with NTL}
-PLUQ \(\quad \mathrm{m}=3800 \quad 1.00\) s
- LinSys \(\quad m=3800\) 1.00s
- MatMul \(\quad m=3000 \quad 0.97 \mathrm{~s}\)
- Inverse \(\quad \mathrm{m}=2800 \quad 1.01 \mathrm{~s}\)
- CharPoly m=2000 1.09s
\begin{tabular}{lll} 
- PolMul & \(d=7 \times 10^{6}\) & 1.03 s \\
- Division & \(d=4 \times 10^{6}\) & 0.96 s \\
- XGCD & \(d=2 \times 10^{5}\) & 0.99 s \\
- MinPoly & \(d=2 \times 10^{5}\) & 1.10 s \\
\hline MPeval & \(\mathrm{d}=1 \times 10^{4}\) & 1.01 s
\end{tabular}

\section*{matrix exponentiation}
input: matrix \(A \in \mathbb{K}^{\mathfrak{m} \times m}\), integer \(k>0\)
output: \(A^{k}\)

\section*{matrix exponentiation}
\[
\begin{aligned}
& \text { input: matrix } A \in \mathbb{K}^{m \times m}, \quad \text { repeated squaring: } \mathrm{O}\left(\mathrm{~m}^{\omega} \log (k)\right) \\
& \quad \text { integer } k>0
\end{aligned}
\]
output: \(A^{k}\)

\section*{matrix exponentiation}
input: matrix \(A \in \mathbb{K}^{m \times m}\), integer \(k>0\)
output: \(A^{k}\)
- repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{k})\right)\)
- using Frobenius form:
\(\mathrm{O}\left(\mathrm{m}^{\mathrm{\omega}} \log (\mathrm{~m}) \log \log (m)\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Storjohann 2001]
- improvement with polynomial matrices:
\(\mathrm{O}\left(\mathrm{m}^{\omega} \log \log (m)^{2}\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

\section*{constant matrices accelerated by polynomial matrices}

\section*{matrix exponentiation}
input: matrix \(A \in \mathbb{K}^{m \times m}\), integer \(k>0\)
output: \(A^{k}\)
- repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{k})\right)\)
- using Frobenius form:
\(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m}) \log \log (m)\right)\) if \(\log (k) \in \mathrm{O}(m)\) [Giesbrecht 1995] [Storjohann 2001]
- improvement with polynomial matrices:
\(\mathrm{O}\left(\mathrm{m}^{\omega} \log \log (\mathrm{m})^{2}\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

\section*{matrix exponentiation}
input: matrix \(A \in \mathbb{K}^{m \times m}\), integer \(k>0\)
output: \(A^{k}\)
can we reach \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) ?
- repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{k})\right)\)
- using Frobenius form:
\(\mathrm{O}\left(\mathrm{m}^{\mathrm{\omega}} \log (\mathrm{~m}) \log \log (m)\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Storjohann 2001]
- improvement with polynomial matrices:
\(O\left(m^{\omega} \log \log (m)^{2}\right)\) if \(\log (k) \in O(m)\)
[Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

\section*{Krylov iterates}
input: matrix \(A \in \mathbb{K}^{m \times m}\), vector \(v \in \mathbb{K}^{\mathfrak{m} \times 1}\)
output: \(v, A v, \ldots, A^{m-1} v\)

\section*{matrix exponentiation}
input: matrix \(A \in \mathbb{K}^{m \times m}\), integer \(k>0\)
output: \(A^{k}\)
can we reach \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) ?
- repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{k})\right)\)
- using Frobenius form:
\(\mathrm{O}\left(\mathrm{m}^{\mathrm{\omega}} \log (\mathrm{~m}) \log \log (m)\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Storjohann 2001]
- improvement with polynomial matrices:
\(\mathrm{O}\left(\mathrm{m}^{\omega} \log \log (m)^{2}\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

\section*{Krylov iterates}
input: matrix \(A \in \mathbb{K}^{m \times m}\), vector \(v \in \mathbb{K}^{m \times 1}\)
output: \(\mathcal{v}, A v, \ldots, A^{m-1} v\)
- repeated matrix-vector products: \(\mathrm{O}\left(\mathrm{m}^{3}\right)\)
- via repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})\right)\)
[Keller-Gehrig 1985]

\section*{matrix exponentiation}
input: matrix \(A \in \mathbb{K}^{m \times m}\), integer \(k>0\)
output: \(A^{k}\)
can we reach \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) ?
- repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{k})\right)\)
- using Frobenius form:
\(\mathrm{O}\left(\mathrm{m}^{\mathrm{\omega}} \log (\mathrm{~m}) \log \log (m)\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Storjohann 2001]
- improvement with polynomial matrices:
\(\mathrm{O}\left(\mathrm{m}^{\omega} \log \log (m)^{2}\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

\section*{Krylov iterates}
input: matrix \(A \in \mathbb{K}^{m \times m}\), vector \(v \in \mathbb{K}^{m \times 1}\)
output: \(\mathcal{V}, A \mathcal{V}, \ldots, A^{m-1} v\)
- repeated matrix-vector products: \(\mathrm{O}\left(\mathrm{m}^{3}\right)\)
- via repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})\right)\)
[Keller-Gehrig 1985]
- with polynomial matrices: \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\)
[Zhou-Labahn-Storjohann 2012][Neiger-Pernet 2021]

\section*{constant matrices accelerated by polynomial matrices}

\section*{matrix exponentiation}
input: matrix \(A \in \mathbb{K}^{m \times m}\), integer \(k>0\)
output: \(A^{k}\)
can we reach \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) ?
- repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{k})\right)\)
- using Frobenius form:
\(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m}) \log \log (m)\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Storjohann 2001]
- improvement with polynomial matrices:
\(\mathrm{O}\left(\mathrm{m}^{\omega} \log \log (\mathrm{m})^{2}\right)\) if \(\log (k) \in \mathrm{O}(m)\)
[Giesbrecht 1995] [Neiger-Pernet-Villard 2024]

\section*{Krylov iterates}
input: matrix \(A \in \mathbb{K}^{m \times m}\), vector \(v \in \mathbb{K}^{m \times 1}\)
output: \(v, A v, \ldots, A^{m-1} v\)
```

we do reach O(m}\mp@subsup{m}{}{\omega})

```
- repeated matrix-vector products: \(\mathrm{O}\left(\mathrm{m}^{3}\right)\)
- via repeated squaring: \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})\right)\)
[Keller-Gehrig 1985]
- with polynomial matrices: \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\)
[Zhou-Labahn-Storjohann 2012][Neiger-Pernet 2021]
```

sage: M.degree matrix(shifts=[-1,2], row wise=False)

```
\(\left[\begin{array}{lll}0 & -2 & -1\end{array}\right]\)
hermite_form(include_zero_rows=True, transformation=False)

Return the Hermite form of this matrix.
The Hermite form is also normalized, i.e., the pivot polynomials are monic.
INPUT:
- include_zero_rows - boolean (default: True); if False, the zero rows in the outputt 1 deleted
- transformation - boolean (default: False); if True, return the transformation mat

OUTPUT:

Veclong rem_order(order);
// tindices of columns/orders that remain to be dealt with Veclong rem_index(cdim);
std::iota(rem_index,begin(), ren_index.end(), 0);
// all along the algorthm, shift = shifted row degrees of approximant // (initially, input shift = shifted row degree of the identity matrix)

\section*{Whtle (not rem_order.empty())}

1** Invariant
* - appbas is a shift-ordered weak Popov approximant basts for (pmat, reached_order) where doneorder is the tuple such that \(\rightarrow\) reached_order[j] + ren_order[j] == order[j] for \(J\) appeartng -->reached_order[j] == order[j] for \(j\) not appearing in rem_index shift \(==\) the "input shift"-row degree of appbas

\section*{software development for polynomial matrices}
```

sage: M.<x> = GF(7)[]
sage: }A=\mathrm{ natrix(M)
sage: A. hermite form(')
[$$
\begin{array}{ccc}{0}&{x}&{\overline{1}}\end{array}
$$<\mp@subsup{2}{}{*x]}
sage: A.hermite form(transformation=True)
$\left[\begin{array}{ccccc}x & 1 & 2+x 1 & {[1} & 01 \\ 0 & \times & 5 \times x+21 & \mid 6 & 1 \mid\end{array}\right.$
sage: A}=\mathrm{ natrix(M, 2, 3, lx, 1, 2*x, 2*x, 2, 4**])
sage: A.hermite form(transformation=True, include zero row }5=False
(t x 12 2txl, 10 41)
sage: H,U=A.hermite_forn(transformation=True, include_zero_rows=True); H,U
[x 1 1 2*x] [0 4]
sage: U* A == H
True
sage: H,U = A.hermite forn(transformation=True, include zero rows=False)
sage: U " A
x 1 2*x]
sage: U-A == H
True

