
Vincent Neiger
LIP6, Sorbonne Université, France

designing and exploiting fast algorithms

for univariate polynomial matrices

Journées Nationales de Calcul Formel
Centre International de Rencontre Mathématiques

Marseille Luminy, France, 4 March 2024

1

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

2

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

3

approximation and interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences

4

approximation and interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences

Cauchy interpolation:

given M(x) = (x− α1) · · · (x− αd) ∈ K[x],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod M(x)

4

approximation and interpolation

rational approximation and interpolation

Padé approximation:

given power series f(x) at precision d,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod xd

strong links with linearly recurrent sequences

Cauchy interpolation:

given M(x) = (x− α1) · · · (x− αd) ∈ K[x],
for pairwise distinct α1, . . . ,αd ∈ K,
given degree constraints d1,d2 > 0,
→ compute polynomials (p(x),q(x)) of degrees < (d1,d2)
and such that f = p

q
mod M(x)

▶degree constraints specified by the context
▶usual choices have d1 + d2 ≈ d and existence of a solution

4

approximation and interpolation

approximation and structured linear system

K = F7

f = 2x7 + 2x6 + 5x4 + 2x2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod x8

[q p]

[
f
−1

]
= 0 mod x8

[q0 q1 q2 q3 q4 1 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

5

approximation and interpolation

approximation and structured linear system

K = F7

f = 2x7 + 2x6 + 5x4 + 2x2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod x8

[q p]

[
f
−1

]
= 0 mod x8

[q0 q1 q2 q3 q4 1 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

5

approximation and interpolation

approximation and structured linear system

K = F7

f = 2x7 + 2x6 + 5x4 + 2x2 + 4
d = 8,d1 = 3,d2 = 6
→ look for (p,q) of degree < (3, 6) such that f = p

q
mod x8

[q p]

[
f
−1

]
= 0 mod x8

[q0 q1 q2 q3 q4 1 | p0 p1 p2]



4 0 2 0 5 0 2 2
4 0 2 0 5 0 2

4 0 2 0 5 0
4 0 2 0 5

4 0 2 0
4 0 2

6 0 0 0 0 0 0 0
6 0 0 0 0 0 0

6 0 0 0 0 0


= 0

5

[1894, Journal de mathématiques pures et appliquées]

6

approximation and interpolation

the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)

7

approximation and interpolation

the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)

7

approximation and interpolation

the vector case

Hermite-Padé approximation
[Hermite 1893, Padé 1894]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶precision d ∈ Z>0

▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod xd

▶deg(pi) < di for all i

(Padé approximation: particular case m = 2 and f2 = −1)

M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶pairwise distinct points α1, . . . ,αd ∈ K
▶degree bounds d1, . . . ,dm ∈ Z>0

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1(αi)f1(αi) + · · ·+ pm(αi)fm(αi) = 0 for all 1 ⩽ i ⩽ d

▶deg(pi) < di for all i

(rational interpolation: particular case m = 2 and f2 = −1)

this talk: modular equation and fast algebraic algorithms
[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard
2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]

input:

▶polynomials f1, . . . , fm ∈ K[x]

▶field elements α1, . . . ,αd ∈ K ⇝ not necessarily distinct

▶degree bounds d1, . . . ,dm ∈ Z>0 ⇝ general “shift” s ∈ Zm

output:

polynomials p1, . . . ,pm ∈ K[x] such that

▶p1f1 + · · ·+ pmfm = 0 mod
∏

1⩽i⩽d(x− αi)

▶deg(pi) < di for all i ⇝ minimal s-row degree

(Hermite-Padé: α1 = · · · = αd = 0; interpolation: pairwise distinct points)

7

approximation and interpolation

(bivariate) interpolation and structured linear system

application to bivariate interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial Q(x,y) ∈ K[x,y]
such that Q(αi,βi) = 0 for 1 ⩽ i ⩽ 8

M(x) = (x− 24) · · · (x− 59)
L(x) = Lagrange interpolant

}
−→ solutions = ideal ⟨M(x),y− L(x)⟩

solutions of smaller x-degree: Q(x,y) = Q0(x) +Q1(x)y+Q2(x)y
2

Q(x,L(x)) =
[
Q0 Q1 Q2

]  1
L
L2

 = 0 mod M(x)

▶ instance of univariate rational vector interpolation
▶with a structured input equation (powers of L mod M)

8

approximation and interpolation

(bivariate) interpolation and structured linear system

application to bivariate interpolation:
given pairwise distinct points {(αi,βi), 1 ⩽ i ⩽ 8}
= {(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)},
compute a bivariate polynomial Q(x,y) ∈ K[x,y]
such that Q(αi,βi) = 0 for 1 ⩽ i ⩽ 8

add degree constraints: seek Q(x,y) of the form
q00 +q01x+q02x

2 +q03x
3 +q04x

4 + (q10 +q11x+q12x
2)y+q20y

2:

[
q00 q01 q02 q03 q04 q10 q11 q12 q20

]



1 1 · · · 1
α1 α2 · · · α8

α2
1 α2

2 · · · α2
8

α3
1 α3

2 · · · α3
8

α4
1 α4

2 · · · α4
8

β1 β2 · · · β8

α1β1 α2β2 · · · α8β8

α2
1β1 α2

2β2 · · · α2
8β8

β2
1 β2

2 · · · β2
8


= 0

▶K-linear system
▶ two levels of structure

Q(x,y) = (2x4 + 56x3 + 42x2 + 48x+ 15) + (72x2 + 12x+ 30)y+ y2

8

approximation and interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

S is a “free K[x]-module of rank m”: admits a basis consisting of m elements

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution [pi,1 · · · pi,m]
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. S is the K[x]-row space of P

computing a basis of S with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

9

approximation and interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

S is a “free K[x]-module of rank m”: admits a basis consisting of m elements

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution [pi,1 · · · pi,m]
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. S is the K[x]-row space of P

computing a basis of S with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

9

approximation and interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

S is a “free K[x]-module of rank m”: admits a basis consisting of m elements

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution [pi,1 · · · pi,m]
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. S is the K[x]-row space of P

computing a basis of S with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

9

approximation and interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

S is a “free K[x]-module of rank m”: admits a basis consisting of m elements

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution [pi,1 · · · pi,m]
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. S is the K[x]-row space of P

computing a basis of S with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

9

approximation and interpolation

polynomial matrices enter the arena

omitting degree constraints, the set of solutions is
S = {(p1, . . . ,pm) ∈ K[x]m | p1f1 + · · ·+ pmfm = 0 mod M}

recall M(x) =
∏

1⩽i⩽d(x−αi)

why polynomial matrices here?

S is a “free K[x]-module of rank m”: admits a basis consisting of m elements

basis of solutions:
▶ square nonsingular matrix P in K[x]m×m

▶ each row of P is a solution [pi,1 · · · pi,m]
▶ any solution is a K[x]-combination uP,u ∈ K[x]1×m

i.e. S is the K[x]-row space of P

computing a basis of S with “minimal degrees”
▶has many more applications than a single small-degree solution
▶ is in most cases the fastest known strategy anyway(!)

⇝ degree minimality ensured via shifted reduced forms

9

polynomial matrices: reminder

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1

 ∈ K[x]3×3

3 × 3 matrix of degree 3
with entries in K[x] = F7[x]

operations on K[x]m×m
<d

▶ combination of matrix and polynomial computations

▶ addition in O(m2d), naive multiplication in O(m3d2)

multiplication in O(mωd log(d) + m2d log(d) log log(d))

[Cantor-Kaltofen’91]

∈ O(mωM(d)) ⊂ O (̃mωd)

applying univariate polynomial techniques directly:

▶Newton truncated inversion, matrix-QuoRem O (̃mωd)

▶ inversion & determinant by evaluation-interpolation O (̃mω+1d)

▶ vector rational approximation & interpolation ???

applying matrix techniques directly: echelonization is exponential time

10

polynomial matrices: main computational problems

reductions to PolMatMul via vector interpolation

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

11

polynomial matrices: main computational problems

reductions to PolMatMul via vector interpolation

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

11

polynomial matrices: main computational problems

reductions to PolMatMul via vector interpolation

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

11

polynomial matrices: main computational problems

reductions to PolMatMul via vector interpolation

matrix m×m of degree d
of “average” degree D

m

→ O (̃mωd)
→ O (̃mω D

m
)

classical matrix operations

▶multiplication

▶ kernel, system solving

▶ rank, determinant

▶ inversion O˜(m3d)

univariate specific operations

▶ truncated inverse, QuoRem

▶Hermite-Padé approximation

▶ vector rational interpolation

▶ syzygies / modular equations

transformation to normal forms

▶ echelonization: Hermite form

▶ row reduction: Popov form

▶diagonalization: Smith form

11

matrix normal forms

working over K = Z/7Z

A =

 3x+ 4 x3 + 4x+ 1 4x2 + 3
5 5x2 + 3x+ 1 5x+ 3

3x3 + x2 + 5x+ 3 6x+ 5 2x+ 1


using elementary row operations, transform A into. . .

Hermite form H =

 x6 + 6x4 + x3 + x+ 4 0 0
5x5 + 5x4 + 6x3 + 2x2 + 6x+ 3 x 0

3x4 + 5x3 + 4x2 + 6x+ 1 5 1



Popov form P =

x3 + 5x2 + 4x+ 1 2x+ 4 3x+ 5
1 x2 + 2x+ 3 x+ 2

3x+ 2 4x x2



12

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module S ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

13

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module S ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

13

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module S ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

13

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module S ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basis

invariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

13

Hermite and Popov forms

nonsingular A ∈ K[x]m×m

Hermite form [Hermite, 1851]

▶ triangular
▶ column normalized


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2



elementary row transformations

Popov form [Popov, 1972]

▶minimal row degrees
▶ column normalized


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



K[x]-module S ⊂ K[x]1×m of rank m

≼pot ≼topreduced Gröbner basisinvariant: D = deg(det(A)) = 4+ 7+ 3+ 2 = 7+ 1+ 2+ 6

▶ average column degree is D
m

▶ size of object is mD+m2 = m2(D
m

+ 1)

target cost: O (̃mω D
m
)

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + no column normalization

≈ minimal, non-reduced, ≺-Gröbner basis

13

shifted forms

shift: integer tuple s = (s1, . . . , sm) acting as column weights

→ connects Popov and Hermite forms

s = (0, 0, 0, 0)
Popov


4 3 3 3
3 4 3 3
3 3 4 3
3 3 3 4



7 0 1 5
0 1 0

2
6 0 1 6



s = (0, 2, 4, 6)
s-Popov


7 4 2 0
6 5 2 0
6 4 3 0
6 4 2 1



8 5 1
7 6 1

2
0 1 0



s = (0,D, 2D, 3D)
Hermite


16
15 0
15 0
15 0



4
3 7
1 5 3
3 6 1 2


▶normal form, average column degree D/m

▶ shifts arise naturally in algorithms (approximants, kernel, . . .)
▶ they allow one to specify non-uniform degree constraints

14

from normal forms to relations

normal form computation

shifted
Popov form

Popov form Hermite form

high-order lifting
[Storjohann, 2003]

[Giorgi-Jeannerod-Villard 2003]
[Neiger 2016] [Neiger-Vu 2017]

reconstruction as relations


p1f11 + · · ·+ pmf1m = 0 mod g1

...
...

