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error correcting codes cryptographic protocols

XXth-XXIst centuries : digital data & interconnected networks

integrity – confidentiality

goal of computer algebra
fast algorithms : complexity & efficient implementations

discrete structures : exact and intensive computations

▶matrices of large size, with sparsity or structure
▶polynomials and polynomial matrices in one variable
▶polynomials in several variables

general methodology: reductions to efficient basic operations
▶IntMul: integer multiplication ▶MatMul: matrix multiplication

▶PolMul: univariate polynomial multiplication
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measuring efficiency

efficient algorithms for polynomials, matrices, power series, . . .
with coefficients in some base field K

▶ low complexity bound
▶ low execution time

low memory usage, power consumption, . . .

prime field Fp = Z/pZ
field extension Fp[x]/⟨f(x)⟩
rationals Q, number fields, . . .

algebraic complexity (upper) bounds
⇝ count number of operations in K

standard complexity model for algebraic computations

often well correlated to implementation timings (e.g. over K = Fp)

ignores coefficient growth (e.g. over K = Q)

practical performance
⇝ measure software running time

this talk:

▶working over K = Fp with word-size prime p

▶ Intel Core i7-7600U @ 2.80GHz, no multithreading

strongly influenced by the

quality of the implementation
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matrices: multiplication

M =

28 68 75 70
38 25 75 55
24 1 56 28

 ∈ K3×4 3× 4 matrix over K (here F97)

fundamental operations on m×m matrices:

▶ addition is “quadratic”: O(m2) operations in K
▶naive multiplication is cubic: O(m3)

breakthrough: subcubic matrix multiplication

[Strassen’69]

▶ complexity exponent ω ≈ 2.81

▶used in practice for m ⩾ a few 100s
in NTL, FLINT, fflas-ffpack. . .

i.e. O(mω) complexity

[Coppersmith-Winograd 1990]
▶best-known exponent ω ≈ 2.3719

[Le Gall’14] [Alman-Williams’20] [Duan-Wu-Zhou’23]

▶ “galactic” algorithms: strongly impractical as such
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reductions: a new hope

Strassen, in his seminal 1969 paper

“Gaussian Elimination is Not Optimal”

sent a clear message to the scientific
community:

Natural, obvious and centuries-old
methods for solving important
computational problems may be
far from the fastest.
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reductions: a new hope

take-home messages:
▶bibliometric indicators measure quantity, and there exist counterexamples to “quantity = quality”

▶design fast algorithms for the most basic routines → MatMul

▶design efficient reductions to them for other tasks → LinSys, Det, Inverse

8



polynomials: multiplication

p = 87x7 + 74x6 + 60x5 + 46x4 + 16x3 + 41x2 + 86x+ 69

p ∈ K[x]<8 −→ univariate polynomial in x of degree < 8 over K

fundamental operations on polynomials of degree < d:

▶ addition and Horner’s evaluation are linear: O(d)
▶naive multiplication is quadratic: O(d2)

breakthrough: subquadratic polynomial multiplication

[Karatsuba’62] M(d) ∈ O(d1.58)

breakthrough: quasi-linear polynomial multiplication

[Schönhage-Strassen’71] [Nussbaumer’80] [Cantor-Kaltofen’91] M(d) ∈ O(d log(d) log log(d))

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

▶ change of representation by evaluation-interpolation

▶used in practice as soon as d ≈ 100

▶FFT techniques using (virtual) roots of unity

note: M(d) ∈ O(d log(d))
if provided a “good” root of unity

9



polynomials: multiplication

p = 87x7 + 74x6 + 60x5 + 46x4 + 16x3 + 41x2 + 86x+ 69

p ∈ K[x]<8 −→ univariate polynomial in x of degree < 8 over K

fundamental operations on polynomials of degree < d:

▶ addition and Horner’s evaluation are linear: O(d)
▶naive multiplication is quadratic: O(d2)

breakthrough: subquadratic polynomial multiplication

[Karatsuba’62] M(d) ∈ O(d1.58)

breakthrough: quasi-linear polynomial multiplication

[Schönhage-Strassen’71] [Nussbaumer’80] [Cantor-Kaltofen’91] M(d) ∈ O(d log(d) log log(d))

research still active, with recent progress by [Harvey-van der Hoeven-Lecerf]

▶ change of representation by evaluation-interpolation

▶used in practice as soon as d ≈ 100

▶FFT techniques using (virtual) roots of unity

note: M(d) ∈ O(d log(d))
if provided a “good” root of unity

9



reductions strike back

▶ small prime FFT in NTL:
⇝ about 5500 lines of C++
⇝ target operation: FFT
(including 1200 lines for vectorized version
and 1100 for machine word arithmetic. . . )

▶polynomials in Z/pZ[x]:
⇝ about 5500 lines as well
⇝ target operations include:
. multiplication, truncated inversion, division,
. interpolation, multipoint evaluation,
. XGCD, Berlekamp-Massey, resultant,
. power projection, modular composition, . . .