```

\section*{See also: is hermite()}
```

long deg = order[rem_index[j]] - rem_order[j];

1) racned the cnafficients ofi denrea dan of the relumn I of residual
I/ also keep Erack of which of these are nonzero,
I/ and among the nonzerg ones, which is the first with smallest shift
Vec<zz p> const residual:
const_restdual.Setlength(rdtm);
Veclong indices nonzero;
long ptv = -1;
for (Long i=0; i < rdim; ++i)
E
const_residual[i] = coeff(residual[i][j],deg);
if (const_restdual[t] != 0)
{
indices nonzero.push back(i);
if (piv<0 || shift[i]}<<<shift[piv]
ptv=t;
}
// tf tndtces_nonzero: is empty, const_residual ts already zero, there
if (not indtces_nonzero, empty())
```
open-source mathematics software system 5 5ロㄹ Python/Cython
goals: complete, robust, available (more than 60k downloads per month)

Veclong rem order(order);
// indices of columns/or
VecLong rem_index (cdim);
std::iota(rem_index,begin () , ren_index.end (), 0); If atl along the algorthim, shift = shifted row degrees of approximant
* Invariant:
- appbas is a shift-ordered weak Popov approximant basts for
(rmnt, -esehel_order) where doneorder is the tuple such that
software development for polynomial matrices

open-source mathematics software system


Python/Cython
goals: complete, robust, available (more than 60k downloads per month)
high-performance exact linear algebra LinBox - fflas-ffpack \(\quad C / C++\)
goal: optimized basic operations
algorithms, vectorization, multithreading

\section*{software development for polynomial matrices}

open-source mathematics software system

goals: complete, robust, available (more than 60k downloads per month)
high-performance exact linear algebra LinBox - fflas-ffpack \(\quad C / C++\)
goal: optimized basic operations algorithms, vectorization, multithreading

\section*{software development for polynomial matrices}

\section*{Polynomial Matrix Library C/C++}

> 533 files, 72 k lines of code, including 21 k lines of comments https://github.com/vneiger/pml
> [Hyun-Neiger-Schost'19]
- most tools are based on NTL
- work-in-progress version based on FLINT
- welcome comments, suggestions, contributions
"hey, this doesn't work!"
"yo, plans for implementing this?"
"how to compute this determinant with PML?"

\section*{outline}
computer algebra
polynomial matrices
first algorithms
exercises

\section*{outline}
computer algebra
polynomial matrices

\section*{first algorithms}
exercises
- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials

\section*{polynomial matrices}

\section*{basic definitions and properties}

\section*{\(\mathbb{K}[x]^{m \times n}=\) set of \(m \times n\) matrices over \(\mathbb{K}[x]\)}
called polynomial matrices in what follows
\[
\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right] \in \mathbb{K}[x]^{3 \times 3}
\]
- structure: matrices over \(\mathbb{K}[x] \longleftrightarrow\) free modules over \(\mathbb{K}[x]\) similarly to: \(\quad\) matrices over \(\mathbb{K} \longleftrightarrow\) vector spaces over \(\mathbb{K}\)
- basic operations: addition and multiplication
defined as usual (multiplication requires compatible dimensions)
- \(\mathbb{K}[x]\) is not a field

\section*{polynomial matrices}

\section*{basic definitions and properties}

\section*{\(\mathbb{K}[x]^{m \times n}=\) set of \(m \times n\) matrices over \(\mathbb{K}[x]\)}
called polynomial matrices in what follows
\[
\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right] \in \mathbb{K}[x]^{3 \times 3}
\]
- structure: matrices over \(\mathbb{K}[x] \longleftrightarrow\) free modules over \(\mathbb{K}[x]\) similarly to: \(\quad\) matrices over \(\mathbb{K} \longleftrightarrow\) vector spaces over \(\mathbb{K}\)
- basic operations: addition and multiplication
defined as usual (multiplication requires compatible dimensions)
- \(\mathbb{K}[x]\) is not a field
\(\rightsquigarrow\) algorithms may work in \(\mathbb{K}(x)^{m \times n}\), but be careful with "degree explosion"!

\section*{polynomial matrices}

\section*{examples you already know}

\section*{large matrices with small degrees:}
characteristic polynomial \(\operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[x]\) of a matrix \(\mathbf{M} \in \mathbb{K}^{m \times m}\) \(\rightsquigarrow\) determinant of polynomial matrix \(x \mathbf{I}_{m}-\mathbf{M} \in \mathbb{K}[x]^{m \times m}\)
- fastest known algorithm uses this viewpoint [N.-Pernet, 2021]
- gradually transforms \(\chi \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\) to smaller matrices with larger degrees

\section*{polynomial matrices}

\section*{examples you already know}

\section*{large matrices with small degrees:}
characteristic polynomial \(\operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[x]\) of a matrix \(\mathbf{M} \in \mathbb{K}^{m \times m}\)
\(\rightsquigarrow\) determinant of polynomial matrix \(x \mathbf{I}_{m}-\mathbf{M} \in \mathbb{K}[x]^{m \times m}\)
- fastest known algorithm uses this viewpoint [N.-Pernet, 2021]
- gradually transforms \(\chi \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\) to smaller matrices with larger degrees

\section*{small matrices with large degree:}
extended GCD uf \(+v g=\operatorname{gcd}(f, g)\) for polynomials \(f, g \in \mathbb{K}[x]_{\leqslant d}\) \(\rightsquigarrow\) corresponds to a polynomial matrix transformation
\[
\left[\begin{array}{ll}
u & v \\
\tilde{g} & \tilde{f}
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{c}
\operatorname{gcd}(f, g) \\
0
\end{array}\right]
\]
with the leftmost (polynomial) matrix of determinant in \(\mathbb{K} \backslash\{0\}\)
- fastest known "half-gcd" algorithms use this viewpoint
[Knuth, 1970] [Schönhage, 1971] [Brent-Gustavson-Yun, 1980]

\section*{polynomial matrices}

\section*{use in various situations}

\section*{operations on sparse matrices}
- solving sparse linear systems over \(\mathbb{K}\)
- computing the minimal polynomial / Frobenius form
- introducing parallelism in these computations
[Wiedemann 1986]
[Coppersmith 1993]
[Villard 1997]
example of sparse matrix in \(\mathbb{K}^{\mathfrak{m} \times m}\) typical case: \(\mathrm{O}(\mathrm{m})\) nonzero entries

> uses polynomial matrix generator of linearly recurrent matrix sequence

\section*{polynomial matrices}

\section*{use in various situations}

\section*{operations on structured matrices}
- matrix-vector multiplication
- linear system solving
- nullspace computation
[Kailath-Kung-Morf 1979] [Bostan et al. 2017]
example of Hankel matrix
\(\rightsquigarrow\) block-Hankel matrices
\(\rightsquigarrow\) Hankel-like matrices

uses polynomial matrix multiplication and matrix-Padé approximation / matrix-GCD

\section*{polynomial matrices}
use in various situations

\section*{bivariate interpolation and multipoint evaluation} problem: given points \(\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{n}, \beta_{n}\right)\) in \(\mathbb{K}^{2}\),
- given \(p(x, y)\), compute \(p\left(\alpha_{i}, \beta_{i}\right)\) for \(1 \leqslant i \leqslant n\)
- find \(p(x, y)\) of small degree such that \(p\left(\alpha_{i}, \beta_{i}\right)=0\)
[Nüsken-Ziegler 2004]
[Beckermann 1992] [van Barel-Bultheel 1992]
[Marinari-Möller-Mora 1993]
bivariate interpolation \(=\) main step in Reed-Solomon list-decoding (univariate interpolation with errors) [Guruswami-Sudan 1999] [Kötter-Vardy 2003]


\section*{polynomial matrices}

\section*{seen as matrices over \(\mathbb{K}(x)\)}
linear algebra viewpoint:
matrices in \(\mathbb{K}[x]^{m \times n}\) are also in \(\mathbb{K}(x)^{m \times n}\) (and \(\mathbb{K}(x)\) is a field)
\(\Rightarrow\) usual definition of addition, multiplication, determinant these do not involve division anyway (... in algorithms?)
\(\Rightarrow\) usual definition of rank
coincides with rank of free module
\(\Rightarrow\) usual definition of inverse
with inverse over \(\mathbb{K}(x)\)

\section*{polynomial matrices}

\section*{seen as matrices over \(\mathbb{K}(x)\)}
linear algebra viewpoint:
matrices in \(\mathbb{K}[x]^{m \times n}\) are also in \(\mathbb{K}(x)^{m \times n}\)
(and \(\mathbb{K}(x)\) is a field)
\(\Rightarrow\) usual definition of addition, multiplication, determinant these do not involve division anyway (... in algorithms?)
\(\Rightarrow\) usual definition of rank
coincides with rank of free module
\(\Rightarrow\) usual definition of inverse
with inverse over \(\mathbb{K}(x)\)
\[
\begin{array}{r}
\text { inverse is over } \mathbb{K}[x] \Leftrightarrow \operatorname{det}(\mathbf{A}) \in \mathbb{K} \backslash\{0\} \\
\\
\operatorname{def.:~} \mathcal{A} \text { is unimodular }
\end{array}
\]

\section*{polynomial matrices}
seen as matrices over \(\mathbb{K}(x)\)
linear algebra viewpoint:
matrices in \(\mathbb{K}[x]^{m \times n}\) are also in \(\mathbb{K}(x)^{m \times n}\)
\(\Rightarrow\) usual definition of addition, multiplication, determinant these do not involve division anyway (... in algorithms?)
\(\Rightarrow\) usual definition of rank
coincides with rank of free module
\(\Rightarrow\) usual definition of inverse
with inverse over \(\mathbb{K}(x)\)
\(\rightsquigarrow\) algorithms may work in \(\mathbb{K}(x)^{m \times n}\), but be careful with "degree explosion"!