...
p1fn1 + · · ·+ pmfnm = 0 mod gn

15

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

input: vector F =

[
f1
...

fm

]
, points α1, . . . ,αd ∈ K, shift s = (s1, . . . , sm) ∈ Zm

1. P =

[
−p1−...
−pm−

]
= identity matrix in K[x]m×m

2. for i from 1 to d:

a. choose pivot π with smallest sπ such that fπ(αi) ̸= 0
update pivot shift sπ = sπ + 1

b. constant elimination: for j ̸= π do pj ← pj −
fj(αi)

fπ(αi)
pπ

polynomial elimination: pπ ← (x− αi)pπ

c. compute residual equation: for j ̸= π do fj ← fj −
fj(αi)

fπ(αi)
fπ

fπ ← (x− αi)fπ

after i iterations: P is an s-reduced basis of solutions for (α1, . . . ,αi)

16

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



values


1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



values


1 1 1 1 1 1 1 1
80 73 73 35 66 46 91 64
95 91 91 61 88 79 36 22
34 47 47 1 85 45 75 50


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [0 2 4 6]

basis

 1 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


1 1 1 1 1 1 1 1
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 1 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
17 1 0 0
2 0 1 0
63 0 0 1



values


0 7 88 8 59 3 93 35
0 90 90 52 83 63 11 81
0 93 93 63 90 81 38 24
0 13 13 64 51 11 41 16


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [1 2 4 6]

basis

 x+ 73 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 7 88 8 59 3 93 35
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 2 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 x2 + 42x+ 65 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [2 2 4 6]

basis

 x2 + 42x+ 65 0 0 0
x+ 90 1 0 0

56x+ 16 0 1 0
12x+ 66 0 0 1



values


0 0 47 8 61 85 44 10
0 0 81 60 45 66 7 19
0 0 74 26 96 55 8 44
0 0 2 63 80 47 90 48


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 3 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 x3 + 27x2 + 17x+ 92 0 0 0
54x2 + 38x+ 11 1 0 0
17x2 + 91x+ 54 0 1 0
66x2 + 68x+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 2 4 6]

basis

 x3 + 27x2 + 17x+ 92 0 0 0
54x2 + 38x+ 11 1 0 0
17x2 + 91x+ 54 0 1 0
66x2 + 68x+ 88 0 0 1



values


0 0 0 39 74 50 26 52
0 0 0 7 41 0 55 74
0 0 0 65 66 45 77 20
0 0 0 9 32 31 84 29


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 4 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [3 3 4 6]

basis

 x3 + 31x2 + 27x+ 3 36 0 0
54x3 + 56x2 + 56x+ 36 x+ 65 0 0

56x2 + 43x+ 35 60 1 0
52x2 + 33x+ 60 68 0 1



values


0 0 0 0 95 50 66 0
0 0 0 0 54 0 19 58
0 0 0 0 4 45 79 95
0 0 0 0 7 31 41 17


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 5 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 3 4 6]

basis

 x4 + 45x3 + 73x2 + 90x+ 42 36x+ 19 0 0
81x3 + 20x2 + 9x+ 20 x+ 67 0 0

2x3 + 21x2 + 41 35 1 0
52x3 + 15x2 + 79x+ 22 0 0 1



values


0 0 0 0 0 13 13 0
0 0 0 0 0 89 55 58
0 0 0 0 0 48 17 95
0 0 0 0 0 12 78 17


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 6 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [4 4 4 6]

basis

 x4 + 19x3 + 57x2 + 44x+ 26 74x+ 43 0 0
81x4 + 64x3 + 51x2 + 68x+ 42 x2 + 40x+ 34 0 0

3x3 + 44x2 + 54x+ 64 6x+ 49 1 0
28x3 + 45x2 + 44x+ 52 50x+ 52 0 1



values


0 0 0 0 0 0 66 70
0 0 0 0 0 0 3 13
0 0 0 0 0 0 56 55
0 0 0 0 0 0 15 7


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 7 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 4 4 6]

basis

 x5 + 96x4 + 65x3 + 68x2 + 19x+ 62 74x2 + 18x+ 13 0 0
6x4 + 94x3 + 44x2 + 66x+ 32 x2 + 19x+ 10 0 0
55x4 + 78x3 + 75x2 + 49x+ 39 2x+ 86 1 0
13x4 + 81x3 + 10x2 + 34x+ 2 42x+ 29 0 1



values


0 0 0 0 0 0 0 14
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 25
0 0 0 0 0 0 0 44


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 x5 + 12x4 + 10x3 + 34x2 + 65x+ 2 60x2 + 43x+ 67 0 0
6x5 + 31x4 + 27x3 + 89x2 + 18x+ 52 x3 + 57x2 + 53x+ 89 0 0

2x4 + 56x3 + 42x2 + 48x+ 15 72x2 + 12x+ 30 1 0
40x4 + 19x3 + 14x2 + 40x+ 49 53x2 + 79x+ 74 0 1



values


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


17

iterative & divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

parameters: d = 8 m = 4 s = (0, 2, 4, 6), base field F97

input: (24, 31, 15, 32, 83, 27, 20, 59) and F = [1 L L2 L3]T

iteration: i = 8 point: 24, 31, 15, 32, 83, 27, 20, 59

shift [5 5 4 6]

basis

 x5 + 12x4 + 10x3 + 34x2 + 65x+ 2 60x2 + 43x+ 67 0 0
6x5 + 31x4 + 27x3 + 89x2 + 18x+ 52 x3 + 57x2 + 53x+ 89 0 0

2x4 + 56x3 + 42x2 + 48x+ 15 72x2 + 12x+ 30 1 0
40x4 + 19x3 + 14x2 + 40x+ 49 53x2 + 79x+ 74 0 1



values


0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Q(x,y) = (2x4 + 56x3 + 42x2 + 48x+ 15) + (72x2 + 12x+ 30)y+ y2

17

iterative & divide and conquer algorithms

iterative algorithm: complexity aspects

at step i, P and F are left multiplied by Ei =

[
Iπ−1 λ1 0
0 x−α 0
0 λ2 Im−π

]
where λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications EiF and EiP
▶ at any stage P has degree ⩽ d and dimensions m×m
▶ at any stage F has degree < 2d and dimensions m× 1

one gets O(md2) with either:
. normalizing at each step + finer analysis
. “balanced” input shift + finer analysis

correctness:
▶ the main task is to prove the base case (d = 1, single point)
▶ then, correctness follows from the “basis multiplication theorem”

18

iterative & divide and conquer algorithms

iterative algorithm: complexity aspects

at step i, P and F are left multiplied by Ei =

[
Iπ−1 λ1 0
0 x−α 0
0 λ2 Im−π

]
where λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications EiF and EiP
▶ at any stage P has degree ⩽ d and dimensions m×m
▶ at any stage F has degree < 2d and dimensions m× 1

one gets O(md2) with either:
. normalizing at each step + finer analysis
. “balanced” input shift + finer analysis

correctness:
▶ the main task is to prove the base case (d = 1, single point)
▶ then, correctness follows from the “basis multiplication theorem”

18

iterative & divide and conquer algorithms

iterative algorithm: complexity aspects

at step i, P and F are left multiplied by Ei =

[
Iπ−1 λ1 0
0 x−α 0
0 λ2 Im−π

]
where λ1 ∈ K(π−1)×1 and λ2 ∈ K(m−π)×1 are constant

complexity O(m2d2):
▶ iteration with d steps
▶ each step: evaluation of F + multiplications EiF and EiP
▶ at any stage P has degree ⩽ d and dimensions m×m
▶ at any stage F has degree < 2d and dimensions m× 1

one gets O(md2) with either:
. normalizing at each step + finer analysis
. “balanced” input shift + finer analysis

correctness:
▶ the main task is to prove the base case (d = 1, single point)
▶ then, correctness follows from the “basis multiplication theorem”

18

iterative & divide and conquer algorithms

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn ’94+’97] [Giorgi-Jeannerod-Villard 2003]

▶ compute a first basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 shifted reduced

P2P1 reduced not implied by “P1 reduced and P2 reduced”

theorem:
(P1 is s-reduced and P2 is t-reduced”) ⇒ P2P1 is s-reduced

where t is a shift trivially computed from s and P1 (t = rdegs(P1))

19

iterative & divide and conquer algorithms

general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn ’94+’97] [Giorgi-Jeannerod-Villard 2003]

▶ compute a first basis P1 for a subproblem
▶update the input instance to get the second subproblem
▶ compute a second basis P2 for this second subproblem
▶ the output basis of solutions is P2P1

we want P2P1 shifted reduced

P2P1 reduced not implied by “P1 reduced and P2 reduced”

theorem:
(P1 is s-reduced and P2 is t-reduced”) ⇒ P2P1 is s-reduced

where t is a shift trivially computed from s and P1 (t = rdegs(P1))

19

iterative & divide and conquer algorithms

bonus: detailed statement and proof

let M ⊆M1 be two K[x]-submodules of K[x]m of rank m,
let P1 ∈ K[x]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[x]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[x]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[x]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1 is

nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p is a

K[x]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists λ ∈
K[x]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈ K[x]1×m

such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

20

iterative & divide and conquer algorithms

bonus: detailed statement and proof

let M ⊆M1 be two K[x]-submodules of K[x]m of rank m,
let P1 ∈ K[x]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[x]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[x]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[x]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1 is

nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p is a

K[x]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists λ ∈
K[x]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈ K[x]1×m

such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

20

iterative & divide and conquer algorithms

bonus: detailed statement and proof

let M ⊆M1 be two K[x]-submodules of K[x]m of rank m,
let P1 ∈ K[x]m×m be a basis of M1,
let s ∈ Zm and t = rdegs(P1),

▶ the rank of the module M2 = {λ ∈ K[x]1×m | λP1 ∈M} is m
and for any basis P2 ∈ K[x]m×m of M2,
the product P2P1 is a basis of M

▶ if P1 is s-reduced and P2 is t-reduced,
then P2P1 is s-reduced

Let A ∈ K[x]m×m denote the adjugate of P1. Then, we have AP1 = det(P1)Im.

Thus, pAP1 = det(P1)p ∈ M for all p ∈ M, and therefore MA ⊆ M2. Now,

the nonsingularity of A ensures that MA has rank m; this implies that M2 has

rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix P2P1 is

nonsingular since det(P2P1) ̸= 0. Now let p ∈ M; we want to prove that p is a

K[x]-linear combination of the rows of P2P1. First, p ∈ M1, so there exists λ ∈
K[x]1×m such that p = λP1. But then λ ∈ M2, and thus there exists µ ∈ K[x]1×m

such that λ = µP2. This yields the combination p = µP2P1.