▶ reductions are often
. concise and readable
. close to the pseudocode

▶m← deg(A) and n← deg(B)

▶ if m < n, return (0,A)

▶ set reversals Ã← xm A(1/x)
and B̃← xn B(1/x)

▶find Q̃ = Ã/B̃ mod xm−n+1 by
power series inversion and product

▶ reverse Q̃ to obtain Q

concentrate efforts on: basic routines + good reductions
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▶find Q̃ = Ã/B̃ mod xm−n+1 by
power series inversion and product

▶ reverse Q̃ to obtain Q

concentrate efforts on: basic routines + good reductions

10



reductions strike back

▶ small prime FFT in NTL:
⇝ about 5500 lines of C++
⇝ target operation: FFT
(including 1200 lines for vectorized version
and 1100 for machine word arithmetic. . . )

▶polynomials in Z/pZ[x]:
⇝ about 5500 lines as well
⇝ target operations include:
. multiplication, truncated inversion, division,
. interpolation, multipoint evaluation,
. XGCD, Berlekamp-Massey, resultant,
. power projection, modular composition, . . .

▶ reductions are often
. concise and readable
. close to the pseudocode

▶m← deg(A) and n← deg(B)

▶ if m < n, return (0,A)

▶ set reversals Ã← xm A(1/x)
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matrices: main computational problems

reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log

PLUQ = Gaussian elimination

TRSM = triangular solving

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

not closed:
open:
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exploiting non-naive PolMul

not closed: is Frobenius normal form in O(MatMul)?
open: is linear system solving as hard as multiplication?
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bonus: some notes/references

[Jeannerod-Pernet-Storjohann 2013] doi.org/10.1016/j.jsc.2013.04.004

▶ explicit reductions between inversion & MatMul & Gaussian
elimination / echelonization

▶ constants in the O(·) complexities when using classical matrix
multiplication (ω = 3) or Strassen’s multiplication

“not closed”: it is open, but

▶ there is a randomized algorithm for Frobenius form computation
which has complexity O(MatMul)
[Pernet-Storjohann 2007] http://www.cs.uwaterloo.ca/~astorjoh/cpoly.pdf

▶ recent developments give new insight concerning core operations
typically used in Frobenius form algorithms
charpoly in O(MatMul): [Neiger-Pernet 2021] doi.org/10.1016/S0885-064X(22)00005-X
Krylov iterates in O(MatMul): [Neiger-Pernet-Villard 2024] hal.science/hal-04445355

12

doi.org/10.1016/j.jsc.2013.04.004
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polynomials: main computational problems

most problems have quasi-linear complexity

thanks to reductions to PolMul — did we mention the importance of good reductions?

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ truncated inverse f−1 mod xd

▶ extended GCD fu+ gv = gcd(f,g)

▶multipoint eval. f 7→ f(α1), . . . , f(αd)

▶ interpolation f(α1), . . . , f(αd) 7→ f

▶Padé approximation f = p
q
mod xd

▶minpoly of linearly recurrent sequence

open:
open:
open:
open:
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open: polynomial multiplication in O(d log(d))?
open: interpolation and multipoint eval. in O(PolMul)?
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bonus: some notes/references

polynomial multiplication in O(d log(d))?

▶ remains open over an arbitrary field, concerning algebraic complexity

▶ solved when the field possesses suitable roots of unity for FFT

▶ method of choice in practice (using several primes and CRT if
needed) when working over prime finite fields Z/pZ

▶ recent progress in the bit complexity model
[Harvey-van der Hoeven 2019] https://doi.org/10.1016/j.jco.2019.03.004
[Harvey-van der Hoeven 2022] https://doi.org/10.1145/3505584

interpolation and multipoint evaluation in O(PolMul)?

▶ remains open for an arbitrary set of points, with no assumption, but:

▶ by design, solved for FFT points, when available

▶ more generally, solved for points forming a geometric sequence
[Bostan-Schost 2005] https://doi.org/10.1016/j.jco.2004.09.009

▶ in many applications of interpolation/evaluation, one can choose the
points, in which case O(PolMul) is feasible
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matrices software polynomials

open-source mathematics software system

Python/Cython

high-performance exact linear algebra
LinBox – fflas-ffpack C/C++

high-performance polynomials (and more)

NTL & FLINT C/C++

▶ choice of algorithms

▶data structures and storage

▶ cache efficiency

▶SIMD vectorization instructions

▶multithreading, GPU programming

what you can compute in about 1 second
with fflas-ffpack with NTL

▶PLUQ m = 3800 1.00s

▶LinSys m = 3800 1.00s

▶MatMul m = 3000 0.97s

▶Inverse m = 2800 1.01s

▶CharPoly m = 2000 1.09s

▶PolMul d = 7× 106 1.03s

▶Division d = 4× 106 0.96s

▶XGCD d = 2× 105 0.99s

▶MinPoly d = 2× 105 1.10s

▶MPeval d = 1× 104 1.01s
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constant matrices accelerated by polynomial matrices

matrix exponentiation

input: matrix A ∈ Km×m,
integer k > 0

output: Ak

▶ repeated squaring: O(mω log(k))

can we reach O(mω)?

Krylov iterates

input: matrix A ∈ Km×m,
vector v ∈ Km×1

output: v,Av, . . . ,Am−1v

we do reach O(mω)!

. . . can we do better?