\section*{polynomial matrices}

\section*{seen as matrices over \(\mathbb{K}(x)\)}
linear algebra viewpoint:
matrices in \(\mathbb{K}[x]^{m \times n}\) are also in \(\mathbb{K}(x)^{m \times n}\) (and \(\mathbb{K}(x)\) is a field)
- viewpoint useful for definitions and properties
- viewpoint hardly usable for algorithms:
ignores degree growth + too coarse cost bounds
\[
\begin{aligned}
& \text { cost of naive addition in } \mathbb{K}[x]^{m \times n} \longrightarrow \mathrm{O}(\mathrm{mn}) \text { additions in } \mathbb{K}(x) \\
& \text {. cost of naive multiplication in } \mathbb{K}[x]^{\mathrm{m} \times m} \longrightarrow \mathrm{O}\left(\mathrm{~m}^{3}\right) \text { ops in } \mathbb{K}(x)
\end{aligned}
\]

\section*{polynomial matrices}
seen as matrices over \(\mathbb{K}(x)\)
linear algebra viewpoint:
matrices in \(\mathbb{K}[x]^{m \times n}\) are also in \(\mathbb{K}(x)^{m \times n}\) (and \(\mathbb{K}(x)\) is a field)
- viewpoint useful for definitions and properties
- viewpoint hardly usable for algorithms:
ignores degree growth + too coarse cost bounds
\[
\begin{aligned}
& \text { cost of naive addition in } \mathbb{K}[x]^{\mathrm{m} \times n} \longrightarrow \mathrm{O}(\mathrm{mn}) \text { additions in } \mathbb{K}(x) \\
& \text {. cost of naive multiplication in } \mathbb{K}[x]^{\mathrm{m} \times m} \longrightarrow \mathrm{O}\left(\mathrm{~m}^{3}\right) \text { ops in } \mathbb{K}(x)
\end{aligned}
\]

\section*{for algorithms\&complexity, considering the degrees of entries is essential}

\section*{polynomial matrices}

\section*{seen as polynomials over \(\mathbb{K}^{m \times n}\)}

\section*{polynomial viewpoint:}
\(\mathbb{K}[x]^{m \times n}\) is isomorphic to \(\mathbb{K}^{m \times n}[x]\)
\[
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 1 & 3 \\
5 & 1 & 3 \\
3 & 5 & 1
\end{array}\right]+\left[\begin{array}{lll}
3 & 4 & 0 \\
0 & 3 & 5 \\
5 & 6 & 2
\end{array}\right] x+\left[\begin{array}{lll}
0 & 0 & 4 \\
0 & 5 & 0 \\
1 & 0 & 0
\end{array}\right] x^{2}+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right] x^{3}
\end{aligned}
\]

\section*{polynomial matrices}

\section*{seen as polynomials over \(\mathbb{K}^{\mathfrak{m} \times n}\)}

\section*{polynomial viewpoint:}

\section*{\(\mathbb{K}[x]^{m \times n}\) is isomorphic to \(\mathbb{K}^{m \times n}[x]\)}
\[
\begin{array}{rl}
\mathbf{A} & =\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
6 x+5 & 2 x+1
\end{array}\right] \\
3 x^{3}+x^{2}+5 x+3 & 6 x+\left[\begin{array}{lll}
4 & 1 & 3 \\
5 & 1 & 3 \\
3 & 5 & 1
\end{array}\right]+\left[\begin{array}{lll}
3 & 4 & 0 \\
0 & 3 & 5 \\
5 & 6 & 2
\end{array}\right] x+\left[\begin{array}{lll}
0 & 0 & 4 \\
0 & 5 & 0 \\
1 & 0 & 0
\end{array}\right] x^{2}+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right] x^{3}
\end{array}
\]

A has degree 3 ; in general, \(\operatorname{deg}(\mathbf{A B}) \leqslant \operatorname{deg}(\mathbf{A})+\operatorname{deg}(\mathbf{B})\)
e.g. \(\operatorname{deg}\left(\mathbf{A}^{2}\right)=6\), and \(\operatorname{deg}\left(\mathbf{A}^{3}\right)=8\), and \(\operatorname{deg}\left(\mathbf{A}^{4}\right)=11\)

\section*{polynomial matrices}

\section*{seen as polynomials over \(\mathbb{K}^{\mathfrak{m} \times n}\)}

\section*{polynomial viewpoint:}
\(\mathbb{K}[x]^{m \times n}\) is isomorphic to \(\mathbb{K}^{m \times n}[x]\)
\[
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 1 & 3 \\
5 & 1 & 3 \\
3 & 5 & 1
\end{array}\right]+\left[\begin{array}{lll}
3 & 4 & 0 \\
0 & 3 & 5 \\
5 & 6 & 2
\end{array}\right] x+\left[\begin{array}{lll}
0 & 0 & 4 \\
0 & 5 & 0 \\
1 & 0 & 0
\end{array}\right] x^{2}+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right] x^{3}
\end{aligned}
\]
degree growth enhances computational aspects
example: computing the N -th power \(\mathrm{A}^{\mathrm{N}}\)

\section*{polynomial matrices}

\section*{seen as polynomials over \(\mathbb{K}^{m \times n}\)}

\section*{polynomial viewpoint:}
\(\mathbb{K}[x]^{m \times n}\) is isomorphic to \(\mathbb{K}^{m \times n}[x]\)
\[
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 1 & 3 \\
5 & 1 & 3 \\
3 & 5 & 1
\end{array}\right]+\left[\begin{array}{lll}
3 & 4 & 0 \\
0 & 3 & 5 \\
5 & 6 & 2
\end{array}\right] x+\left[\begin{array}{lll}
0 & 0 & 4 \\
0 & 5 & 0 \\
1 & 0 & 0
\end{array}\right] x^{2}+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right] x^{3}
\end{aligned}
\]

\section*{degree growth enhances computational aspects}

\section*{example: computing the \(N\)-th power \(A^{N}\)}
repeated squaring:
\[
\left\{\begin{array}{cc}
\mathbf{A} \times \mathbf{A} & (\operatorname{deg}=3) \\
\mathbf{A}^{2} \times \mathbf{A}^{2} & (\operatorname{deg} \leqslant 6) \\
\vdots & \vdots \\
\mathbf{A}^{\frac{N}{4}} \times \mathbf{A}^{\frac{N}{4}} & \left(\operatorname{deg} \leqslant \frac{3 N}{4}\right) \\
\mathbf{A}^{\frac{N}{2}} \times \mathbf{A}^{\frac{N}{2}} & \left(\operatorname{deg} \leqslant \frac{3 N}{2}\right)
\end{array}\right.
\]
find small recurrence + unroll it:
[Flajolet-Salvy 1997][Bostan-Neiger-Yurkevich 2023]
\(\mathrm{O}(\mathrm{N})\) operations in \(\mathbb{K}\)
- faster than multiplying \(\mathbf{A}^{\frac{N}{2}} \times \mathbf{A}^{\frac{N}{2}}\)
- does not require FFT
- prototype: \(\mathrm{N}=2^{20} \rightsquigarrow 1.6 \mathrm{~s}\) vs. 11.5 s