Let d = rdegt(P2); we have d = rdegs(P2P1) by the predictable degree prop-

erty. Using X−dP2P1X
s = X−dP2X

tX−tP1X
s, we obtain that lms(P2P1) =

lmt(P2)lms(P1). By assumption, lmt(P2) and lms(P1) are invertible, and there-

fore lms(P2P1) is invertible as well; thus P2P1 is s-reduced.

20

iterative & divide and conquer algorithms

divide and conquer algorithm [Beckermann-Labahn ’94+’97]

input: F, (α1, . . . ,αd), s
output: P

▶ if d ⩽ threshold: call iterative algorithm
▶ else:

a. M1 ← (x− α1) · · · (x− α⌊d/2⌋); M2 ← (x− α⌊d/2⌋+1) · · · (x− αd)

b. P1 ← recursive call on F rem M1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual equation: G← 1
M1

P1F

e. P2 ← recursive call on G rem M2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

21

iterative & divide and conquer algorithms

divide and conquer algorithm [Beckermann-Labahn ’94+’97]

input: F, (α1, . . . ,αd), s
output: P

▶ if d ⩽ threshold: call iterative algorithm
▶ else:

a. M1 ← (x− α1) · · · (x− α⌊d/2⌋); M2 ← (x− α⌊d/2⌋+1) · · · (x− αd)

b. P1 ← recursive call on F rem M1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual equation: G← 1
M1

P1F

e. P2 ← recursive call on G rem M2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ residual: {p | pP1F = 0 mod M} = {p | p(1

M1
P1F) = 0 mod M2}

21

iterative & divide and conquer algorithms

divide and conquer algorithm [Beckermann-Labahn ’94+’97]

input: F, (α1, . . . ,αd), s
output: P

▶ if d ⩽ threshold: call iterative algorithm
▶ else:

a. M1 ← (x− α1) · · · (x− α⌊d/2⌋); M2 ← (x− α⌊d/2⌋+1) · · · (x− αd)

b. P1 ← recursive call on F rem M1, (α1, . . . ,α⌊d/2⌋), s

c. updated shift: t← rdegs(P1)

d. residual equation: G← 1
M1

P1F

e. P2 ← recursive call on G rem M2, (α⌊d/2⌋+1, . . . ,αd), t

f. return the product P2P1

correctness:
▶ correctness of base case
▶ then, direct consequence of the “basis multiplication theorem”
▶ residual: {p | pP1F = 0 mod M} = {p | p(1

M1
P1F) = 0 mod M2}

complexity O(mωM(d) log(d)):
▶ if ω = 2, quasi-linear in worst-case output size (yet: s-Popov basis is smaller)

▶most expensive step in the recursion is the product P2P1

▶ equation C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

21

iterative & divide and conquer algorithms

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

22

iterative & divide and conquer algorithms

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

22

iterative & divide and conquer algorithms

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

22

iterative & divide and conquer algorithms

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization
▶base case for d ≈ m,

costs O(mω)

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

22

iterative & divide and conquer algorithms

divide and conquer: complexity aspects

complexity of each step:
▶ residual F← 1

M1
P1F O(m2M(d))

▶F rem M1 and F rem M2 O(mM(d))
▶product P2P1 O(mωM(d))
▶ two recursive calls 2C(m, ⌊d/2⌉)

input: deg(F) < d output: deg(P) ⩽ d

{
C(m,d) = C(m, ⌊d/2⌋) + C(m, ⌈d/2⌉) +O(mωM(d))

d base cases, each one costs O(m)

⇒ O(mωM(d) log(d))

unrolling: mω
(
M(d) + 2M(d

2) + 4M(d
4) + · · ·+ d

2 M(2)
)
+dm

s = 0 and generic F:
O(mωM(⌈ d

m
⌉))

unchanged
O(mωM(⌈ d

m
⌉))

unchanged

output: deg(P) ≈ ⌈ d
m
⌉

▶partial linearization
▶base case for d ≈ m,

costs O(mω)

O(mωM(⌈ d
m
⌉) log(⌈ d

m
⌉))

22

iterative & divide and conquer algorithms

vector rational interpolation: recent progress

overview of the state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F ∈ K[x]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

23

iterative & divide and conquer algorithms

vector rational interpolation: recent progress

overview of the state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F ∈ K[x]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

▶more recently: O (̃mω−1nd) for F mod xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis

23

iterative & divide and conquer algorithms

vector rational interpolation: recent progress

overview of the state of the art:

▶ recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)

it also works for F ∈ K[x]m×n with n > 1

▶ [Giorgi-Jeannerod-Villard 2003] achieved O(mωM(d) log(d))
for F mod xd, with n ⩾ 1 and n ∈ O(m)

▶ for s = 0 and generic F: O (̃mω⌈nd
m
⌉) [Lecerf, ca 2001, unpublished]

▶more recently: O (̃mω−1nd) for F mod xd

[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis

▶F mod M and general modular matrix equations in similar complexity
[Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]

⇝ any s, no genericity assumption, returns the canonical s-Popov basis

23

polynomial matrices: two open questions

deterministic Smith form

[s1
s2

. . .

sm

][
A

]
si+1 divides si

▶ complexity O (̃mω D
m
) [Storjohann’03]

▶Las Vegas randomized algorithm

▶ requires large field K

deterministic algo in O (̃mω D
m
)?

algebraic interpolants

⇝ recurrence guessing, modular composition, bivariate interpolation, . . .

p1f1 + p2f2 + · · ·+ pmfm = 0 mod M

p11+ p2L+ · · ·+ pmLm−1 = 0 mod M

structured fi’s

▶most algorithms ignore the structure

▶ recent progress [Villard 2018]

▶ restrictive: genericity, specific m & d

how to leverage this structure?

24

polynomial matrices: two open questions

deterministic Smith form

[s1
s2

. . .

sm

][
A

]
si+1 divides si

▶ complexity O (̃mω D
m
) [Storjohann’03]

▶Las Vegas randomized algorithm

▶ requires large field K

deterministic algo in O (̃mω D
m
)?

algebraic interpolants

⇝ recurrence guessing, modular composition, bivariate interpolation, . . .

p1f1 + p2f2 + · · ·+ pmfm = 0 mod M

p11+ p2L+ · · ·+ pmLm−1 = 0 mod M

structured fi’s

▶most algorithms ignore the structure

▶ recent progress [Villard 2018]

▶ restrictive: genericity, specific m & d

how to leverage this structure?

24

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

25

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

▶previous work and log factors to remove
▶ result: “asymptotically optimal” algorithm
▶new triangularization-based approach

26

characteristic polynomial of a matrix

given M ∈ Km×m, compute det(xIm −M) ∈ K[x]

K-linear algebra: reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log(m)

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

MatMul = O(CharPoly)
[Baur-Strassen 1983]

CharPoly = O(MatMul) ?

27

characteristic polynomial of a matrix

given M ∈ Km×m, compute det(xIm −M) ∈ K[x]

K-linear algebra: reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

× log(m)

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

MatMul = O(CharPoly)
[Baur-Strassen 1983]

CharPoly = O(MatMul) ?

27

characteristic polynomial of a matrix

given M ∈ Km×m, compute det(xIm −M) ∈ K[x]

K-linear algebra: reductions of most problems to matrix multiplication

LinSys Rank Det

PLUQ CharPoly

MinPoly

TRSM

MatMul

Inverse

LinSys
Det
Rank
PLUQ
TRSM
Inverse


= O(MatMul)

MatMul = O(CharPoly)
[Baur-Strassen 1983]

CharPoly = O(MatMul) ?

27

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
▶ [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

▶ used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
▶ [Samuelson’42, Berkowitz’84]

▶ suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

▶ deterministic O(m3) or O(mω log(m))
▶ generic O(mω)
▶Las Vegas randomized, requires large field O(mω)

i.e. card(K) ⩾ 2m2

28

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
▶ [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

▶ used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
▶ [Samuelson’42, Berkowitz’84]

▶ suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

▶ deterministic O(m3) or O(mω log(m))
▶ generic O(mω)
▶Las Vegas randomized, requires large field O(mω)

i.e. card(K) ⩾ 2m2

28

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
▶ [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

▶ used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
▶ [Samuelson’42, Berkowitz’84]

▶ suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

▶ deterministic O(m3) or O(mω log(m))
▶ generic O(mω)
▶Las Vegas randomized, requires large field O(mω)

i.e. card(K) ⩾ 2m2

28

charpoly via K-linear algebra

traces of powers O(m4) or O(mω+1)
▶ [LeVerrier 1840] [Faddeev’49, Souriau’48, ...]

▶ used by [Csanky’75] to prove CharPoly ∈ NC2

determinant expansion O(m4)
▶ [Samuelson’42, Berkowitz’84]

▶ suited to division free algorithms

[Abdlejaoued-Malaschonok’01, Kaltofen-Villard’05]

Krylov methods [Danilevskij’37, Keller-Gehrig’85, P.-Storjohann’07]

▶ deterministic O(m3) or O(mω log(m))
▶ generic O(mω)
▶Las Vegas randomized, requires large field O(mω)

i.e. card(K) ⩾ 2m2

28

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼ md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

▶ iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

▶divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

▶divide and conquer [N.-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

29

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼ md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

▶ iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

▶divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

▶divide and conquer [N.-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

29

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼ md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

▶ iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

▶divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

▶divide and conquer [N.-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

29

charpoly via polynomial matrices

determinant of matrix A ∈ K[x]m×m

evaluation-interpolation [folklore] O(mω+1)
at ∼ md points, requires large field

costs: for A of degree d = 1

diagonalization [Storjohann 2003] O(mω log(m)2)
Smith form: Las Vegas randomized, requires large field

partial triangularization

▶ iterative [Mulders-Storjohann 2003] O(m3)
via weak Popov form computations

▶divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] O(mω)
diagonal of Hermite form must be 1, . . . , 1, det(A)

▶divide and conquer [N.-Labahn-Zhou 2017] O (̃mω)
logarithmic factors in m and d

29

sources of log factors

in K-linear algebra

for polynomial matrices

▶divide and conquer with half-dimension blocks → no log(m)

▶ iterative approaches in m steps → sometimes no log(m) [Pernet-Storjohann’07]

▶multi-vector Krylov iterates: CRP(V MV · · · MmV) → log(m)

▶divide and conquer with half-dimension blocks → no log(m)
provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann’12]

▶divide and conquer on degree → log(d) but no log(m)
e.g. K[x]-MatMul and approximant basis [Giorgi-Jeannerod-Villard’03]

▶multi-vector Krylov iterates e.g. [Jeannerod-N.-Schost-Villard’17]

since base cases of recursions on degree = matrices over K
typically adds O(mωd log(m)) to the cost, non-negligible when d = O(1)

▶ looking for a matrix with unpredictable, unbalanced degrees
log(m) steps in dimension m×m, to uncover the degree profile [Zhou-Labahn’13]

reminiscent of obstacles in the derandomization of [Pernet-Storjohann’07]

30

sources of log factors

in K-linear algebra

for polynomial matrices

▶divide and conquer with half-dimension blocks → no log(m)

▶ iterative approaches in m steps → sometimes no log(m) [Pernet-Storjohann’07]

▶multi-vector Krylov iterates: CRP(V MV · · · MmV) → log(m)

▶divide and conquer with half-dimension blocks → no log(m)
provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann’12]

▶divide and conquer on degree → log(d) but no log(m)
e.g. K[x]-MatMul and approximant basis [Giorgi-Jeannerod-Villard’03]

▶multi-vector Krylov iterates e.g. [Jeannerod-N.-Schost-Villard’17]

since base cases of recursions on degree = matrices over K
typically adds O(mωd log(m)) to the cost, non-negligible when d = O(1)

▶ looking for a matrix with unpredictable, unbalanced degrees
log(m) steps in dimension m×m, to uncover the degree profile [Zhou-Labahn’13]

reminiscent of obstacles in the derandomization of [Pernet-Storjohann’07]

30

characteristic polynomial in the time of matrix multiplication

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

▶polynomial matrices ▶ ternary divide and conquer
▶partial triangularization ▶ exploiting degree knowledge

matrix multiplication in Km×m

▶ choose a MatMul algorithm in O(mω)
▶use this one for all MatMul instances

our requirement: 2 < ω ⩽ 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

▶ choose a PolMul algorithm in O(M(d))
▶use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) ⩽M(2d) M(d1d2) ⩽M(d1)M(d2)

M(d) ∈ O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m
⩽d

multiplied in O(mωM(d))

31

characteristic polynomial in the time of matrix multiplication

framework for complexity — clarification is needed!