▶ repeated matrix-vector products: O(m3)

▶ via repeated squaring: O(mω log(m))
[Keller-Gehrig 1985]
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software development for polynomial matrices

open-source mathematics software system

Python/Cython

goals: complete, robust, available

(more than 60k downloads per month)

high-performance exact linear algebra

LinBox – fflas-ffpack C/C++

goal: optimized basic operations

algorithms, vectorization, multithreading

Polynomial Matrix Library C/C++

533 files, 72k lines of code, including 21k lines of comments
https://github.com/vneiger/pml

[Hyun-Neiger-Schost ’19]

▶most tools are based on NTL

▶work-in-progress version based on FLINT

▶welcome comments, suggestions, contributions
“hey, this doesn’t work!”
“yo, plans for implementing this?”
“how to compute this determinant with PML?”

wide range of algorithms

efficiency = state of the art

system solving, determinant, kernel,
Hermite-Padé approximation,
high-order lifting, basis reduction. . .
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Hermite-Padé approximation,
high-order lifting, basis reduction. . .

17

https://github.com/vneiger/pml


outline

▶ computer algebra

▶ polynomial matrices

▶ first algorithms

▶ exercises

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials
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outline

▶ computer algebra

▶ polynomial matrices

▶ first algorithms

▶ exercises

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶basic definitions and properties
▶use in various situations
▶ seen as matrices / seen as polynomials

19



polynomial matrices

basic definitions and properties

K[x]m×n = set of m× n matrices over K[x]
called polynomial matrices in what follows 3x+ 4 x3 + 4x+ 1 4x2 + 3

5 5x2 + 3x+ 1 5x+ 3
3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3

▶ structure: matrices over K[x] ←→ free modules over K[x]
similarly to: matrices over K ←→ vector spaces over K

▶basic operations: addition and multiplication
defined as usual (multiplication requires compatible dimensions)

▶K[x] is not a field

⇝ algorithms may work in K(x)m×n, but be careful with “degree explosion”!
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polynomial matrices

examples you already know

large matrices with small degrees:
characteristic polynomial det(xIm −M) ∈ K[x] of a matrix M ∈ Km×m

⇝ determinant of polynomial matrix xIm −M ∈ K[x]m×m

▶ fastest known algorithm uses this viewpoint [N.-Pernet, 2021]

▶gradually transforms xIm −M to smaller matrices with larger degrees

small matrices with large degree:
extended GCD uf+ vg = gcd(f,g) for polynomials f,g ∈ K[x]⩽d
⇝ corresponds to a polynomial matrix transformation[

u v

g̃ f̃

] [
f
g

]
=

[
gcd(f,g)

0

]
with the leftmost (polynomial) matrix of determinant in K \ {0}

▶ fastest known “half-gcd” algorithms use this viewpoint
[Knuth, 1970] [Schönhage, 1971] [Brent-Gustavson-Yun, 1980]
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polynomial matrices

use in various situations

operations on sparse matrices
▶ solving sparse linear systems over K
▶ computing the minimal polynomial / Frobenius form
▶ introducing parallelism in these computations

[Wiedemann 1986]
[Coppersmith 1993]

[Villard 1997]

example of sparse matrix in Km×m

typical case: O(m) nonzero entries

uses polynomial matrix generator
of linearly recurrent matrix sequence
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polynomial matrices

use in various situations

operations on structured matrices
▶matrix-vector multiplication
▶ linear system solving
▶nullspace computation

[Kailath-Kung-Morf 1979]
[Bostan et al. 2017]

example of Hankel matrix
⇝ block-Hankel matrices
⇝ Hankel-like matrices

uses polynomial matrix multiplication and
matrix-Padé approximation / matrix-GCD
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polynomial matrices

use in various situations

bivariate interpolation and multipoint evaluation
problem: given points (α1,β1), . . . , (αn,βn) in K2,
▶given p(x,y), compute p(αi,βi) for 1 ⩽ i ⩽ n
▶find p(x,y) of small degree such that p(αi,βi) = 0

[Nüsken-Ziegler 2004]

[Beckermann 1992] [van Barel-Bultheel 1992]
[Marinari-Möller-Mora 1993]

bivariate interpolation = main step
in Reed-Solomon list-decoding

(univariate interpolation with errors)
[Guruswami-Sudan 1999] [Kötter-Vardy 2003]

uses polynomial matrix multiplication and
matrix rational reconstruction / algebraic approximants
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polynomial matrices

seen as matrices over K(x)

matrices in K[x]m×n are also in K(x)m×n

(and K(x) is a field)

linear algebra viewpoint:

⇒ usual definition of addition, multiplication, determinant
these do not involve division anyway (. . . in algorithms?)

⇒ usual definition of rank
coincides with rank of free module

⇒ usual definition of inverse
with inverse over K(x)
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polynomial matrices

seen as matrices over K(x)

matrices in K[x]m×n are also in K(x)m×n

(and K(x) is a field)

linear algebra viewpoint:

⇒ usual definition of addition, multiplication, determinant
these do not involve division anyway (. . . in algorithms?)

⇒ usual definition of rank
coincides with rank of free module

⇒ usual definition of inverse
with inverse over K(x)

inverse is over K[x] ⇔ det(A) ∈ K \ {0}

def.: A is unimodular
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polynomial matrices

seen as matrices over K(x)

matrices in K[x]m×n are also in K(x)m×n

(and K(x) is a field)

linear algebra viewpoint:

⇒ usual definition of addition, multiplication, determinant
these do not involve division anyway (. . . in algorithms?)