\section*{polynomial matrices}

\section*{seen as polynomials over \(\mathbb{K}^{m \times n}\)}

\section*{polynomial viewpoint:}
\[
\mathbb{K}[x]^{m \times n} \text { is isomorphic to } \mathbb{K}^{m \times n}[x]
\]
\[
\begin{aligned}
\mathbf{A} & =\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right] \\
& =\left[\begin{array}{lll}
4 & 1 & 3 \\
5 & 1 & 3 \\
3 & 5 & 1
\end{array}\right]+\left[\begin{array}{lll}
3 & 4 & 0 \\
0 & 3 & 5 \\
5 & 6 & 2
\end{array}\right] x+\left[\begin{array}{lll}
0 & 0 & 4 \\
0 & 5 & 0 \\
1 & 0 & 0
\end{array}\right] x^{2}+\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right] x^{3}
\end{aligned}
\]
- natural notion of degree of a polynomial matrix
- addition of \(\mathbf{A}, \mathbf{B} \in \mathbb{K}[x]^{m \times n}\) is in O (mnd) operations in \(\mathbb{K}\) where \(d=\min (\operatorname{deg}(\mathbf{A}), \operatorname{deg}(\mathbf{B}))\)
- some other polynomial operations available: truncation \(\mathbf{A}\) rem \(\chi^{\mathrm{N}}\), shift \(\chi^{\mathrm{d}} \mathbf{A}\), evaluation \(\mathbf{A}(\alpha)\) for \(\alpha \in \mathbb{K}\)

\section*{polynomial matrices}

\section*{seen as polynomials over \(\mathbb{K}^{\mathfrak{m} \times n}\)}
polynomial viewpoint:
\(\mathbb{K}[x]^{m \times n}\) is isomorphic to \(\mathbb{K}^{m \times n}[x]\)
when \(\mathrm{m}=\mathrm{n}, \mathbb{K}^{\mathrm{m} \times \mathrm{m}}\) is a (non-commutative) ring derived from univariate polynomial algorithms:
- multiplication in \(\mathbb{K}[x]^{m \times m}\) seen as a product of polynomials complexity? \(\quad O\left(m^{\omega} M(d)\right)\) is tempting... and true for best known \(M(d)\)
- truncated inversion via power series \& Newton iteration condition for invertibility? complexity?
- fast Euclidean division with remainder
conditions for feasibility? complexity?

\section*{polynomial matrices}

\section*{seen as polynomials over \(\mathbb{K}^{m \times n}\)}
polynomial viewpoint:
\(\mathbb{K}[x]^{m \times n}\) is isomorphic to \(\mathbb{K}^{m \times n}[x]\)
algorithmically fruitful viewpoint, with some limitations
ignores heterogeneous degrees of matrix entries
consider \(\mathbf{A}=\left[\begin{array}{ccc}f(x) & a_{01} & \cdots \\ a_{10} & a_{11} & \\ \vdots & & \ddots\end{array}\right] \in \mathbb{K}[x]^{m \times m}\),
\(f(x)\) of degree \(d\), other entries in \(\mathbb{K}\)
- data structure: \(d+1\) matrices in \(\mathbb{K}^{m \times m}\)
- size of representation: \(m^{2}(d+1) \quad \rightarrow m^{2}+d\) ?
- adding two such matrices: \(\mathrm{O}\left(\mathrm{m}^{2}(\mathrm{~d}+1)\right) \rightarrow \mathrm{m}^{2}+\mathrm{d}\) ?

\section*{outline}
computer algebra
polynomial matrices

\section*{first algorithms}
exercises
- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials

\section*{outline}

\section*{computer algebra}
polynomial matrices
first algorithms
- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques
exercises

\section*{first algorithms}

\section*{fast multiplication}
naive multiplication: \(O\left(m^{3} d^{2}\right)\) operations in \(\mathbb{K} O\left(m^{\omega} M(d)\right)\) ?

\section*{first algorithms}

\section*{fast multiplication}

\section*{naive multiplication: \(\mathrm{O}\left(\mathrm{m}^{3} \mathrm{~d}^{2}\right)\) operations in \(\mathbb{K} \mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d})\right)\) ?}

\section*{On fast multiplication} of polynomials over arbitrary algebras

\author{
David G. Cantor \({ }^{1}\) and Erich Kaltofen \({ }^{2}\) *
}
\({ }^{1}\) Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA
\({ }^{2}\) Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

Received January 22, 1988 / May 10, 1991

\section*{1 Introduction}

In this paper we generalize the well-known Schönhage-Strassen algorithm for multiplying large integers to an algorithm for multiplying polynomials with coefficients from an arbitrary, not necessarily commutative, not necessarily associative, algebra \(\mathscr{A}\). Our main result is an algorithm to multiply polynomials of degree \(<n\) in \(O(n \log n)\) algebra multiplications and \(O(n \log n \log \log n)\) algebra additions/subtractions (we count a subtraction as an addition). The constant implied by the " \(O\) " does not depend upon the algebra \(\mathscr{A}\). The parallel complexity of our algorithm, i.e., the depth of the corresponding arithmetic circuit, is

\section*{first algorithms}

\section*{fast multiplication}

\section*{naive multiplication: \(O\left(m^{3} d^{2}\right)\) operations in \(\mathbb{K} \quad O\left(m^{\omega} M(d)\right)\) ?}

\section*{On fast multiplication} of polynomials over arbitrary algebras

\author{
David G. Cantor \({ }^{1}\) and Erich Kaltofen \({ }^{2}\) *
}
\({ }^{1}\) Department of Mathematics, University of California, Los Angeles, CA 90024-1555, USA
\({ }^{2}\) Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA

Received January 22, 1988 / May 10, 1991
multiplication in \(\mathbb{K}^{m \times m}[x]\) with degree \(\leqslant d\) :
\(-\mathrm{O}(\mathrm{d} \log (\mathrm{d}))\) multiplications in \(\mathbb{K}^{\mathrm{m} \times m}\)
- \(\mathrm{O}(\mathrm{d} \log (\mathrm{d}) \log \log (\mathrm{d}))\) additions in \(\mathbb{K}^{m \times m}\)
\(M M(m, d) \in O\left(m^{\omega} d \log (d)+m^{2} d \log (d) \log \log (d)\right)\)
1 Introduction
In this paper we generalize the well-known Schönhage-Strassen algorithm for multiplying large integers to an algorithm for multiplying polynomials with coefficients from an arbitrary, not necessarily commutative, not necessarily associative, algebra \(\mathscr{A}\). Our main result is an algorithm to multiply polynomials of degree \(<n\) in \(O(n \log n)\) algebra multiplications and \(O(n \log n \log \log n)\) algebra additions/subtractions (we count a subtraction as an addition). The constant implied by the " \(O\) " does not depend upon the algebra \(\mathscr{A}\). The parallel complexity of our algorithm, i.e., the depth of the corresponding arithmetic circuit, is

\section*{first algorithms}

\section*{exploiting evaluation-interpolation}
exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to matrices in \(\mathbb{K}[x]^{m \times m}\),
- give an explicit multiplication algorithm
- give a determinant algorithm
- give an inversion algorithm
computing the inverse over the fractions \(\mathbb{K}(x)\)
2. for each of these algorithms,
- give a required lower bound on the cardinality of \(\mathbb{K}\)
-state and prove an upper bound on the complexity
hint: use known degree bounds on the output

\section*{first algorithms}

\section*{exploiting evaluation-interpolation}
exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to matrices in \(\mathbb{K}[x]^{m \times m}\),
- give an explicit multiplication algorithm
- give a determinant algorithm
- give an inversion algorithm
computing the inverse over the fractions \(\mathbb{K}(x)\)
2. for each of these algorithms,
- give a required lower bound on the cardinality of \(\mathbb{K}\)
- state and prove an upper bound on the complexity
```

multiplication: for large enough \mathbb{K},
MM(m,d) \in O(m}\mp@subsup{}{}{\omega}\textrm{d}+\mp@subsup{\textrm{m}}{}{2}\textrm{M}(\textrm{d}))\mathrm{ [Bostan-Schost 2005]
\rightsquigarrow better than m}\mp@subsup{m}{}{\omega}M(d

```

\section*{first algorithms}

\section*{exploiting evaluation-interpolation}
exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to matrices in \(\mathbb{K}[x]^{m \times m}\),
- give an explicit multiplication algorithm
- give a determinant algorithm
- give an inversion algorithm
computing the inverse over the fractions \(\mathbb{K}(x)\)
2. for each of these algorithms,
- give a required lower bound on the cardinality of \(\mathbb{K}\)
-state and prove an upper bound on the complexity
\begin{tabular}{|c|c|c|}
\hline & evaluation-interpolation, large \(\mathbb{K}\) & best known, unconditional \\
\hline determinant & \(\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega+1} \mathrm{~d}\right)\) & \(\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)\) \\
inversion & \(\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega+1} \mathrm{~d}\right)\) & \(\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)\) \\
\hline & reductions to PolMul\&MatMul & reductions to PolMatMul \\
\hline
\end{tabular}

\section*{first algorithms}

\section*{extending algorithms for polynomials}

\section*{truncated inversion - from book "AECF"}

Entrée Un entier \(\mathrm{N}>0, \mathrm{~F} \bmod \mathrm{X}^{\mathrm{N}}\) une série tronquée.
Sortie \(\mathrm{F}^{-1} \bmod \mathrm{X}^{\mathrm{N}}\).
Si \(\mathrm{N}=1\), alors renvoyer \(f_{0}^{-1}\), où \(f_{0}=\mathrm{F}(0)\).
Sinon:
1. Calculer récursivement l'inverse \(G\) de \(F \bmod X^{[N / 2]}\).
2. Renvoyer \(\mathrm{G}+(1-\mathrm{GF}) \mathrm{G} \bmod \mathrm{X}^{\mathrm{N}}\).