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

▶polynomial matrices ▶ ternary divide and conquer
▶partial triangularization ▶ exploiting degree knowledge

For any MatMul exponent ω feasible (as of today),
there is a MatMul algorithm in O(mω−ε) for some ε > 0
⇒ the CharPoly algorithm of [Keller-Gehrig’85] is

▶deterministic
▶ in O(mω−ε log(m)) ⊂ O(mω)

not entirely satisfactory. . .

matrix multiplication in Km×m

▶ choose a MatMul algorithm in O(mω)
▶use this one for all MatMul instances

our requirement: 2 < ω ⩽ 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

▶ choose a PolMul algorithm in O(M(d))
▶use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) ⩽M(2d) M(d1d2) ⩽M(d1)M(d2)

M(d) ∈ O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m
⩽d

multiplied in O(mωM(d))

31

characteristic polynomial in the time of matrix multiplication

framework for complexity — classical requirements

[Vincent Neiger & Clément Pernet, 2021]

deterministic algorithm with complexity O(mω)

▶polynomial matrices ▶ ternary divide and conquer
▶partial triangularization ▶ exploiting degree knowledge

matrix multiplication in Km×m

▶ choose a MatMul algorithm in O(mω)
▶use this one for all MatMul instances

our requirement: 2 < ω ⩽ 3

we gladly accept ω = 2.1, please provide the algorithm

polynomial multiplication in K[x]

▶ choose a PolMul algorithm in O(M(d))
▶use this one for all PolMul instances

our requirement: M(d) is superlinear and
submultiplicative and reasonably good

2M(d) ⩽M(2d) M(d1d2) ⩽M(d1)M(d2)

M(d) ∈ O(dω−1−ε) for some ε > 0

requirement: matrices in K[x]m×m
⩽d

multiplied in O(mωM(d))

31

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) ⩽ 2C(m2 ,
D
2) + C(m2 ,D) +O(mωM(D

m
) log(D

m
))

m,D

m
2 ,D

m
2 ,

D
2

m
4 ,D

m
4 ,

D
2

m
4 ,

D
4

m
8 ,D

m
8 ,

D
2

m
8 ,

D
4

m
8 ,

D
8

1,D . . . 1, D
2j

. . . 1, D
2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

C(m,D) ∈ O(mωM(D
m
) log(D

m
))

32

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) ⩽ 2C(m2 ,
D
2) + C(m2 ,D) +O(mωM(D

m
) log(D

m
))

m,D

m
2 ,D

m
2 ,

D
2

m
4 ,D

m
4 ,

D
2

m
4 ,

D
4

m
8 ,D

m
8 ,

D
2

m
8 ,

D
4

m
8 ,

D
8

1,D . . . 1, D
2j

. . . 1, D
2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

C(m,D) ∈ O(mωM(D
m
) log(D

m
))

32

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) ⩽ 2C(m2 ,
D
2) + C(m2 ,D) +O(mωM(D

m
) log(D

m
))

m,D

m
2 ,D

m
2 ,

D
2

m
4 ,D

m
4 ,

D
2

m
4 ,

D
4

m
8 ,D

m
8 ,

D
2

m
8 ,

D
4

m
8 ,

D
8

1,D . . . 1, D
2j

. . . 1, D
2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

C(m,D) ∈ O(mωM(D
m
) log(D

m
))

32

ternary recursion & complexity analysis

determinant of A ∈ K[x]m×m of average row degree D
m

= degdet
m

C(m,D) ⩽ 2C(m2 ,
D
2) + C(m2 ,D) +O(mωM(D

m
) log(D

m
))

m,D

m
2 ,D

m
2 ,

D
2

m
4 ,D

m
4 ,

D
2

m
4 ,

D
4

m
8 ,D

m
8 ,

D
2

m
8 ,

D
4

m
8 ,

D
8

1,D . . . 1, D
2j

. . . 1, D
2µ

µ = log2(m)

1 2

1 2 2 4

1 2 4 8 4 8

1

1 2

1 4 4

1 6 12 8

1
2j
(
µ
j

)
2µ

C(m,D) ∈ O(mωM(D
m
) log(D

m
))

32

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)

33

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)

generic input ⇒ det(A) without log(m) [Giorgi-Jeannerod-Villard’03]

A1 and A3 are coprime ⇒ R = Im/2 ⇒ det(A) = det(B)

▶ compute kernel [K1 K2]; deduce B by MatMul O(mωM(d) log(d))
▶ recursively, compute det(B), return it

A and [K1 K2] have degree d ⇒ B has degree 2d: controlled total degree

complexity C(m,d) = C(m2 , 2d) +O(mωM(d) log(d))

33

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)

general input ⇒ det(A) with log(m) [Labahn-N.-Zhou’17]

matrix degree not controlled: degree of B up to D = |rdeg(A)| ⩽ md

but controlled average row degree: at most D
m

▶ compute kernel [K1 K2]; deduce B by MatMul O (̃mω D
m
)

▶ compute row basis R O (̃mω D
m
) with log(m)

▶ recursively, compute det(R) and det(B), return det(R) det(B)

33

partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017]

triangularization of m×m matrix A using m
2 ×

m
2 blocks[

∗ ∗
K1 K2

] [
A1 A2

A3 A4

]
=

[
R ∗
0 B

]

K1A2 +K2A4 row basis of [A1
A3

]kernel basis of [A1
A3

]

not computed

property: det(A) = det(R) det(B)

be lazy: if hard to compute, don’t compute [N.-Pernet’21]

obstacle = removing log factors in row basis computation
⇒ solution: remove row basis computation[

Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

33

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) ⩽ D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) ⩽D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) ⩽ D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

34

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) ⩽ D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) ⩽D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) ⩽ D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

34

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) ⩽ D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) ⩽D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) ⩽ D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

34

further obstacles (consequences of laziness)[
Im/2 0
K1 K2

] [
A1 A2

A3 A4

]
=

[
A1 A2

0 B

]
property: det(A) = det(A1) det(B)/ det(K2)

no log(m) in the computation of A1, B, K2

requires nonsingular A1, otherwise det(K2) = 0

3 recursive calls in matrix size m/2 is , but requires
∑

rdeg(A1) ⩽ D/2

otherwise degree control is too weak. (this implies
∑

rdeg(K2) ⩽D/2)

solution: require A in weak Popov form
(the characteristic matrix A = xIm −M is in Popov form)

implies A1 nonsingular and
∑

rdeg(A1) ⩽ D/2 up to easy transformations

both A1 and B are also in weak Popov form ⇒ suitable for recursive calls

K2 is in “shifted reduced” form. . . find weak Popov P with same determinant

solution: exploit degree knowledge to accelerate transformations
s-reduced ⇒ s-weak Popov ⇒ s-Popov

34

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

▶previous work and log factors to remove
▶ result: “asymptotically optimal” algorithm
▶new triangularization-based approach

35

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

▶previous work and log factors to remove
▶ result: “asymptotically optimal” algorithm
▶new triangularization-based approach

▶problem and context
▶ acceleration via polynomial matrices
▶ overview of the main new ingredients

36

univariate polynomials: open problems

polynomials in K[x]⩽n: almost all basic operations are quasi-linear

i.e. complexity O (̃n)

▶ addition f+ g, multiplication f ∗ g

▶division with remainder f = qg+ r

▶ extended GCD fu+ gv = gcd(f,g)

▶ truncated inverse f−1 mod xn

▶multipoint eval. f 7→ f(x1), . . . , f(xn)

▶ interpolation f(x1), . . . , f(xn) 7→ f

[von zur Gathen, Gerhard – Modern Computer Algebra]

except. . .

37

univariate polynomials: open problems

Modular composition
Minimal polynomial

Inria
CNRSJNCF

ISSAC

The year is 2021 A.D.

Basic Polynomial Algebra is entirely
occupied by Computer Algebraists.

Well not entirely!