⇒ usual definition of rank
coincides with rank of free module

⇒ usual definition of inverse
with inverse over K(x)

⇝ algorithms may work in K(x)m×n, but be careful with “degree explosion”!

exercise: Gaussian elimination is exponential-time
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polynomial matrices

seen as matrices over K(x)

matrices in K[x]m×n are also in K(x)m×n

(and K(x) is a field)

linear algebra viewpoint:

▶ viewpoint useful for definitions and properties

▶ viewpoint hardly usable for algorithms:
ignores degree growth + too coarse cost bounds

. cost of naive addition in K[x]m×n −−−−−→ O(mn) additions in K(x)

. cost of naive multiplication in K[x]m×m −−−→ O(m3) ops in K(x)
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polynomial matrices

seen as matrices over K(x)

matrices in K[x]m×n are also in K(x)m×n

(and K(x) is a field)

linear algebra viewpoint:

▶ viewpoint useful for definitions and properties

▶ viewpoint hardly usable for algorithms:
ignores degree growth + too coarse cost bounds

. cost of naive addition in K[x]m×n −−−−−→ O(mn) additions in K(x)

. cost of naive multiplication in K[x]m×m −−−→ O(m3) ops in K(x)

for algorithms&complexity, considering the degrees of entries is essential

25



polynomial matrices

seen as polynomials over Km×n

K[x]m×n is isomorphic to Km×n[x]

polynomial viewpoint:

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1



=

4 1 3
5 1 3
3 5 1

+

3 4 0
0 3 5
5 6 2

x+

0 0 4
0 5 0
1 0 0

x2 +

0 1 0
0 0 0
3 0 0

x3
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polynomial matrices

seen as polynomials over Km×n

K[x]m×n is isomorphic to Km×n[x]

polynomial viewpoint:

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1



=

4 1 3
5 1 3
3 5 1

+

3 4 0
0 3 5
5 6 2

x+

0 0 4
0 5 0
1 0 0

x2 +

0 1 0
0 0 0
3 0 0

x3

A has degree 3; in general, deg(AB) ⩽ deg(A) + deg(B)
e.g. deg(A2) = 6, and deg(A3) = 8, and deg(A4) = 11
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polynomial matrices

seen as polynomials over Km×n

K[x]m×n is isomorphic to Km×n[x]

polynomial viewpoint:

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1



=

4 1 3
5 1 3
3 5 1

+

3 4 0
0 3 5
5 6 2

x+

0 0 4
0 5 0
1 0 0

x2 +

0 1 0
0 0 0
3 0 0

x3

degree growth enhances computational aspects

example: computing the N-th power AN
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polynomial matrices

seen as polynomials over Km×n

K[x]m×n is isomorphic to Km×n[x]

polynomial viewpoint:

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1



=

4 1 3
5 1 3
3 5 1

+

3 4 0
0 3 5
5 6 2

x+

0 0 4
0 5 0
1 0 0

x2 +

0 1 0
0 0 0
3 0 0

x3

degree growth enhances computational aspects

example: computing the N-th power AN

repeated squaring:
A×A (deg = 3)
A2 ×A2 (deg ⩽ 6)

...
...

A
N
4 ×A

N
4 (deg ⩽ 3N

4
)

A
N
2 ×A

N
2 (deg ⩽ 3N

2
)

find small recurrence + unroll it:
[Flajolet-Salvy 1997][Bostan-Neiger-Yurkevich 2023]

O(N) operations in K
▶ faster than multiplying A

N
2 ×A

N
2

▶does not require FFT
▶prototype: N = 220 ⇝ 1.6s vs. 11.5s

26



polynomial matrices

seen as polynomials over Km×n

K[x]m×n is isomorphic to Km×n[x]

polynomial viewpoint:

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1



=

4 1 3
5 1 3
3 5 1

+

3 4 0
0 3 5
5 6 2

x+

0 0 4
0 5 0
1 0 0

x2 +

0 1 0
0 0 0
3 0 0

x3

▶natural notion of degree of a polynomial matrix

▶ addition of A,B ∈ K[x]m×n is in O(mnd) operations in K
where d = min(deg(A), deg(B))

▶ some other polynomial operations available:
truncation A rem xN, shift xdA, evaluation A(α) for α ∈ K
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polynomial matrices

seen as polynomials over Km×n

K[x]m×n is isomorphic to Km×n[x]

polynomial viewpoint:

derived from univariate polynomial algorithms:

▶multiplication in K[x]m×m seen as a product of polynomials
complexity? O(mωM(d)) is tempting. . . and true for best known M(d)

▶ truncated inversion via power series & Newton iteration
condition for invertibility? complexity?

▶ fast Euclidean division with remainder
conditions for feasibility? complexity?

when m = n, Km×m is a (non-commutative) ring
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polynomial matrices

seen as polynomials over Km×n

K[x]m×n is isomorphic to Km×n[x]

polynomial viewpoint:

ignores heterogeneous degrees of matrix entries

consider A =

f(x) a01 · · ·
a10 a11

...
. . .

 ∈ K[x]m×m,

f(x) of degree d, other entries in K
▶data structure: d+ 1 matrices in Km×m

▶ size of representation: m2(d+ 1) → m2 + d?