Algorithme 3.2 - Inverse de série par itération de Newton.

Convergence quadratique pour l'inverse d'une série formelle

Lemme 3.2 Soient \(\mathbb{A}\) un anneau non nécessairement commutatif, \(F \in \mathbb{A}[[X]]\) une série formelle de terme constant inversible et G une série telle que \(\mathrm{G}-\mathrm{F}^{-1}=\mathrm{O}\left(\mathrm{X}^{n}\right)\) ( \(n \geq 1\) ). Alors la série
\[
\begin{equation*}
\mathcal{N}(\mathrm{G})=\mathrm{G}+(1-\mathrm{GF}) \mathrm{G} \tag{3.2}
\end{equation*}
\]
vérifie \(\mathcal{N}(\mathrm{G})-\mathrm{F}^{-1}=\mathrm{O}\left(\mathrm{X}^{2 n}\right)\).

\section*{first algorithms}
extending algorithms for polynomials

\section*{truncated inversion - results}
consider a (square) polynomial matrix \(\mathbf{A} \in \mathbb{K}[x]^{m \times m}\)
- A is invertible as a power series
\(\Leftrightarrow\) its constant term \(\mathbf{A}(0) \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}\) is invertible
- if \(\mathbf{A}\) is invertible as a power series, computing \(\mathbf{A}^{-1} \bmod x^{N}\) costs \(\mathrm{O}(\mathrm{MM}(\mathrm{m}, \mathrm{N}))\) operations in \(\mathbb{K}\)
- no additional log: \(\mathrm{MM}\left(\mathrm{m}, \frac{\mathrm{N}}{2}\right)+\mathrm{MM}\left(\mathrm{m}, \frac{\mathrm{N}}{4}\right)+\mathrm{MM}\left(\mathrm{m}, \frac{\mathrm{N}}{8}\right)+\cdots\)
- excellent reduction to PolMatMul!
-timings with the Polynomial Matrix Library:
\begin{tabular}{cc|c|c}
m & d & PolMatMul & TruncInv \\
\hline 10 & 20000 & 0.203 & 0.551 \\
20 & 5000 & 0.225 & 0.639 \\
40 & 2500 & 0.528 & 1.424 \\
80 & 1250 & 1.227 & 3.653
\end{tabular}

\section*{first algorithms}
extending algorithms for polynomials

\section*{division with remainder}
```

problem:
given }\mathbf{A},\mathbf{B}\in\mp@subsup{\mathbb{K}}{}{m\timesm}[x]\mathrm{ ,
compute }\mathbf{Q},\mathbf{R}\in\mp@subsup{\mathbb{K}}{}{\mathfrak{m}\timesm}[x] such tha
A=B\mathbf{Q}+\mathbf{R}\quad\mathrm{ and }\quad\operatorname{deg}(\mathbf{R})<\operatorname{deg}(\mathbf{B})

```
... are we not missing an assumption?

\section*{first algorithms}
extending algorithms for polynomials

\section*{division with remainder}

\section*{problem:}
given \(\mathbf{A}, \mathbf{B} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}[x]\),
compute \(\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{\mathfrak{m} \times m}[x]\) such that
\[
\mathbf{A}=\mathbf{B} \mathbf{Q}+\mathbf{R} \quad \text { and } \quad \operatorname{deg}(\mathbf{R})<\operatorname{deg}(\mathbf{B})
\]
... are we not missing an assumption?
rule 1: dividing by zero is generally a bad idea rule 2: if you think you need to divide by zero, refer to rule 1
rule 3: neglecting to check that something is not zero does not make it nonzero
etc. etc.

\section*{first algorithms}
extending algorithms for polynomials

\section*{division with remainder}

\section*{problem:}
given \(\mathbf{A}, \mathbf{B} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}[x]\),
compute \(\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}[x]\) such that
\[
\mathbf{A}=\mathbf{B} \mathbf{Q}+\mathbf{R} \quad \text { and } \quad \operatorname{deg}(\mathbf{R})<\operatorname{deg}(\mathbf{B})
\]
... are we not missing an assumption?
for a polynomial \(p \in \mathcal{A}[x]\), over some \(\operatorname{ring} \mathcal{A}\), division by \(p\) is feasible
- if \(p\) is monic (leading coefficient \(1_{\mathcal{A}}\) )
- and more generally if the leading coefficient of \(p\) is invertible in \(\mathcal{A}\)
assumption: the leading coefficient of \(\mathbf{B}\) is invertible in \(\mathbb{K}^{m \times m}\)
recall \(B=B_{0}+B_{1} x+\cdots+B_{d} x^{d}\) with \(B_{i} \in \mathbb{K}^{m \times m}\)

\section*{first algorithms}
extending algorithms for polynomials

\section*{division with remainder}
```

problem:
given A,B }\in\mp@subsup{\mathbb{K}}{}{\mathfrak{m}\timesm}[x]\mathrm{ with lc}(\mathbf{B})\mathrm{ invertible,
compute \mathbf{Q},\mathbf{R}\in\mp@subsup{\mathbb{K}}{}{\mathfrak{m}\timesm}[x] such that
A=B\mathbf{Q}+\mathbf{R}\quad\mathrm{ and }\quad\operatorname{deg}(\mathbf{R})<\operatorname{deg}(\mathbf{B})

```
- under this assumption, the usual fast Euclidean algorithm works
- recall:
1. reverse the equation,
2. compute quotient by truncated inverse multiplication
\[
\tilde{\mathbf{Q}}=\tilde{\mathbf{B}}^{-1} \tilde{\mathbf{A}} \quad \bmod x^{\mathrm{d}_{\mathrm{A}}-\mathrm{d}_{\mathbf{B}}+1}
\]
3. deduce remainder
- complexity is \(O(\underbrace{M M\left(m, d_{A}-d_{B}\right)}_{\text {find } Q}+\underbrace{M M\left(m, d_{B}\right)}_{\text {find } R})\)

\section*{first algorithms}
extending algorithms for polynomials

\section*{division with remainder}

\section*{problem:}
given \(\mathbf{A}, \mathbf{B} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}[x]\) with \(\mathrm{lc}(\mathbf{B})\) invertible, compute \(\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}[x]\) such that
\(\mathbf{A}=\mathbf{B Q}+\mathbf{R} \quad\) and \(\quad \operatorname{deg}(\mathbf{R})<\operatorname{deg}(\mathbf{B})\)
\begin{tabular}{ccc|c|c|c}
m & \(\mathrm{d}_{\mathbf{A}}\) & \(\mathrm{d}_{\mathbf{B}}\) & \begin{tabular}{c} 
PolMatMul \\
\({\text { in deg } \mathrm{d}_{\mathbf{B}}}\)
\end{tabular} & \begin{tabular}{c} 
TruncInv \\
in deg \(\mathrm{d}_{\mathbf{B}}\)
\end{tabular} & QuoRem \\
\hline 10 & 40000 & 20000 & 0.203 & 0.551 & 1.873 \\
20 & 10000 & 5000 & 0.225 & 0.639 & 2.164 \\
40 & 5000 & 2500 & 0.528 & 1.424 & 6.468 \\
80 & 2500 & 1250 & 1.227 & 3.653 & 15.59
\end{tabular}

\section*{first algorithms}

\section*{extending algorithms for polynomials}

\section*{division with remainder}

\section*{problem:}
given \(\mathbf{A}, \mathbf{B} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}[x]\) with \(\operatorname{lc}(\mathbf{B})\) invertible, compute \(\mathbf{Q}, \mathbf{R} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}[x]\) such that
\[
\mathbf{A}=\mathbf{B} \mathbf{Q}+\mathbf{R} \quad \text { and } \quad \operatorname{deg}(\mathbf{R})<\operatorname{deg}(\mathbf{B})
\]
```

// step 1: reverse input matrices
row_reverse(Brev, B, rdegB);
row_reverse(buf, A, rdegA);
// step 2: compute quotient
// Qrev = Brev^{-1} R mod X^{d+1}
solve_series(Qrev, Brev, buf, d+1);
reverse(Q, Qrev, d);
// step 3: deduce remainder
// R = A - B*Q
multiply(buf, B, Q);
sub(R, A, buf);