One small village of indomitable open
problems still holds out against the
invaders. And life is not easy for the
scientists who garrison the fortified
camps of ISSAC, JNCF, Inria, CNRS. . .

minimal polynomial
given g, a, compute f such that f(a) = 0 mod g

modular composition
given g, a, h, compute h(a) mod g

related problems: power projections & inverse composition

37

complexity improvements

[Neiger-Salvy-Schost-Villard J.ACM 2024]

for generic input || using randomization

minimal polynomial
modular composition

}
in O (̃n(ω+2)/3)

exponent (ω + 2)/3: 1.67 for ω = 3, 1.6 for ω = 2.8, 1.46 for ω = 2.38

previous work (composition)
▶naive: O (̃n2)
▶ [Brent-Kung 1978]: O(n(ω+1)/2)

previous work (minpoly)
▶naive: O (̃nω) or O (̃n2)
▶ [Shoup 1994]: O(n(ω+1)/2)

exponent (ω + 1)/2: 2 for ω = 3, 1.9 for ω = 2.8, 1.69 for ω = 2.38

breakthough [Kedlaya-Umans 2011]:
composition in O (̃n log(q)) bit operations, over K = Fq

quasi-linear bit complexity, yet currently impractical [van der Hoeven-Lecerf 2020]

38

software improvements

efficient implementation for the minimal polynomial
for large degrees, outperforms the state of the art

implementation for modular composition is in progress

field K = Fp, prime p with 60 bits
Intel Core i7-7600U @ 2.80GHz

random input polynomials ⇒ “generic”

general prime FFT prime
n NTL new NTL new
5k 0.349 0.496 0.130 0.208
20k 3.13 3.19 1.21 1.39
80k 31.5 23.6 13.9 10.7
320k 311 178 158 91.0

relies on PML for polynomial matrix operations:

▶multiplication for various parameters
▶matrix-Padé approximation
▶matrix division with remainder

▶determinant
▶ system solving
▶ kernel

39

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

40

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

[Paterson-Stockmeyer 1971, Brent-Kung 1978]

rely on matrix multiplication using “slices” of length ν =
√
n

h(y) = S0(y) + yνS1(y) + y2νS2(y) + · · ·+ y(ν−1)νSν−1(y)

define α = aν mod g

h(a) = S0(a) + αS1(a) + α2S2(a) + · · ·+ αν−1Sν−1(a) mod g

complexity: O (̃n3/2) for O(
√
n) multiplications by a and α modulo g

+ O(n(ω+1)/2) for matrix multiplication

in practice: ▶much faster than naive approach
▶O (̃n3/2) regime lasts until largish n

40

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

Horner with NTL built-in
n Horner precomputations Brent-Kung
100 0.00229 0.00227 0.000441
200 0.0162 0.00691 0.00110
400 0.117 0.0278 0.00312
800 0.637 0.116 0.00944
1600 2.52 0.515 0.0281
3200 10.4 2.23 0.0884
6400 45.8 9.61 0.273

field K = Fp, prime p with 60 bits
NTL 11.4.3 on Intel Core i7-7600U @ 2.80GHz

40

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

h(a) = S0(a) +αS1(a) +α2S2(a) + · · ·+αν−1Sν−1(a)

=
[
1 α · · · αν−1

]


S0(a)
S1(a)

...
Sν−1(a)



=
[
1 α · · · αν−1

]


S0,0 S0,1 · · · S0,ν−1

S1,0 S1,1 · · · S1,ν−1

...
...

...
Sν−1,0 Sν−1,1 · · · Sν−1,ν−1




1
a
...

aν−1



recall: α = aν mod g

40

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

ν× ν matrix over K

length ν vectors over K[x]<n

h(a) = S0(a) +αS1(a) +α2S2(a) + · · ·+αν−1Sν−1(a)

=
[
1 α · · · αν−1

]


S0(a)
S1(a)

...
Sν−1(a)



=
[
1 α · · · αν−1

]


S0,0 S0,1 · · · S0,ν−1

S1,0 S1,1 · · · S1,ν−1

...
...

...
Sν−1,0 Sν−1,1 · · · Sν−1,ν−1




1
a
...

aν−1



recall: α = aν mod g

40

classical composition algorithms

naive via Horner evaluation

baby-step giant-step algorithm

input: g(x) of degree n, a(x) of degree < n, h(y) of degree < n
output: h(a(x)) mod g(x)

h(a) mod g = h0 + h1(a mod g) + h2(a
2 mod g) + · · ·+ hn−1(a

n−1 mod g)

complexity: O˜(n2) for O(n) multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

ν× ν matrix over K

length ν vectors over K[x]<n

h(a) = S0(a) +αS1(a) +α2S2(a) + · · ·+αν−1Sν−1(a)

=
[
1 α · · · αν−1

]


S0(a)
S1(a)

...
Sν−1(a)



=
[
1 α · · · αν−1

]


S0,0 S0,1 · · · S0,ν−1

S1,0 S1,1 · · · S1,ν−1

...
...

...
Sν−1,0 Sν−1,1 · · · Sν−1,ν−1




1
a
...

aν−1



recall: α = aν mod g

matrix multiplication (n×
√
n) ∗ (

√
n×
√
n) ∗ (

√
n× n)

40

Shoup’s minpoly algorithm

0. choose random vector [ℓ1 · · · ℓn] ∈ Kn

→ defines a linear form ℓ : K[x]/⟨g⟩ → K

1. compute linear recurrent sequence
ℓ(1), ℓ(a mod g), . . . , ℓ(a2n−1 mod g)

2. compute minimal recurrence relation f(y)
via Berlekamp-Massey / Padé approximation

[Shoup 1994, 1999]

minpoly f(y)
⇓

f(a) = 0 mod g
⇓

f(y) = relation for (ak mod g)k
⇓

f(y) = relation for (ℓ(ak mod g))k

→ related to algorithm of [Wiedemann 1986]:

ℓ(ak mod g) =
[
ℓ1 · · · ℓn

]
Ak

 1
0
...

0


where A ∈ Kn×n is the “multiplication matrix” of a(x) modulo g(x)

for generic a(x) and g(0) ̸= 0, choose ℓ = [1 0 · · · 0]

then ℓ(ak mod g) = constant coeff of ak mod g

41

Shoup’s minpoly algorithm

0. choose random vector [ℓ1 · · · ℓn] ∈ Kn

→ defines a linear form ℓ : K[x]/⟨g⟩ → K

1. compute linear recurrent sequence
ℓ(1), ℓ(a mod g), . . . , ℓ(a2n−1 mod g)

2. compute minimal recurrence relation f(y)
via Berlekamp-Massey / Padé approximation

[Shoup 1994, 1999]

minpoly f(y)
⇓

f(a) = 0 mod g
⇓

f(y) = relation for (ak mod g)k
⇓

f(y) = relation for (ℓ(ak mod g))k

→ related to algorithm of [Wiedemann 1986]:

ℓ(ak mod g) =
[
ℓ1 · · · ℓn

]
Ak

 1
0
...

0


where A ∈ Kn×n is the “multiplication matrix” of a(x) modulo g(x)

for generic a(x) and g(0) ̸= 0, choose ℓ = [1 0 · · · 0]

then ℓ(ak mod g) = constant coeff of ak mod g

41

new minpoly algorithm:
blocking & baby-step giant-step

block Wiedemann approach [Coppersmith 1994]

iterating projection by 1× n vector on powers A0,A1, . . . ,A2n−1

⇒ iterating projection by m×n matrix on powers A0,A1, . . . ,A2d−1

choose m ≪ n and take d = n/m

1. compute linear recurrent matrix sequence:

Im,
[
Im 0

]
A

[
Im
0

]
, . . . ,

[
Im 0

]
A2d−1

[
Im
0

]
2. compute minimal matrix recurrence relation P(y) ∈ K[y]m×m

via matrix-Berlekamp-Massey / matrix-Padé, complexity O˜(mωd)

step 1: computing coefficient i of xjak mod g, for i, j < m, k < 2d
→ new baby-step giant-step in O (̃md(ω+1)/2)

▶ f(y) = det(P(y)) is the minimal polynomial of a modulo g

▶P(y) is useful for modular composition

42

new minpoly algorithm:
blocking & baby-step giant-step

block Wiedemann approach [Coppersmith 1994]

iterating projection by 1× n vector on powers A0,A1, . . . ,A2n−1

⇒ iterating projection by m×n matrix on powers A0,A1, . . . ,A2d−1

choose m ≪ n and take d = n/m

1. compute linear recurrent matrix sequence:

Im,
[
Im 0

]
A

[
Im
0

]
, . . . ,

[
Im 0

]
A2d−1

[
Im
0

]
2. compute minimal matrix recurrence relation P(y) ∈ K[y]m×m

via matrix-Berlekamp-Massey / matrix-Padé, complexity O˜(mωd)

step 1: computing coefficient i of xjak mod g, for i, j < m, k < 2d
→ new baby-step giant-step in O (̃md(ω+1)/2)

▶ f(y) = det(P(y)) is the minimal polynomial of a modulo g

▶P(y) is useful for modular composition

42

new minpoly algorithm:
blocking & baby-step giant-step

block Wiedemann approach [Coppersmith 1994]

iterating projection by 1× n vector on powers A0,A1, . . . ,A2n−1

⇒ iterating projection by m×n matrix on powers A0,A1, . . . ,A2d−1

choose m ≪ n and take d = n/m

1. compute linear recurrent matrix sequence:

Im,
[
Im 0

]
A

[
Im
0

]
, . . . ,

[
Im 0

]
A2d−1

[
Im
0

]
2. compute minimal matrix recurrence relation P(y) ∈ K[y]m×m

via matrix-Berlekamp-Massey / matrix-Padé, complexity O˜(mωd)

step 1: computing coefficient i of xjak mod g, for i, j < m, k < 2d
→ new baby-step giant-step in O (̃md(ω+1)/2)

▶ f(y) = det(P(y)) is the minimal polynomial of a modulo g

▶P(y) is useful for modular composition

42

modular composition, first step

summary of the minpoly algorithm:
▶ specialization of first step of bivariate resultant [Villard 2018]
▶ accelerated by baby-step giant-step → O (̃md(ω+1)/2 +mωd)
▶ genericity or randomization required for efficiency

computes an m×m polynomial matrix P(y) of degree ⩽ d
whose columns are minimal polynomial vectors of a mod g

change of representation

univariate vector ←→ bivariate polynomial
F0(y)
F1(y)

...
Fm−1(y)

 ←→ F(x,y) =
∑

i<m Fi(y)x
i

columns of P(y) ⇒ F(x,a) = 0 mod g

Popov basis of submodule
of canceling vectors in K[y]m

←→ Gröbner basis of ideal
⟨g(x),y−a(x)⟩ in K[x,y]

43

modular composition, second step

composition h(y) → b(x) = h(a) mod g
= h(a) + F(x,a) mod g
= H(x,a) mod g

H(x,y) = h(y)+ F(x,y) for any

F(x,y) generated by P(y)

find H(x,y) such that

{
degx(H) < m, degy(H) < d

h(a) = H(x,a) mod g

computing H(x,a) mod g costs O (̃md(ω+1)/2)

extending Brent&Kung’s approach [Nüsken-Ziegler’04]

44

modular composition, second step

composition h(y) → b(x) = h(a) mod g
= h(a) + F(x,a) mod g
= H(x,a) mod g

H(x,y) = h(y)+ F(x,y) for any

F(x,y) generated by P(y)

find H(x,y) such that

{
degx(H) < m, degy(H) < d

h(a) = H(x,a) mod g

computing H(x,a) mod g costs O (̃md(ω+1)/2)

extending Brent&Kung’s approach [Nüsken-Ziegler’04]

x

y

h(y)

x

y

H(x,y)

x

y

b(x)

Brent&Kung

mod P(y)

44

modular composition, second step

composition h(y) → b(x) = h(a) mod g
= h(a) + F(x,a) mod g
= H(x,a) mod g

H(x,y) = h(y)+ F(x,y) for any

F(x,y) generated by P(y)

find H(x,y) such that

{
degx(H) < m, degy(H) < d

h(a) = H(x,a) mod g

computing H(x,a) mod g costs O (̃md(ω+1)/2)

extending Brent&Kung’s approach [Nüsken-Ziegler’04]

complexity minimized for
m = n1/3,d = n2/3

O (̃n(ω+2)/3)

finding H(x,y): matrix division with remainder
h(y)
0
...
0

 = P(y)Q(y) +


H0(y)
H1(y)

...
Hm−1(y)

 degree < d

complexity O (̃mωd)

44

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

▶previous work and log factors to remove
▶ result: “asymptotically optimal” algorithm
▶new triangularization-based approach

▶problem and context
▶ acceleration via polynomial matrices
▶ overview of the main new ingredients

45

outline

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

▶previous work and log factors to remove
▶ result: “asymptotically optimal” algorithm
▶new triangularization-based approach

▶problem and context
▶ acceleration via polynomial matrices
▶ overview of the main new ingredients

▶problem and result
▶ assumptions and existing algorithms
▶paradigm shift: sparse → structured

46

problem: change of monomial order

Input:
▶ two monomial orders ≼1 and ≼2 on K[x1, . . . , xn]
▶ a reduced ≼1-Gröbner basis G

Assumption:
▶ the ideal I = ⟨G⟩ is zero-dimensional

Output:
▶ the reduced ≼2-Gröbner basis of I

example: multivariate interpolation with degree constraints

I = vanishing ideal of known points α1, . . . ,αD ∈ Kn

≼ = monomial order defined from the degree constraints

Glex the reduced ≼lex-GB of I

[Möller-Bucherberger 1982, Cerlienco-Mureddu 1995, Ceria-Mora 2019]

G the reduced ≼-GB of I

change of order ≼lex→≼

example: solving multivariate polynomial systems
f1(x1, . . . ,xn) = 0

.