▶ adding two such matrices: O(m2(d+ 1)) → m2 + d?

algorithmically fruitful viewpoint, with some limitations

26



outline

▶ computer algebra

▶ polynomial matrices

▶ first algorithms

▶ exercises

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶basic definitions and properties
▶use in various situations
▶ seen as matrices / seen as polynomials
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outline

▶ computer algebra

▶ polynomial matrices

▶ first algorithms

▶ exercises

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶basic definitions and properties
▶use in various situations
▶ seen as matrices / seen as polynomials

▶ exploiting evaluation-interpolation
▶ extending algorithms for polynomials
▶partial linearization techniques
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first algorithms

fast multiplication

naive multiplication: O(m3d2) operations in K O(mωM(d))?
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fast multiplication

naive multiplication: O(m3d2) operations in K O(mωM(d))?
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first algorithms

fast multiplication

naive multiplication: O(m3d2) operations in K O(mωM(d))?

multiplication in Km×m[x] with degree ⩽ d:
▶O(d log(d)) multiplications in Km×m

▶O(d log(d) log log(d)) additions in Km×m

MM(m,d) ∈ O(mωd log(d)+m2d log(d) log log(d))
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first algorithms

exploiting evaluation-interpolation

exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to
matrices in K[x]m×m,

▶give an explicit multiplication algorithm

▶give a determinant algorithm

▶give an inversion algorithm
computing the inverse over the fractions K(x)

2. for each of these algorithms,

▶give a required lower bound on the cardinality of K
▶ state and prove an upper bound on the complexity

hint: use known degree bounds on the output
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first algorithms

exploiting evaluation-interpolation

exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to
matrices in K[x]m×m,

▶give an explicit multiplication algorithm

▶give a determinant algorithm

▶give an inversion algorithm
computing the inverse over the fractions K(x)

2. for each of these algorithms,

▶give a required lower bound on the cardinality of K
▶ state and prove an upper bound on the complexity

hint: use known degree bounds on the outputmultiplication: for large enough K,
MM(m,d) ∈ O(mωd+m2M(d)) [Bostan-Schost 2005]

⇝ better than mωM(d)
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first algorithms

exploiting evaluation-interpolation

exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to
matrices in K[x]m×m,

▶give an explicit multiplication algorithm

▶give a determinant algorithm

▶give an inversion algorithm
computing the inverse over the fractions K(x)

2. for each of these algorithms,

▶give a required lower bound on the cardinality of K
▶ state and prove an upper bound on the complexity

hint: use known degree bounds on the output
evaluation-interpolation, large K best known, unconditional

determinant O (̃mω+1d) O (̃mωd)
inversion O (̃mω+1d) O (̃m3d)

reductions to PolMul&MatMul reductions to PolMatMul
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first algorithms

extending algorithms for polynomials

truncated inversion — from book “AECF”
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first algorithms

extending algorithms for polynomials

truncated inversion — results

consider a (square) polynomial matrix A ∈ K[x]m×m

▶A is invertible as a power series
⇔ its constant term A(0) ∈ Km×m is invertible

▶ if A is invertible as a power series,
computing A−1 mod xN costs O(MM(m,N)) operations in K

▶no additional log: MM(m, N
2
) +MM(m, N

4
) +MM(m, N

8
) + · · ·

▶ excellent reduction to PolMatMul!

▶ timings with the Polynomial Matrix Library:

m d PolMatMul TruncInv

10 20000 0.203 0.551
20 5000 0.225 0.639
40 2500 0.528 1.424
80 1250 1.227 3.653
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first algorithms

extending algorithms for polynomials

division with remainder

problem:
given A,B ∈ Km×m[x],
compute Q,R ∈ Km×m[x] such that

A = BQ+R and deg(R) < deg(B)

. . . are we not missing an assumption?
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first algorithms

extending algorithms for polynomials

division with remainder

problem:
given A,B ∈ Km×m[x],
compute Q,R ∈ Km×m[x] such that

A = BQ+R and deg(R) < deg(B)

. . . are we not missing an assumption?

rule 1: dividing by zero is generally a bad idea
rule 2: if you think you need to divide by zero, refer to rule 1
rule 3: neglecting to check that something is not zero does not make it nonzero

etc. etc.
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first algorithms

extending algorithms for polynomials

division with remainder

problem:
given A,B ∈ Km×m[x],
compute Q,R ∈ Km×m[x] such that

A = BQ+R and deg(R) < deg(B)

. . . are we not missing an assumption?

for a polynomial p ∈ A[x], over some ring A, division by p is feasible
▶ if p is monic (leading coefficient 1A)
▶ and more generally if the leading coefficient of p is invertible in A

assumption: the leading coefficient of B is invertible in Km×m

recall B = B0 + B1x+ · · ·+ Bdx
d with Bi ∈ Km×m
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first algorithms

extending algorithms for polynomials

division with remainder

problem:
given A,B ∈ Km×m[x] with lc(B) invertible,
compute Q,R ∈ Km×m[x] such that

A = BQ+R and deg(R) < deg(B)

▶under this assumption, the usual fast Euclidean algorithm works

▶ recall:

1. reverse the equation,

2. compute quotient by truncated inverse multiplication
Q̃ = B̃−1Ã mod xdA−dB+1

3. deduce remainder

▶ complexity is O(MM(m,dA − dB)︸ ︷︷ ︸
find Q

+MM(m,dB)︸ ︷︷ ︸
find R

)
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first algorithms

extending algorithms for polynomials

division with remainder

problem:
given A,B ∈ Km×m[x] with lc(B) invertible,
compute Q,R ∈ Km×m[x] such that