```
- an efficient reduction, again
- rdegA vs. degree d?
- row_reverse vs. reverse ?
- refinement of matrix degree:
row- or column-wise degrees
\(\rightsquigarrow\) improves applicability \& complexity
e.g. division by \(\mathbf{B}=\operatorname{diag}\left(x^{\mathrm{d}_{1}}, \ldots, x^{\mathrm{d}_{\mathrm{m}}}\right)\)

\section*{first algorithms}

\section*{refined degree measures - generalized division}
row degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its rows
for \(\mathbf{A}=\left(a_{i, j}\right) \in \mathbb{K}[x]^{m \times n}\),
\[
\begin{aligned}
\operatorname{rdeg}(\mathbf{A}) & =\left(\operatorname{rdeg}\left(\mathbf{A}_{1, *}\right), \ldots, \operatorname{rdeg}\left(\mathbf{A}_{m, *}\right)\right) \\
& =\left(\max _{1 \leqslant j \leqslant n} \operatorname{deg}\left(\mathbf{A}_{1, j}\right), \ldots, \max _{1 \leqslant j \leqslant n} \operatorname{deg}\left(\mathbf{A}_{m, j}\right)\right) \in \mathbb{Z}^{m}
\end{aligned}
\]

\section*{first algorithms}

\section*{refined degree measures - generalized division}
row degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its rows
column degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its columns

\section*{first algorithms}

\section*{refined degree measures - generalized division}
row degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its rows
column degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its columns
sum of degrees of all entries \(\leqslant \underset{m \times \text { sum of column degrees }}{n \times \operatorname{mn} \times \text { global degree }}\)
\[
\begin{aligned}
& \text { with notation: } \\
& \sum_{i, j} \operatorname{deg}\left(a_{i j}\right) \leqslant \begin{array}{c}
n|r \operatorname{deg}(\mathbf{A})| \\
m|\operatorname{cdeg}(\mathbf{A})|
\end{array} \operatorname{mn} \operatorname{deg}(\mathbf{A})
\end{aligned}
\]

\section*{first algorithms}

\section*{refined degree measures - generalized division}
row degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its rows
column degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its columns
sum of degrees of all entries \(\leqslant \underset{m \times \text { sum of column degrees }}{n \times \operatorname{mn} \times \text { global degree }}\)
\[
\begin{aligned}
& \text { with notation: } \\
& \sum_{i, j} \operatorname{deg}\left(a_{i j}\right) \leqslant \begin{array}{c}
n|\operatorname{rdeg}(\mathbf{A})| \\
m|\operatorname{cdeg}(\mathbf{A})|
\end{array} \operatorname{mndeg}(\mathbf{A})
\end{aligned}
\]
consider A with degree matrix
\[
\left(\begin{array}{llll}
100 & 5 & 20 & 1 \\
100 & 5 & 20 & 1 \\
100 & 5 & 20 & 1 \\
100 & 5 & 20 & 1
\end{array}\right) \quad \begin{aligned}
& \text { determinant of } \mathbf{A}: \text { degree } \leqslant 126 \\
& \rightsquigarrow \text { better than naive bound } 4 \operatorname{deg}(\mathbf{A})=400
\end{aligned}
\]

\section*{first algorithms}

\section*{refined degree measures - generalized division}
row degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its rows
column degree of a polynomial matrix
\(=\) the list of the maximum degree in each of its columns
sum of degrees of all entries \(\leqslant\)
\(\mathrm{n} \times\) sum of row degrees \(m \times\) sum of column degrees
\[
\begin{aligned}
& \text { with notation: } \\
& \sum_{i, j} \operatorname{deg}\left(a_{i j}\right) \leqslant \begin{array}{c}
n|\operatorname{rdeg}(\mathbf{A})| \\
m|\operatorname{cdeg}(\mathbf{A})|
\end{array} \operatorname{mn} \operatorname{deg}(\mathbf{A})
\end{aligned}
\]
more general division with remainder:
- take for \(\operatorname{Ic}(\mathbf{B})\) row-wise leading coefficients
- if \(\operatorname{Ic}(\mathbf{B})\) is invertible, division by \(\mathbf{B}\) is feasible
- with row-wise degree bounds on remainder
\[
\begin{gathered}
{\left[\begin{array}{cc}
4 x^{3}+2 x+2 & 6 x^{3}+2 x^{2}+5 \\
4 x^{2}+2 & 3 x^{3}+x+3
\end{array}\right]} \\
=\left[\begin{array}{cc}
x & 0 \\
0 & 2 x^{2}
\end{array}\right] \mathbf{Q}+\left[\begin{array}{cc}
2 & 5 \\
2 & x+3
\end{array}\right]
\end{gathered}
\]

\section*{first algorithms}

\section*{partial linearization techniques}

\section*{reduce unbalanced degrees to some average degree}
where degree means row degree, column degree, or related refined measures
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

\section*{typical properties:}
from a matrix \(\mathbf{A} \in \mathbb{K}[x]^{m \times m}\) with \(\mathrm{D}=|\operatorname{rdeg}(\mathbf{A})| \ll \mathrm{m} \operatorname{deg}(\mathbf{A})\) construct a matrix \(\overline{\mathbf{A}} \in \mathbb{K}[x]^{m^{\prime} \times m^{\prime}}\) with
- a slight increase of matrix dimension: \(m \leqslant m^{\prime} \leqslant 2 m\)
- a strong decrease of matrix degree: \(\operatorname{deg}(\overline{\mathbf{A}}) \leqslant 2 \frac{\mathrm{D}}{\mathrm{m}}\)
- preservation of the features targeted by our computations

\section*{examples:}
- product \(\mathbf{A B}\) easily deduced from product \(\overline{\mathbf{A}} \overline{\mathbf{B}}\)
- preservation of the \(\operatorname{determinant} \operatorname{det}(\mathbf{A})=\operatorname{det}(\overline{\mathbf{A}})\)
- inverse of \(\overline{\mathbf{A}}\) contains inverse of \(\mathbf{A}\) as submatrix
-...

\section*{first algorithms}

\section*{partial linearization techniques}

\section*{reduce unbalanced degrees to some average degree}

\section*{basic illustration:}
- let \(\mathbf{A} \in \mathbb{K}[x]^{m \times m}\) of degree \(<\mathrm{d}\),
- let \(\mathbf{u} \in \mathbb{K}[x]^{\mathrm{m} \times 1}\) of degree \(<\mathrm{md}\), then the matrix-vector product \(\mathbf{A u}\) can be computed in \(\mathrm{MM}(\mathrm{m}, \mathrm{d})+\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)\) operations in \(\mathbb{K}\)
what would be the cost of the "naive" multiplication? \(\rightsquigarrow \mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{md})\right)\)

> algorithm:
> \([\) Lecerf 2001 (in communication + software)]

\section*{first algorithms}

\section*{partial linearization techniques}

\section*{reduce unbalanced degrees to some average degree}

\section*{basic illustration:}
- let \(\mathbf{A} \in \mathbb{K}[x]^{m \times m}\) of degree \(<\mathrm{d}\),
- let \(\mathbf{u} \in \mathbb{K}[x]^{m \times 1}\) of degree \(<\mathrm{md}\), then the matrix-vector product \(\mathbf{A u}\) can be computed in \(\mathrm{MM}(\mathrm{m}, \mathrm{d})+\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)\) operations in \(\mathbb{K}\)
what would be the cost of the "naive" multiplication? \(\rightsquigarrow \mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{md})\right)\)
\[
\begin{gathered}
\text { algorithm: } \\
\text { [Lecerf 2001 (in communication }+ \text { software)] } \\
{\left[\begin{array}{ll}
\mathbf{A} & \\
& \\
\end{array}\right][\mathbf{u}]=\left[\begin{array}{c}
1 \\
\mathbf{A} \\
\end{array}\right]\left[\begin{array}{c}
x^{\mathrm{d}} \\
x^{2 \mathrm{~d}} \\
\vdots
\end{array}\right]}
\end{gathered}
\]
where the columns of \(\overline{\mathbf{U}} \in \mathbb{K}[x]^{\mathrm{m} \times m}\) form the \(x^{\mathrm{d}}\)-adic expansion of \(\mathbf{u}\)
\(\Rightarrow\) here \(\operatorname{deg}(\overline{\mathbf{U}})<\mathrm{d}\)