.

.
fm(x1, . . . ,xn) = 0

with finitely many solutions over K

Gdrl the reduced ≼drl-GB of ⟨f1, . . . , fm⟩ [Faugère’s F4/F5, 2002]

Glex the reduced ≼lex-GB of ⟨f1, . . . , fm⟩

change of order ≼drl→≼lex

47

problem: change of monomial order

Input:
▶ two monomial orders ≼1 and ≼2 on K[x1, . . . , xn]
▶ a reduced ≼1-Gröbner basis G

Assumption:
▶ the ideal I = ⟨G⟩ is zero-dimensional

Output:
▶ the reduced ≼2-Gröbner basis of I

example: multivariate interpolation with degree constraints

I = vanishing ideal of known points α1, . . . ,αD ∈ Kn

≼ = monomial order defined from the degree constraints

Glex the reduced ≼lex-GB of I

[Möller-Bucherberger 1982, Cerlienco-Mureddu 1995, Ceria-Mora 2019]

G the reduced ≼-GB of I

change of order ≼lex→≼

example: solving multivariate polynomial systems
f1(x1, . . . ,xn) = 0

.

.

.
fm(x1, . . . ,xn) = 0

with finitely many solutions over K

Gdrl the reduced ≼drl-GB of ⟨f1, . . . , fm⟩ [Faugère’s F4/F5, 2002]

Glex the reduced ≼lex-GB of ⟨f1, . . . , fm⟩

change of order ≼drl→≼lex

47

problem: change of monomial order

Input:
▶ two monomial orders ≼1 and ≼2 on K[x1, . . . , xn]
▶ a reduced ≼1-Gröbner basis G

Assumption:
▶ the ideal I = ⟨G⟩ is zero-dimensional

Output:
▶ the reduced ≼2-Gröbner basis of I

example: multivariate interpolation with degree constraints

I = vanishing ideal of known points α1, . . . ,αD ∈ Kn

≼ = monomial order defined from the degree constraints

Glex the reduced ≼lex-GB of I

[Möller-Bucherberger 1982, Cerlienco-Mureddu 1995, Ceria-Mora 2019]

G the reduced ≼-GB of I

change of order ≼lex→≼

example: solving multivariate polynomial systems
f1(x1, . . . ,xn) = 0

.

.

.
fm(x1, . . . ,xn) = 0

with finitely many solutions over K

Gdrl the reduced ≼drl-GB of ⟨f1, . . . , fm⟩ [Faugère’s F4/F5, 2002]

Glex the reduced ≼lex-GB of ⟨f1, . . . , fm⟩

change of order ≼drl→≼lex

47

change of order: better complexity & faster implementation
for ≼2=≼lex, under classical assumptions (stability + shape position)

[Jérémy Berthomieu & Vincent Neiger & Mohab Safey El Din, ISSAC 2022]

deterministic change of order with complexity O (̃tω−1D)

48

change of order: better complexity & faster implementation
for ≼2=≼lex, under classical assumptions (stability + shape position)

description of complexity

[Jérémy Berthomieu & Vincent Neiger & Mohab Safey El Din, ISSAC 2022]

deterministic change of order with complexity O (̃tω−1D)

▶ω = complexity exponent of matrix multiplication
O (̃·) hides a few logarithmic terms in D

t

▶D = degree of the ideal I = ⟨G⟩
= vector space dimension of K[x]/I

▶ t = number of polynomials in G with leading term divisible by xn
(in particular, t ⩽D)

48

change of order: better complexity & faster implementation
for ≼2=≼lex, under classical assumptions (stability + shape position)

summary of previous results

[Jérémy Berthomieu & Vincent Neiger & Mohab Safey El Din, ISSAC 2022]

deterministic change of order with complexity O (̃tω−1D)

general algorithms (deterministic, ≼1→≼2):

▶no assumption: O(nD3) [Faugere-Gianni-Lazard-Mora 1993]

▶with stability: O(nDω log(D)) [Neiger-Schost 2020]

specific algorithms (randomized, ≼drl→≼lex, with stability+shape):

▶dense linear algebra: O(Dω log(D)) [Faugère-Gaudry-Huot-Renault 2014]

▶ sparse linear algebra: O(tD2) [Faugère-Mou 2011+2017]

48

change of order: better complexity & faster implementation
for ≼2=≼lex, under classical assumptions (stability + shape position)

ingredients of new algorithm

[Jérémy Berthomieu & Vincent Neiger & Mohab Safey El Din, ISSAC 2022]

deterministic change of order with complexity O (̃tω−1D)

▶paradigm shift concerning the core computational object:

M ∈ KD×D with t dense rows
compress−−−−−→ P ∈ K[xn]

t×t of degree D
t

multiplication by xn in K[x]/I −−−−−→ K[xn]-module, generates I

▶preserving essential consequence of stability: P obtained for free from G

▶new result: Hermite normal form of P yields Glex

48

software performance

open-source C/C++ software libraries

multivariate polynomial systems
msolve https://msolve.lip6.fr/

univariate polynomial matrices

PML https://github.com/vneiger/pml

compared algorithms:

▶ sparse FGLM [Faugère-Mou 2011,2017]

▶block-Wiedemann variant [folklore]

▶new Hermite normal form-based algorithm
(without SIMD vectorization for the moment)

random square system, n variables, degree d
over K = Z/pZ with 30-bit modulus p

n d D t
12 2 4096 924
14 2 16384 3432
16 2 65536 12870
8 3 6561 1107
9 3 19683 3139
10 3 59049 8953
6 4 4096 580
7 4 16384 2128
8 4 65536 8092

spFGLM block HNF
6.5 5.5 5.3
1011 358 240
58744 22059 11359
23.6 18.7 15.1
1302 525 314
34844 13315 6709

4 3.5 3.5
575 225 157

36454 13609 7231

49

https://msolve.lip6.fr/
https://github.com/vneiger/pml

software performance

open-source C/C++ software libraries

multivariate polynomial systems
msolve https://msolve.lip6.fr/

univariate polynomial matrices

PML https://github.com/vneiger/pml

compared algorithms:

▶ sparse FGLM [Faugère-Mou 2011,2017]

▶block-Wiedemann variant [folklore]

▶new Hermite normal form-based algorithm
(without SIMD vectorization for the moment)

random square system, n variables, degree d
over K = Z/pZ with 30-bit modulus p

n d D t
12 2 4096 924
14 2 16384 3432
16 2 65536 12870
8 3 6561 1107
9 3 19683 3139
10 3 59049 8953
6 4 4096 580
7 4 16384 2128
8 4 65536 8092

spFGLM block HNF
6.5 5.5 5.3
1011 358 240
58744 22059 11359
23.6 18.7 15.1
1302 525 314
34844 13315 6709

4 3.5 3.5
575 225 157

36454 13609 7231

49

https://msolve.lip6.fr/
https://github.com/vneiger/pml

software performance

open-source C/C++ software libraries

multivariate polynomial systems
msolve https://msolve.lip6.fr/

univariate polynomial matrices

PML https://github.com/vneiger/pml

compared algorithms:

▶ sparse FGLM [Faugère-Mou 2011,2017]

▶block-Wiedemann variant [folklore]

▶new Hermite normal form-based algorithm
(without SIMD vectorization for the moment)

random square system, n variables, degree d
over K = Z/pZ with 30-bit modulus p

n d D t
12 2 4096 924
14 2 16384 3432
16 2 65536 12870
8 3 6561 1107
9 3 19683 3139
10 3 59049 8953
6 4 4096 580
7 4 16384 2128
8 4 65536 8092

spFGLM block HNF
6.5 5.5 5.3
1011 358 240
58744 22059 11359
23.6 18.7 15.1
1302 525 314
34844 13315 6709

4 3.5 3.5
575 225 157

36454 13609 7231

49

https://msolve.lip6.fr/
https://github.com/vneiger/pml

software performance

open-source C/C++ software libraries

multivariate polynomial systems
msolve https://msolve.lip6.fr/

univariate polynomial matrices

PML https://github.com/vneiger/pml

compared algorithms:

▶ sparse FGLM [Faugère-Mou 2011,2017]

▶block-Wiedemann variant [folklore]

▶new Hermite normal form-based algorithm
(without SIMD vectorization for the moment)

random square system, n variables, degree d
over K = Z/pZ with 30-bit modulus p

n d D t
12 2 4096 924
14 2 16384 3432
16 2 65536 12870
8 3 6561 1107
9 3 19683 3139
10 3 59049 8953
6 4 4096 580
7 4 16384 2128
8 4 65536 8092

spFGLM block HNF
6.5 5.5 5.3
1011 358 240
58744 22059 11359
23.6 18.7 15.1
1302 525 314
34844 13315 6709

4 3.5 3.5
575 225 157

36454 13609 7231

49

https://msolve.lip6.fr/
https://github.com/vneiger/pml

software performance

open-source C/C++ software libraries

multivariate polynomial systems
msolve https://msolve.lip6.fr/

univariate polynomial matrices

PML https://github.com/vneiger/pml

compared algorithms:

▶ sparse FGLM [Faugère-Mou 2011,2017]

▶block-Wiedemann variant [folklore]

▶new Hermite normal form-based algorithm
(without SIMD vectorization for the moment)

random square system, n variables, degree d
over K = Z/pZ with 30-bit modulus p

n d D t
12 2 4096 924
14 2 16384 3432
16 2 65536 12870
8 3 6561 1107
9 3 19683 3139
10 3 59049 8953
6 4 4096 580
7 4 16384 2128
8 4 65536 8092

spFGLM block HNF
6.5 5.5 5.3
1011 358 240
58744 22059 11359
23.6 18.7 15.1
1302 525 314
34844 13315 6709