A = BQ+R and deg(R) < deg(B)

m dA dB PolMatMul TruncInv QuoRem

in deg dB in deg dB

10 40000 20000 0.203 0.551 1.873
20 10000 5000 0.225 0.639 2.164
40 5000 2500 0.528 1.424 6.468
80 2500 1250 1.227 3.653 15.59
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first algorithms

extending algorithms for polynomials

division with remainder

problem:
given A,B ∈ Km×m[x] with lc(B) invertible,
compute Q,R ∈ Km×m[x] such that

A = BQ+R and deg(R) < deg(B)

▶ an efficient reduction, again

▶rdegA vs. degree d?
▶row reverse vs. reverse ?

▶ refinement of matrix degree:
row- or column-wise degrees
⇝ improves applicability & complexity

e.g. division by B = diag(xd1 , . . . , xdm)
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first algorithms

refined degree measures — generalized division

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

for A = (ai,j) ∈ K[x]m×n,

rdeg(A) = (rdeg(A1,∗), . . . , rdeg(Am,∗))

=

(
max

1⩽j⩽n
deg(A1,j), . . . , max

1⩽j⩽n
deg(Am,j)

)
∈ Zm
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first algorithms

refined degree measures — generalized division

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

column degree of a polynomial matrix
= the list of the maximum degree in each of its columns
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first algorithms

refined degree measures — generalized division

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

column degree of a polynomial matrix
= the list of the maximum degree in each of its columns

sum of degrees of all entries ⩽
n× sum of row degrees

m× sum of column degrees
⩽ mn× global degree

∑
i,j deg(aij) ⩽

n|rdeg(A)|
m|cdeg(A)|

⩽ mn deg(A)

with notation:
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first algorithms

refined degree measures — generalized division

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

column degree of a polynomial matrix
= the list of the maximum degree in each of its columns

sum of degrees of all entries ⩽
n× sum of row degrees

m× sum of column degrees
⩽ mn× global degree

∑
i,j deg(aij) ⩽

n|rdeg(A)|
m|cdeg(A)|

⩽ mn deg(A)

with notation:

consider A with degree matrix
100 5 20 1
100 5 20 1
100 5 20 1
100 5 20 1


determinant of A: degree ⩽ 126

⇝ better than naive bound 4 deg(A) = 400
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first algorithms

refined degree measures — generalized division

row degree of a polynomial matrix
= the list of the maximum degree in each of its rows

column degree of a polynomial matrix
= the list of the maximum degree in each of its columns

sum of degrees of all entries ⩽
n× sum of row degrees

m× sum of column degrees
⩽ mn× global degree

∑
i,j deg(aij) ⩽

n|rdeg(A)|
m|cdeg(A)|

⩽ mn deg(A)

with notation:

more general division with remainder:

▶ take for lc(B) row-wise leading coefficients
▶ if lc(B) is invertible, division by B is feasible
▶with row-wise degree bounds on remainder

[
4x3 + 2x+ 2 6x3 + 2x2 + 5

4x2 + 2 3x3 + x+ 3

]
=

[
x 0
0 2x2

]
Q+

[
2 5
2 x+ 3

]
32



first algorithms

partial linearization techniques

reduce unbalanced degrees to some average degree

where degree means row degree, column degree, or related refined measures

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

typical properties:

from a matrix A ∈ K[x]m×m with D = |rdeg(A)|≪ m deg(A)
construct a matrix Ā ∈ K[x]m

′×m′
with

▶ a slight increase of matrix dimension: m ⩽ m ′ ⩽ 2m

▶ a strong decrease of matrix degree: deg(Ā) ⩽ 2D
m

▶preservation of the features targeted by our computations

examples:
▶product AB easily deduced from product ĀB̄
▶preservation of the determinant det(A) = det(Ā)
▶ inverse of Ā contains inverse of A as submatrix
▶ . . .
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first algorithms

partial linearization techniques

reduce unbalanced degrees to some average degree

basic illustration:
▶ let A ∈ K[x]m×m of degree < d,
▶ let u ∈ K[x]m×1 of degree < md,
then the matrix-vector product Au can be computed in

MM(m,d) +O(m2d) operations in K
what would be the cost of the “naive” multiplication? ⇝O(m2M(md))

algorithm:
[Lecerf 2001 (in communication + software)]
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first algorithms

partial linearization techniques

reduce unbalanced degrees to some average degree

basic illustration:
▶ let A ∈ K[x]m×m of degree < d,
▶ let u ∈ K[x]m×1 of degree < md,
then the matrix-vector product Au can be computed in

MM(m,d) +O(m2d) operations in K
what would be the cost of the “naive” multiplication? ⇝O(m2M(md))

algorithm:
[Lecerf 2001 (in communication + software)] A

u
 =

 A

 Ū




1
xd

x2d

...


where the columns of Ū ∈ K[x]m×m form the xd-adic expansion of u
⇒ here deg(Ū) < d
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first algorithms

partial linearization techniques

reduce unbalanced degrees to some average degree

basic illustration:
▶ let A ∈ K[x]m×m of degree < d,
▶ let u ∈ K[x]m×1 of degree < md,
then the matrix-vector product Au can be computed in