\section*{first algorithms}

\section*{partial linearization techniques}

\section*{reduce unbalanced degrees to some average degree}

\section*{basic illustration:}
- let \(\mathbf{A} \in \mathbb{K}[x]^{m \times m}\) of degree \(<\mathrm{d}\),
- let \(\mathbf{u} \in \mathbb{K}[x]^{m \times 1}\) of degree \(<\mathrm{md}\), then the matrix-vector product \(\mathbf{A u}\) can be computed in \(\mathrm{MM}(\mathrm{m}, \mathrm{d})+\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)\) operations in \(\mathbb{K}\)
what would be the cost of the "naive" multiplication? \(\rightsquigarrow \mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{md})\right)\)

\section*{algorithm:}
[Lecerf 2001 (in communication + software)]
\begin{tabular}{ccc|c|c}
m & d & md & via PolMatMul & matrix-vector \\
\hline 10 & 20000 & 200000 & 0.203 & 0.368 \\
20 & 5000 & 100000 & 0.225 & 0.683 \\
40 & 2500 & 100000 & 0.528 & 2.481 \\
80 & 1250 & 100000 & 1.227 & 9.592
\end{tabular}

\section*{outline}

\section*{computer algebra}
polynomial matrices
first algorithms
- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques
exercises

\section*{outline}

\section*{computer algebra}
polynomial matrices
first algorithms
exercises
- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques
- evaluation-interpolation-based algorithms
- Krylov iterates via repeated squaring
- Krylov iterates in MatMul time

\section*{exercises}
evaluation-interpolation-based algorithms
exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to matrices in \(\mathbb{K}[x]^{m \times m}\)
- give an explicit multiplication algorithm
- give a determinant algorithm
- give an inversion algorithm
computing the inverse over the fractions \(\mathbb{K}(x)\)
2. for each of these algorithms,
- give a required lower bound on the cardinality of \(\mathbb{K}\)
-state and prove an upper bound on the complexity
hint: use known degree bounds on the output

\section*{exercises}

\section*{evaluation-interpolation: multiplication}
given \(\mathbf{A}\) and \(\mathbf{B}\) in \(\mathbb{K}[x]^{m \times m}\) of degree \(\leqslant d\), we know that \(\mathbf{C}=\mathbf{A B}\) has degree at most 2 d , so:
1. pick points: pairwise distinct \(\alpha_{1}, \ldots, \alpha_{2 d+1} \in \mathbb{K}\)
\(\operatorname{Card}(\mathbb{K}) \geqslant 2 \mathrm{~d}+1\)
2. evaluate: \(\mathbf{A}\left(\alpha_{i}\right)\) and \(\mathbf{B}\left(\alpha_{i}\right)\), for \(i=1, \ldots, 2 d+1\)
\(O\left(m^{2} M(d) \log (d)\right)\)
3. multiply: \(\mathbf{A}\left(\alpha_{i}\right) \mathbf{B}\left(\alpha_{i}\right)\), for \(i=1, \ldots, 2 d+1\)
\(O\left(m^{\omega} d\right)\)
4. interpolate: find \(\mathbf{C}\) in \(\mathbb{K}[x]^{m \times m}\) of degree \(\leqslant 2 d\) such that
\(\mathbf{C}\left(\alpha_{i}\right)=\mathbf{A}\left(\alpha_{i}\right) \mathbf{B}\left(\alpha_{i}\right)\), for \(\mathfrak{i}=1, \ldots, 2 d+1\)
\(O\left(m^{2} M(d) \log (d)\right)\)
5. return \(\mathbf{C}\)
excellent algorithm:
- linear in \(d\) in the term \(m^{\omega} d\) (recall Cantor-Kaltofen: \(m^{\omega} d \log (d)\) )
. exponent \(\omega\) of matrix multiplication
. the \(m^{2} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\) term can be improved via points in geometric sequence . downside: restriction on \(\mathbb{K}\) (large degrees + small finite fields does happen)

\section*{exercises}

\section*{evaluation-interpolation: determinant}
given \(\mathbf{A}\) in \(\mathbb{K}[x]^{m \times m}\) of degree \(\leqslant d\), we know that \(\Delta=\operatorname{det}(\mathbf{A})\) has degree at most md, so:
1. pick points: pairwise distinct \(\alpha_{1}, \ldots, \alpha_{m d+1} \in \mathbb{K}\)
2. evaluate: \(\mathbf{A}\left(\alpha_{i}\right)\) for \(i=1, \ldots, m d+1\)
3. determinant: \(\beta_{i}=\operatorname{det}\left(\mathbf{A}\left(\alpha_{i}\right)\right)\), for \(i=1, \ldots, m d+1\)
4. interpolate: find \(\Delta\) in \(\mathbb{K}[x]\) of degree \(\leqslant \mathfrak{m d}\) such that \(\Delta\left(\alpha_{i}\right)=\beta_{i}\), for \(i=1, \ldots, m d+1\) \(\operatorname{Card}(\mathbb{K}) \geqslant m d+1\)
\(\mathrm{O}\left(\mathrm{m}^{3} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)\)
\(O\left(m^{\omega+1} d\right)\)
5. return \(\Delta\)
. quasi-linear in degree \(d\) : fast for large \(d\), small \(m\) exponent \(>3\) on matrix dimension \(m\) : slow for large \(m\) best known today: \(\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)\)

\section*{exercises}
given \(\mathbf{A}\) in \(\mathbb{K}[x]^{m \times m}\) of degree \(\leqslant d\), we know that \(\mathbf{C}=\mathbf{A}^{-1}=\frac{1}{\Delta} \mathbf{U}\) with \(\operatorname{deg}(\Delta) \leqslant m d\) and \(\operatorname{deg}(\mathbf{U}) \leqslant(m-1) d\), so:

0 . set \(n=(2 m-1) d+1\)
\(n=\Theta(m d)\)
1. pick points: pairwise distinct \(\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}\)
\(\operatorname{Card}(\mathbb{K}) \geqslant(2 m-1) d+1\)
2. evaluate: \(\mathbf{A}\left(\alpha_{i}\right)\), for \(i=1, \ldots, n\) \(\mathrm{O}\left(\mathrm{m}^{3} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)\)
3. invert: \(\mathbf{A}\left(\alpha_{i}\right)^{-1}\), for \(i=1, \ldots, n\)
4. interpolate: using Cauchy interpolation find \(\mathbf{C}\) in \(\mathbb{K}(X)^{m \times m}\) with all numerators of degree \(\leqslant(m-1) d\) and all denominators of degree \(\leqslant m d\) such that \(\mathbf{C}\left(\alpha_{i}\right)=\mathbf{A}\left(\alpha_{i}\right)^{-1}\), for \(i=1, \ldots, n\)
\(\mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{md}) \log (\mathrm{md})\right)\)
5. return \(\mathbf{C}\)
. quasi-linear in degree \(d\) : fast for large \(d\), small \(m\)
. exponent \(>3\) on dimension \(m\) but recall size of \(\mathbf{A}^{-1}\) is typically \(\Theta\left(m^{3} d\right)\)
. best known today: \(\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)\), and even \(\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)\) for factorized form
. note: one could compute \(\operatorname{det}(\mathbf{A})\) to avoid Cauchy interpolation

\section*{exercises}

\section*{problem (Krylov iterates):}
input: matrix \(A \in \mathbb{K}^{\mathfrak{m} \times m}\), vector \(v \in \mathbb{K}^{\mathfrak{m} \times 1}\) integer \(\mathrm{d}>0\)
output: \(v, A v, \ldots, A^{d-1} v\)

\section*{kernel black box:}
given a matrix \(\mathbf{F} \in \mathbb{K}[x]^{m \times(m+1)}\) of rank \(m\) and degree \(\leqslant 1\), one can compute a nonzero element of degree \(\leqslant m\) in the right kernel of \(\mathbf{F}\) using \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) operations in \(\mathbb{K}\)
[refined analysis of Algo. 1 in Zhou-Labahn-Storjohann 2012]
1. give an algorithm which costs \(O\left(m^{\omega} \log (d)+m^{\omega-1} d\right)\) operations in \(\mathbb{K}\), based on repeated squaring
2. prove that the generating series of \(\left(A^{k} v\right)_{k \geqslant 0}\) rewrites as a fraction of polynomial matrices:
\[
\sum_{k \geqslant 0} A^{k} v x^{k}=(I-x A)^{-1} v
\]
3. using the kernel black box, give a complexity bound for finding
\(\lambda \in \mathbb{K}[x]\) and \(\mathbf{u} \in \mathbb{K}[x]^{m \times 1}\), both of degree \(\leqslant m\), such that
\[
\sum_{k \geqslant 0} A^{k} v x^{k}=\mathbf{u} / \lambda
\]
4. show that \(\left(A^{k} v\right)_{0 \leqslant k<d}\) can be computed in \(O\left(m^{\omega}+m M(d)\right)\)