4 3.5 3.5
575 225 157

36454 13609 7231

49

https://msolve.lip6.fr/
https://github.com/vneiger/pml

stability and multiplication matrix

xn-stability: for any monomial µ ∈ lt≼(I) such that xn divides µ,
xi

xn
µ ∈ lt≼(I) for all i ∈ {1, . . . ,n − 1}

▶ related to classical notions of stability and of Borel-fixedness
[Herzog-Hibi 2011, Galligo 1974, Bayer-Stillman 1987]

▶ easily verified: considering µ = lt≼(g) for g ∈ G is sufficient

≼-monomial basis B = {ε1, . . . , εD}

= monomials not in lt≼(I)
= vector space basis of K[x]/I

▶xn-stability ⇔ multiplying element ε ∈ B by xn gives
either xnε ∈ B or xnε = lt≼(g) for some g ∈ G

▶ in K[x]/I, the representation of lt≼(g) on B is lt≼(g) − g

multiplication matrix Mn ∈ KD×D of xn in K[x]/I
▶ row i = representation of xnεi on B
▶deduced directly from Ĝ = {g ∈ G | xn divides lt≼(g)}
▶has t = #Ĝ dense rows and D− t identity rows

50

stability and multiplication matrix

xn-stability: for any monomial µ ∈ lt≼(I) such that xn divides µ,
xi

xn
µ ∈ lt≼(I) for all i ∈ {1, . . . ,n − 1}

▶ related to classical notions of stability and of Borel-fixedness
[Herzog-Hibi 2011, Galligo 1974, Bayer-Stillman 1987]

▶ easily verified: considering µ = lt≼(g) for g ∈ G is sufficient

≼-monomial basis B = {ε1, . . . , εD}

= monomials not in lt≼(I)
= vector space basis of K[x]/I

▶xn-stability ⇔ multiplying element ε ∈ B by xn gives
either xnε ∈ B or xnε = lt≼(g) for some g ∈ G

▶ in K[x]/I, the representation of lt≼(g) on B is lt≼(g) − g

multiplication matrix Mn ∈ KD×D of xn in K[x]/I
▶ row i = representation of xnεi on B
▶deduced directly from Ĝ = {g ∈ G | xn divides lt≼(g)}
▶has t = #Ĝ dense rows and D− t identity rows

50

shape position and lexicographic ideals

shape position: Glex = {x1 −g1(xn), . . . , xn−1 −gn−1(xn),h(xn)}
with g1, . . . ,gn−1,h univariate in K[xn]

and deg(gi) < deg(h) = D

[Becker-Mora-Marinari-Traverso 1994]

xn = smallest variable

gi = parametrizations

for polynomial system solving:
▶ solutions = (g1(α), . . . ,gn−1(α),α) for all roots α of h(xn)
▶ ensured by generic change of coordinates, if ideal is radical

computation from the multiplication matrix Mn

h ∈ I ⇒ h(xn) is zero in K[x]/I
▶h gives a K-linear combination between ε1, ε1Mn, . . . , ε1M

D
n

▶ the matrix

 ε1
ε1Mn

...
ε1M

D−1
n

 ∈ KD×D is invertible (taking ε1 = 1)

⇒ h(xn) is the minpoly/charpoly of Mn

51

shape position and lexicographic ideals

shape position: Glex = {x1 −g1(xn), . . . , xn−1 −gn−1(xn),h(xn)}
with g1, . . . ,gn−1,h univariate in K[xn]

and deg(gi) < deg(h) = D

[Becker-Mora-Marinari-Traverso 1994]

xn = smallest variable

gi = parametrizations

for polynomial system solving:
▶ solutions = (g1(α), . . . ,gn−1(α),α) for all roots α of h(xn)
▶ ensured by generic change of coordinates, if ideal is radical

computation from the multiplication matrix Mn

h ∈ I ⇒ h(xn) is zero in K[x]/I
▶h gives a K-linear combination between ε1, ε1Mn, . . . , ε1M

D
n

▶ the matrix

 ε1
ε1Mn

...
ε1M

D−1
n

 ∈ KD×D is invertible (taking ε1 = 1)

⇒ h(xn) is the minpoly/charpoly of Mn

51

shape position and lexicographic ideals

shape position: Glex = {x1 −g1(xn), . . . , xn−1 −gn−1(xn),h(xn)}
with g1, . . . ,gn−1,h univariate in K[xn]

and deg(gi) < deg(h) = D

[Becker-Mora-Marinari-Traverso 1994]

xn = smallest variable

gi = parametrizations

for polynomial system solving:
▶ solutions = (g1(α), . . . ,gn−1(α),α) for all roots α of h(xn)
▶ ensured by generic change of coordinates, if ideal is radical

computation from the multiplication matrix Mn

h ∈ I ⇒ h(xn) is zero in K[x]/I
▶h gives a K-linear combination between ε1, ε1Mn, . . . , ε1M

D
n

▶ the matrix

 ε1
ε1Mn

...
ε1M

D−1
n

 ∈ KD×D is invertible (taking ε1 = 1)

⇒ h(xn) is the minpoly/charpoly of Mn

51

previously: dense or sparse linear algebra

using dense linear algebra


−coeffs(h) 1
−coeffs(g1) 1

...
. . .

−coeffs(gn−1) 1





ε1
ε1Mn...

ε1M
D−1
n

ε1M
D
n

εx1...
εxn−1


= 0

▶ compute Krylov iterates
in O(Dω log(D)) [Keller-Gehrig 1985]

in O(Dω) [Neiger-Pernet-Villard 2024]

▶nullspace in O(Dω) [Ibarra-Hui-Moran 1982]

deterministic algo in O(Dω)

using sparse linear algebra [Wiedemann 1986]

for random column vector r ∈ KD×1,
scalar sequence (ε1M

k
nr)0⩽k<2D

⇝ its minimal generator is h(xn)

[
M

] ▶ compute recurrent sequence in O(tD2)
via matrix-vector products

▶find generator h in O (̃D) [GCD/Padé]

▶find g1, . . . ,gn−1 in O (̃nD) via n − 1
Hankel systems [Faugère-Mou 2011, 2017]

randomized algo in O(tD2)

52

previously: dense or sparse linear algebra

using dense linear algebra


−coeffs(h) 1
−coeffs(g1) 1

...
. . .

−coeffs(gn−1) 1





ε1
ε1Mn...

ε1M
D−1
n

ε1M
D
n

εx1...
εxn−1


= 0

▶ compute Krylov iterates
in O(Dω log(D)) [Keller-Gehrig 1985]

in O(Dω) [Neiger-Pernet-Villard 2024]

▶nullspace in O(Dω) [Ibarra-Hui-Moran 1982]

deterministic algo in O(Dω)

using sparse linear algebra [Wiedemann 1986]

for random column vector r ∈ KD×1,
scalar sequence (ε1M

k
nr)0⩽k<2D

⇝ its minimal generator is h(xn)

[
M

] ▶ compute recurrent sequence in O(tD2)
via matrix-vector products

▶find generator h in O (̃D) [GCD/Padé]

▶find g1, . . . ,gn−1 in O (̃nD) via n − 1
Hankel systems [Faugère-Mou 2011, 2017]

randomized algo in O(tD2)
52

paradigm shift: sparse → structured

multiplication by xn in K[xn]/⟨h(xn)⟩

companion matrix M =


1

. . .

1
−h0 −h1 · · · −hD−1


with charpoly(M) = h

ideal I ⊂ F29[x1, x2, x3] generated by the ≼drl-GB
x4
3 + 3x3

3 + 15x1x3 + 23x2x3 + 3x2
3 + 26x2 + 22x3,

x2x
2
3 + 5x1x3 + 28x2x3 + 3x2

3 + 19x1 + 15x2 + 17,
x1x

2
3 + 18x3

3 + 24x1x3 + 27x2x3 + 19x2
3 + 2x1 + 9x3 + 3,

. . .

▶ t = 3, D = 8

▶x3-stable

▶monomial basis B =

(1,x3,x
2
3,x

3
3,x2,x2x3,x1,x1x3)

P =

x4
3 + 3x3

3 + 3x2
3 + 22x3 23x3 + 26 15x3

3x2
3 + 17 x2

3 + 28x3 + 15 5x3 + 19
18x3

3 + 19x2
3 + 9x3 + 3 27x3 x2

3 + 24x3 + 2

 ∈ K[x3]
t×t

basis of K[x3]-module I ∩ (K[x3] + x2K[x3] + x1K[x3])

M =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −22 −3 −3 −26 −23 0 −15
0 0 0 0 0 1 0 0

−17 0 −3 0 −15 −28 −19 −5
0 0 0 0 0 0 0 1
−3 −9 −19 −18 0 −27 −2 −24


∈ KD×D

53

paradigm shift: sparse → structured

ideal I ⊂ F29[x1, x2, x3] generated by the ≼drl-GB

x4
3 + 3x3

3 + 15x1x3 + 23x2x3 + 3x2
3 + 26x2 + 22x3,

x2x
2
3 + 5x1x3 + 28x2x3 + 3x2

3 + 19x1 + 15x2 + 17,
x1x

2
3 + 18x3

3 + 24x1x3 + 27x2x3 + 19x2
3 + 2x1 + 9x3 + 3,

x2
2 + 12x1x3 + 26x2x3 + 5x2

3 + 9x1 + 6x2 + 8x3 + 6,
x1x2 + 6x1x3 + x2x3 + 17x2

3 + 28x1 + 12x2 + 8x3 + 11,
x2
1 + x1x3 + 10x2x3 + 2x2

3 + 3x1 + 16x2 + 21

▶ t = 3 polynomials with ≼drl-leading term divisible by x3
the first 3, with leading terms x4

3,x2x
2
3,x1x

2
3

▶x3-stability holds
easily verified: for µ ∈ {x2x

2
3,x1x

2
3,x

4
3},

x1
x3

µ and x2
x3

µ are in lt≼drl
(I)

▶ zero-dimensional with D = 8
≼drl-monomial basis B = (1,x3,x

2
3,x

3
3,x2,x2x3,x1,x1x3)

ideal I ⊂ F29[x1, x2, x3] generated by the ≼drl-GB
x4
3 + 3x3

3 + 15x1x3 + 23x2x3 + 3x2
3 + 26x2 + 22x3,

x2x
2
3 + 5x1x3 + 28x2x3 + 3x2

3 + 19x1 + 15x2 + 17,
x1x

2
3 + 18x3

3 + 24x1x3 + 27x2x3 + 19x2
3 + 2x1 + 9x3 + 3,

. . .