MM(m,d) +O(m2d) operations in K
what would be the cost of the “naive” multiplication? ⇝O(m2M(md))

algorithm:
[Lecerf 2001 (in communication + software)]

m d md via PolMatMul matrix-vector
10 20000 200000 0.203 0.368
20 5000 100000 0.225 0.683
40 2500 100000 0.528 2.481
80 1250 100000 1.227 9.592
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outline

▶ computer algebra

▶ polynomial matrices

▶ first algorithms

▶ exercises

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶basic definitions and properties
▶use in various situations
▶ seen as matrices / seen as polynomials

▶ exploiting evaluation-interpolation
▶ extending algorithms for polynomials
▶partial linearization techniques
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outline

▶ computer algebra

▶ polynomial matrices

▶ first algorithms

▶ exercises

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶basic definitions and properties
▶use in various situations
▶ seen as matrices / seen as polynomials

▶ exploiting evaluation-interpolation
▶ extending algorithms for polynomials
▶partial linearization techniques

▶ evaluation-interpolation-based algorithms
▶Krylov iterates via repeated squaring
▶Krylov iterates in MatMul time
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exercises

evaluation-interpolation-based algorithms

exercise: multiplication, determinant, inversion
1. adapting the evaluation-interpolation paradigm to
matrices in K[x]m×m,

▶give an explicit multiplication algorithm

▶give a determinant algorithm

▶give an inversion algorithm
computing the inverse over the fractions K(x)

2. for each of these algorithms,

▶give a required lower bound on the cardinality of K
▶ state and prove an upper bound on the complexity

hint: use known degree bounds on the output
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exercises

evaluation-interpolation: multiplication

given A and B in K[x]m×m of degree ⩽ d,
we know that C = AB has degree at most 2d, so:

1. pick points: pairwise distinct α1, . . . ,α2d+1 ∈ K Card(K) ⩾ 2d+ 1

2. evaluate: A(αi) and B(αi), for i = 1, . . . , 2d+ 1 O(m2M(d) log(d))

3. multiply: A(αi)B(αi), for i = 1, . . . , 2d+ 1 O(mωd)

4. interpolate: find C in K[x]m×m of degree ⩽ 2d such that
C(αi) = A(αi)B(αi), for i = 1, . . . , 2d+ 1 O(m2M(d) log(d))

5. return C

excellent algorithm:
. linear in d in the term mωd (recall Cantor-Kaltofen: mωd log(d))
. exponent ω of matrix multiplication
. the m2M(d) log(d) term can be improved via points in geometric sequence
. downside: restriction on K (large degrees + small finite fields does happen)
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exercises

evaluation-interpolation: determinant

given A in K[x]m×m of degree ⩽ d,
we know that ∆ = det(A) has degree at most md, so:

1. pick points: pairwise distinct α1, . . . ,αmd+1 ∈ K Card(K) ⩾ md+ 1

2. evaluate: A(αi) for i = 1, . . . ,md+ 1 O(m3M(d) log(d))

3. determinant: βi = det(A(αi)), for i = 1, . . . ,md+ 1 O(mω+1d)

4. interpolate: find ∆ in K[x] of degree ⩽ md such that
∆(αi) = βi, for i = 1, . . . ,md+ 1 O(M(md) log(md))

5. return ∆

. quasi-linear in degree d: fast for large d, small m

. exponent > 3 on matrix dimension m: slow for large m

. best known today: O (̃mωd)
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exercises

evaluation-interpolation: inversion

given A in K[x]m×m of degree ⩽ d,
we know that C = A−1 = 1

∆
U with

deg(∆) ⩽ md and deg(U) ⩽ (m− 1)d, so:

0. set n = (2m− 1)d+ 1 n = Θ(md)

1. pick points: pairwise distinct α1, . . . ,αn ∈ K Card(K) ⩾ (2m− 1)d+ 1

2. evaluate: A(αi), for i = 1, . . . ,n O(m3M(d) log(d))

3. invert: A(αi)
−1, for i = 1, . . . ,n O(mω+1d)

4. interpolate: using Cauchy interpolation find C in K(X)m×m with all
numerators of degree ⩽ (m− 1)d and all denominators of degree ⩽ md
such that C(αi) = A(αi)

−1, for i = 1, . . . ,n O(m2M(md) log(md))

5. return C

. quasi-linear in degree d: fast for large d, small m

. exponent > 3 on dimension m but recall size of A−1 is typically Θ(m3d)

. best known today: O (̃m3d), and even O (̃mωd) for factorized form

. note: one could compute det(A) to avoid Cauchy interpolation
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exercises

problem (Krylov iterates):

input: matrix A ∈ Km×m,

vector v ∈ Km×1

integer d > 0

output: v,Av, . . . ,Ad−1v

kernel black box:
given a matrix F ∈ K[x]m×(m+1) of rank m
and degree ⩽ 1, one can compute a nonzero
element of degree ⩽ m in the right kernel of
F using O(mω) operations in K
[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