\section*{exercises}

\section*{problem (Krylov iterates):}
input: matrix \(A \in \mathbb{K}^{\mathfrak{m} \times m}\), vector \(v \in \mathbb{K}^{m \times 1}\) integer \(\mathrm{d}>0\)
output: \(v, A v, \ldots, A^{d-1} v\)

\section*{kernel black box:}
given a matrix \(\mathbf{F} \in \mathbb{K}[x]^{m \times(m+1)}\) of rank \(m\) and degree \(\leqslant 1\), one can compute a nonzero element of degree \(\leqslant \mathrm{m}\) in the right kernel of \(\mathbf{F}\) using \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) operations in \(\mathbb{K}\)
[refined analysis of Algo. 1 in Zhou-Labahn-Storjohann 2012]

\section*{1. give an algorithm which costs \(O\left(m^{\omega} \log (d)+m^{\omega-1} d\right)\) operations in \(\mathbb{K}\), based on repeated squaring}
for simplicity, take d a power of 2
first compute \(A^{2}, A^{4}, \ldots, A^{d / 2}\), cost \(O\left(m^{\omega} \log (d)\right)\)
from \(v\), compute \(A v\)
from \(\left[\begin{array}{ll}v & A v\end{array}\right]\), compute \(A^{2}\left[\begin{array}{ll}v & A v\end{array}\right]=\left[\begin{array}{ll}A^{2} v & A^{3} v\end{array}\right]\)
from \(\left[\begin{array}{llll}v & A v & A^{2} v & A^{3} v\end{array}\right]\), compute \(A^{4}\left[\begin{array}{llll}v & A v & A^{2} v & A^{3} v\end{array}\right]=\left[\begin{array}{lll}A^{4} v & A^{5} v & A^{6} v\end{array} A^{7} v\right]\) etc. . .
from \(\left[A^{k} v\right]_{0 \leqslant k<d / 2}\), compute \(A^{d / 2}\left[A^{k} v\right]_{0 \leqslant k<d / 2}=\left[A^{k} v\right]_{d / 2 \leqslant k<d}\)

\section*{problem (Krylov iterates):}
input: matrix \(A \in \mathbb{K}^{m \times m}\), vector \(v \in \mathbb{K}^{\mathfrak{m} \times 1}\) integer \(\mathrm{d}>0\)
output: \(v, A v, \ldots, A^{d-1} v\)

\section*{kernel black box:}
given a matrix \(\mathbf{F} \in \mathbb{K}[x]^{m \times(m+1)}\) of rank \(m\) and degree \(\leqslant 1\), one can compute a nonzero element of degree \(\leqslant m\) in the right kernel of \(\mathbf{F}\) using \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) operations in \(\mathbb{K}\)
[refined analysis of Algo. 1 in Zhou-Labahn-Storjohann 2012]

\section*{1. give an algorithm which costs \(O\left(m^{\omega} \log (d)+m^{\omega-1} d\right)\) operations in \(\mathbb{K}\), based on repeated squaring}
the first \(\min (\log (d), \log (m))\) products involve matrices of dimensions \(m\) or less, hence a total cost bounded by \(\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{d})\right)\)
the remaining products (if any) involve a lefthand operand of dimensions \(m \times m\) and a righthand one of dimensions \(m \times 2^{k}\), where \(k\) goes from about \(\log _{2}(m)\) to for \(\log _{2}(d)\) \(\rightsquigarrow\) for a given \(k\), the product costs \(\mathrm{O}\left(\mathrm{m}^{\omega-1} 2^{\mathrm{k}}\right)\)
\(\rightsquigarrow\) summing this over all \(k\), with \(\sum_{k \leqslant \log _{2}(d)} 2^{k} \in O(d)\), gives \(O\left(m^{\omega-1} d\right)\)

\section*{exercises}

\section*{problem (Krylov iterates):}
input: matrix \(A \in \mathbb{K}^{\mathfrak{m} \times m}\),
vector \(v \in \mathbb{K}^{\mathfrak{m} \times 1}\)
integer \(\mathrm{d}>0\)
output: \(v, A v, \ldots, A^{d-1} v\)

\section*{kernel black box:}
given a matrix \(\mathbf{F} \in \mathbb{K}[x]^{m \times(m+1)}\) of rank \(m\) and degree \(\leqslant 1\), one can compute a nonzero element of degree \(\leqslant \mathrm{m}\) in the right kernel of \(\mathbf{F}\) using \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) operations in \(\mathbb{K}\)
[refined analysis of Algo. 1 in Zhou-Labahn-Storjohann 2012]
2. prove that the generating series of \(\left(A^{k} v\right)_{k \geqslant 0}\) rewrites as a fraction of polynomial matrices:
\[
\sum_{k \geqslant 0} A^{k} v x^{k}=(I-x A)^{-1} v
\]
multiply the left-hand side by \(\mathrm{I}-x A\), this yields \(v\)

\section*{exercises}

\section*{problem (Krylov iterates):}
input: matrix \(A \in \mathbb{K}^{\mathfrak{m} \times m}\), vector \(v \in \mathbb{K}^{\mathfrak{m} \times 1}\) integer \(\mathrm{d}>0\)
output: \(v, A v, \ldots, A^{d-1} v\)

\section*{kernel black box:}
given a matrix \(\mathbf{F} \in \mathbb{K}[x]^{m \times(m+1)}\) of rank \(m\) and degree \(\leqslant 1\), one can compute a nonzero element of degree \(\leqslant \mathrm{m}\) in the right kernel of \(\mathbf{F}\) using \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) operations in \(\mathbb{K}\)
[refined analysis of Algo. 1 in Zhou-Labahn-Storjohann 2012]

\section*{3. using the kernel black box, give a complexity bound for finding} \(\lambda \in \mathbb{K}[x]\) and \(\mathbf{u} \in \mathbb{K}[x]^{m \times 1}\), both of degree \(\leqslant m\), such that
\[
\sum_{k \geqslant 0} A^{k} v x^{k}=\mathbf{u} / \lambda
\]
. consider \(\mathbf{F}=[I-x A-v]\); this matrix has degree \(\leqslant 1\) and rank \(m\) (its leftmost \(m \times m\) submatrix is nonsingular)
. so, in \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\), we can compute a nonzero element of degree \(\leqslant \mathrm{m}\) in its right kernel . this element can be written \(\left[\begin{array}{c}\mathbf{u} \\ \lambda\end{array}\right]\), and \(\mathbf{F}\left[\begin{array}{l}u \\ \lambda\end{array}\right]=0\) rewrites as \((I-x A) \mathbf{u}=v \lambda\) observe that \(\lambda\) cannot be zero (otherwise, \(\mathbf{u}\) would be a nonzero vector in the right kernel of \(I-x A\), which is not possible)
. thus \((I-\chi A)^{-1} v=\frac{1}{\lambda} \mathbf{u}\)

\section*{exercises}

\section*{problem (Krylov iterates):}
input: matrix \(A \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}\), vector \(v \in \mathbb{K}^{\mathfrak{m} \times 1}\) integer \(\mathrm{d}>0\)
output: \(v, A v, \ldots, A^{d-1} v\)

\section*{kernel black box:}
given a matrix \(\mathbf{F} \in \mathbb{K}[x]^{m \times(m+1)}\) of rank \(m\) and degree \(\leqslant 1\), one can compute a nonzero element of degree \(\leqslant \mathrm{m}\) in the right kernel of \(\mathbf{F}\) using \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) operations in \(\mathbb{K}\)
[refined analysis of Algo. 1 in Zhou-Labahn-Storjohann 2012]

\section*{4. show that \(\left(A^{k} v\right)_{0 \leqslant k<d}\) can be computed in \(O\left(m^{\omega}+m M(d)\right)\)}
. these \(d\) vectors are the first \(d\) terms of the series \(\sum_{k \geqslant 0} A^{k} v x^{k}\) . we have seen that this series is equal to \(\frac{1}{\lambda} \mathbf{u}\) (with \(\mathbf{u}\) and \(\lambda\) found in \(\mathrm{O}\left(\mathrm{m}^{\omega}\right)\) ) \(\rightsquigarrow\) it suffices to expand \(\mathbf{u} / \lambda\) as a power series in precision \(d\) . since \(\mathbf{u}\) is a vector of \(m\) entries, this costs \(O(m M(d))\)

\section*{summary}

\section*{computer algebra}
polynomial matrices
first algorithms
exercises
- efficient algorithms and software
- for matrices over a field
- for univariate polynomials
- basic definitions and properties
- use in various situations
- seen as matrices / seen as polynomials
- exploiting evaluation-interpolation
- extending algorithms for polynomials
- partial linearization techniques
- evaluation-interpolation-based algorithms
- Krylov iterates via repeated squaring
- Krylov iterates in MatMul time```