1. give an algorithm which costs O(mω log(d) +mω−1d) opera-
tions in K, based on repeated squaring
2. prove that the generating series of (Akv)k⩾0 rewrites as a
fraction of polynomial matrices:∑

k⩾0 A
kv xk = (I− xA)−1v

3. using the kernel black box, give a complexity bound for finding
λ ∈ K[x] and u ∈ K[x]m×1, both of degree ⩽ m, such that∑

k⩾0 A
kv xk = u/λ

4. show that (Akv)0⩽k<d can be computed in O(mω +mM(d))
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exercises

problem (Krylov iterates):

input: matrix A ∈ Km×m,

vector v ∈ Km×1

integer d > 0

output: v,Av, . . . ,Ad−1v

kernel black box:
given a matrix F ∈ K[x]m×(m+1) of rank m
and degree ⩽ 1, one can compute a nonzero
element of degree ⩽ m in the right kernel of
F using O(mω) operations in K
[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

1. give an algorithm which costs O(mω log(d) +mω−1d) opera-
tions in K, based on repeated squaring

for simplicity, take d a power of 2

first compute A2,A4, . . . ,Ad/2, cost O(mω log(d))

from v, compute Av

from [v Av], compute A2[v Av] = [A2v A3v]
from [v Av A2v A3v], compute A4[v Av A2v A3v] = [A4v A5v A6v A7v]
etc. . .
from [Akv]0⩽k<d/2, compute Ad/2[Akv]0⩽k<d/2 = [Akv]d/2⩽k<d
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exercises

problem (Krylov iterates):

input: matrix A ∈ Km×m,

vector v ∈ Km×1

integer d > 0

output: v,Av, . . . ,Ad−1v

kernel black box:
given a matrix F ∈ K[x]m×(m+1) of rank m
and degree ⩽ 1, one can compute a nonzero
element of degree ⩽ m in the right kernel of
F using O(mω) operations in K
[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

1. give an algorithm which costs O(mω log(d) +mω−1d) opera-
tions in K, based on repeated squaring

the first min(log(d), log(m)) products involve matrices of dimensions m or less, hence a
total cost bounded by O(mω log(d))

the remaining products (if any) involve a lefthand operand of dimensions m ×m and a
righthand one of dimensions m× 2k, where k goes from about log2(m) to for log2(d)
⇝ for a given k, the product costs O(mω−12k)

⇝ summing this over all k, with
∑

k⩽log2(d)
2k ∈ O(d), gives O(mω−1d)
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exercises

problem (Krylov iterates):

input: matrix A ∈ Km×m,

vector v ∈ Km×1

integer d > 0

output: v,Av, . . . ,Ad−1v

kernel black box:
given a matrix F ∈ K[x]m×(m+1) of rank m
and degree ⩽ 1, one can compute a nonzero
element of degree ⩽ m in the right kernel of
F using O(mω) operations in K
[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

2. prove that the generating series of (Akv)k⩾0 rewrites as a
fraction of polynomial matrices:∑

k⩾0 A
kv xk = (I− xA)−1v

multiply the left-hand side by I− xA, this yields v

38



exercises

problem (Krylov iterates):

input: matrix A ∈ Km×m,

vector v ∈ Km×1

integer d > 0

output: v,Av, . . . ,Ad−1v

kernel black box:
given a matrix F ∈ K[x]m×(m+1) of rank m
and degree ⩽ 1, one can compute a nonzero
element of degree ⩽ m in the right kernel of
F using O(mω) operations in K
[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

3. using the kernel black box, give a complexity bound for finding
λ ∈ K[x] and u ∈ K[x]m×1, both of degree ⩽ m, such that∑

k⩾0 A
kv xk = u/λ

. consider F = [I−xA − v]; this matrix has degree ⩽ 1 and rank m (its leftmost m×m

submatrix is nonsingular)
. so, in O(mω), we can compute a nonzero element of degree ⩽ m in its right kernel
. this element can be written [ uλ ], and F[ uλ ] = 0 rewrites as (I− xA)u = vλ

. observe that λ cannot be zero (otherwise, u would be a nonzero vector in the right
kernel of I− xA, which is not possible)

. thus (I− xA)−1v = 1
λ
u
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exercises

problem (Krylov iterates):

input: matrix A ∈ Km×m,

vector v ∈ Km×1

integer d > 0

output: v,Av, . . . ,Ad−1v

kernel black box:
given a matrix F ∈ K[x]m×(m+1) of rank m
and degree ⩽ 1, one can compute a nonzero
element of degree ⩽ m in the right kernel of
F using O(mω) operations in K
[refined analysis of Algo.1 in Zhou-Labahn-Storjohann 2012]

4. show that (Akv)0⩽k<d can be computed in O(mω +mM(d))

. these d vectors are the first d terms of the series
∑

k⩾0 A
kv xk

. we have seen that this series is equal to 1
λ
u (with u and λ found in O(mω))

⇝ it suffices to expand u/λ as a power series in precision d
. since u is a vector of m entries, this costs O(mM(d))
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summary

▶ computer algebra

▶ polynomial matrices

▶ first algorithms

▶ exercises

▶ efficient algorithms and software
▶ for matrices over a field
▶ for univariate polynomials

▶basic definitions and properties
▶use in various situations
▶ seen as matrices / seen as polynomials

▶ exploiting evaluation-interpolation
▶ extending algorithms for polynomials
▶partial linearization techniques

▶ evaluation-interpolation-based algorithms
▶Krylov iterates via repeated squaring
▶Krylov iterates in MatMul time
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