▶ t = 3, D = 8

▶x3-stable

▶monomial basis B =

(1,x3,x
2
3,x

3
3,x2,x2x3,x1,x1x3)

P =

x4
3 + 3x3

3 + 3x2
3 + 22x3 23x3 + 26 15x3

3x2
3 + 17 x2

3 + 28x3 + 15 5x3 + 19
18x3

3 + 19x2
3 + 9x3 + 3 27x3 x2

3 + 24x3 + 2

 ∈ K[x3]
t×t

basis of K[x3]-module I ∩ (K[x3] + x2K[x3] + x1K[x3])

M =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −22 −3 −3 −26 −23 0 −15
0 0 0 0 0 1 0 0

−17 0 −3 0 −15 −28 −19 −5
0 0 0 0 0 0 0 1
−3 −9 −19 −18 0 −27 −2 −24


∈ KD×D

53

paradigm shift: sparse → structured

ideal I ⊂ F29[x1, x2, x3] generated by the ≼drl-GB
x4
3 + 3x3

3 + 15x1x3 + 23x2x3 + 3x2
3 + 26x2 + 22x3,

x2x
2
3 + 5x1x3 + 28x2x3 + 3x2

3 + 19x1 + 15x2 + 17,
x1x

2
3 + 18x3

3 + 24x1x3 + 27x2x3 + 19x2
3 + 2x1 + 9x3 + 3,

. . .

▶ t = 3, D = 8

▶x3-stable

▶monomial basis B =

(1,x3,x
2
3,x

3
3,x2,x2x3,x1,x1x3)

P =

x4
3 + 3x3

3 + 3x2
3 + 22x3 23x3 + 26 15x3

3x2
3 + 17 x2

3 + 28x3 + 15 5x3 + 19
18x3

3 + 19x2
3 + 9x3 + 3 27x3 x2

3 + 24x3 + 2

 ∈ K[x3]
t×t

basis of K[x3]-module I ∩ (K[x3] + x2K[x3] + x1K[x3])

M =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −22 −3 −3 −26 −23 0 −15
0 0 0 0 0 1 0 0

−17 0 −3 0 −15 −28 −19 −5
0 0 0 0 0 0 0 1
−3 −9 −19 −18 0 −27 −2 −24


∈ KD×D

53

paradigm shift: sparse → structured

ideal I ⊂ F29[x1, x2, x3] generated by the ≼drl-GB
x4
3 + 3x3

3 + 15x1x3 + 23x2x3 + 3x2
3 + 26x2 + 22x3,

x2x
2
3 + 5x1x3 + 28x2x3 + 3x2

3 + 19x1 + 15x2 + 17,
x1x

2
3 + 18x3

3 + 24x1x3 + 27x2x3 + 19x2
3 + 2x1 + 9x3 + 3,

. . .

▶ t = 3, D = 8

▶x3-stable

▶monomial basis B =

(1,x3,x
2
3,x

3
3,x2,x2x3,x1,x1x3)

multiplication by x3 in K[x1, x2, x3]/I ←→ K[x3]-module structure

P =

x4
3 + 3x3

3 + 3x2
3 + 22x3 23x3 + 26 15x3

3x2
3 + 17 x2

3 + 28x3 + 15 5x3 + 19
18x3

3 + 19x2
3 + 9x3 + 3 27x3 x2

3 + 24x3 + 2

 ∈ K[x3]
t×t

basis of K[x3]-module I ∩ (K[x3] + x2K[x3] + x1K[x3])

M =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −22 −3 −3 −26 −23 0 −15
0 0 0 0 0 1 0 0

−17 0 −3 0 −15 −28 −19 −5
0 0 0 0 0 0 0 1
−3 −9 −19 −18 0 −27 −2 −24


∈ KD×D

53

paradigm shift: sparse → structured

ideal I ⊂ F29[x1, x2, x3] generated by the ≼drl-GB
x4
3 + 3x3

3 + 15x1x3 + 23x2x3 + 3x2
3 + 26x2 + 22x3,

x2x
2
3 + 5x1x3 + 28x2x3 + 3x2

3 + 19x1 + 15x2 + 17,
x1x

2
3 + 18x3

3 + 24x1x3 + 27x2x3 + 19x2
3 + 2x1 + 9x3 + 3,

. . .

▶ t = 3, D = 8

▶x3-stable

▶monomial basis B =

(1,x3,x
2
3,x

3
3,x2,x2x3,x1,x1x3)

≼-Gröbner basis + x3-stability ⇒ basis of K[x3]-submodule of I

P =

x4
3 + 3x3

3 + 3x2
3 + 22x3 23x3 + 26 15x3

3x2
3 + 17 x2

3 + 28x3 + 15 5x3 + 19
18x3

3 + 19x2
3 + 9x3 + 3 27x3 x2

3 + 24x3 + 2

 ∈ K[x3]
t×t

basis of K[x3]-module I ∩ (K[x3] + x2K[x3] + x1K[x3])

M =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −22 −3 −3 −26 −23 0 −15
0 0 0 0 0 1 0 0

−17 0 −3 0 −15 −28 −19 −5
0 0 0 0 0 0 0 1
−3 −9 −19 −18 0 −27 −2 −24


∈ KD×D

53

paradigm shift: sparse → structured

ideal I ⊂ F29[x1, x2, x3] generated by the ≼drl-GB
x4
3 + 3x3

3 + 15x1x3 + 23x2x3 + 3x2
3 + 26x2 + 22x3,

x2x
2
3 + 5x1x3 + 28x2x3 + 3x2

3 + 19x1 + 15x2 + 17,
x1x

2
3 + 18x3

3 + 24x1x3 + 27x2x3 + 19x2
3 + 2x1 + 9x3 + 3,

. . .

▶ t = 3, D = 8

▶x3-stable

▶monomial basis B =

(1,x3,x
2
3,x

3
3,x2,x2x3,x1,x1x3)

≼-Gröbner basis + x3-stability ⇒ basis of K[x3]-submodule of I

P =

x4
3 + 3x3

3 + 3x2
3 + 22x3 23x3 + 26 15x3

3x2
3 + 17 x2

3 + 28x3 + 15 5x3 + 19
18x3

3 + 19x2
3 + 9x3 + 3 27x3 x2

3 + 24x3 + 2

 ∈ K[x3]
t×t

basis of K[x3]-module I ∩ (K[x3] + x2K[x3] + x1K[x3])

M =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 −22 −3 −3 −26 −23 0 −15
0 0 0 0 0 1 0 0

−17 0 −3 0 −15 −28 −19 −5
0 0 0 0 0 0 0 1
−3 −9 −19 −18 0 −27 −2 −24


∈ KD×D

▶det(P) = charpoly(M)
▶Smith(P) ≃ Frob(M)
▶ [Storjohann 2000]

[Pernet-Storjohann 2007]
▶ column degrees (4, 2, 2)

53

from Hermite normal form to lex basis

Ĝ =

f1f2
f3

 ≃
x43 + 3x33 + 3x23 + 22x3 23x3 + 26 15x3

3x23 + 17 x23 + 28x3 + 15 5x3 + 19
18x33 + 19x23 + 9x3 + 3 27x3 x23 + 24x3 + 2

 ∈ K[x3]
t×t

µ1 = 1 µ2 = x2 µ3 = x1

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18 0 0
28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4 1 0
6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14 0 1



Hermite normal form
complexity O (̃tω−1D)

[Giorgi-Jeannerod-Villard 2003]
[Gupta-Storjohann 2011]
[Labahn-Neiger-Zhou 2017]

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18,
x2 + 28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4,
x1 + 6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14

row i ≃ polynomial pi1(x3) + pi2(x3)x2 + pi3(x3)x1

= lex basis

54

from Hermite normal form to lex basis

Ĝ =

f1f2
f3

 ≃
x43 + 3x33 + 3x23 + 22x3 23x3 + 26 15x3

3x23 + 17 x23 + 28x3 + 15 5x3 + 19
18x33 + 19x23 + 9x3 + 3 27x3 x23 + 24x3 + 2

 ∈ K[x3]
t×t

µ1 = 1 µ2 = x2 µ3 = x1

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18 0 0
28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4 1 0
6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14 0 1



Hermite normal form
complexity O (̃tω−1D)

[Giorgi-Jeannerod-Villard 2003]
[Gupta-Storjohann 2011]
[Labahn-Neiger-Zhou 2017]

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18,
x2 + 28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4,
x1 + 6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14

row i ≃ polynomial pi1(x3) + pi2(x3)x2 + pi3(x3)x1

= lex basis

54

from Hermite normal form to lex basis

Ĝ =

f1f2
f3

 ≃
x43 + 3x33 + 3x23 + 22x3 23x3 + 26 15x3

3x23 + 17 x23 + 28x3 + 15 5x3 + 19
18x33 + 19x23 + 9x3 + 3 27x3 x23 + 24x3 + 2

 ∈ K[x3]
t×t

µ1 = 1 µ2 = x2 µ3 = x1

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18 0 0
28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4 1 0
6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14 0 1



Hermite normal form
complexity O (̃tω−1D)

[Giorgi-Jeannerod-Villard 2003]
[Gupta-Storjohann 2011]
[Labahn-Neiger-Zhou 2017]

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18,
x2 + 28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4,
x1 + 6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14

row i ≃ polynomial pi1(x3) + pi2(x3)x2 + pi3(x3)x1

= lex basis

54

from Hermite normal form to lex basis

Ĝ =

f1f2
f3

 ≃
x43 + 3x33 + 3x23 + 22x3 23x3 + 26 15x3

3x23 + 17 x23 + 28x3 + 15 5x3 + 19
18x33 + 19x23 + 9x3 + 3 27x3 x23 + 24x3 + 2

 ∈ K[x3]
t×t

µ1 = 1 µ2 = x2 µ3 = x1

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18 0 0
28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4 1 0
6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14 0 1



Hermite normal form
complexity O (̃tω−1D)

[Giorgi-Jeannerod-Villard 2003]
[Gupta-Storjohann 2011]
[Labahn-Neiger-Zhou 2017]

x83 + 26x73 + 8x63 + 17x53 + 19x43 + x33 + 28x23 + 20x3 + 18,
x2 + 28x73 + 23x63 + 17x53 + 25x43 + 24x33 + 17x23 + 14x3 + 4,
x1 + 6x73 + 13x63 + 22x53 + 12x43 + 28x33 + 24x23 + 26x3 + 14

row i ≃ polynomial pi1(x3) + pi2(x3)x2 + pi3(x3)x1

= lex basis

54

change of order: conclusion

summary

perspectives

▶ improved complexity bound and faster software implementation

▶based on the identification and exploitation of an algebraic structure
⇝ K[xn]-modules and univariate polynomial matrix computations

▶ relating the Hermite normal form of a K[xn]-submodule of I
and the lexicographic Gröbner basis of the ideal I

▶ software: add SIMD vectorization + integrate into msolve
https://github.com/algebraic-solving/msolve

https://msolve.lip6.fr/

▶handle case with I non-radical but
√
I in shape position?

▶ relax assumptions about stability and shape position?

55

https://github.com/algebraic-solving/msolve
https://msolve.lip6.fr/

summary

▶ approximate/interpolate

▶ characteristic polynomial

▶ modular composition

▶ change of order

▶ introduction, links with structured matrices
▶ vector interpolation & matrix normal forms
▶ iterative & divide and conquer algorithms

▶previous work and log factors to remove
▶ result: “asymptotically optimal” algorithm
▶new triangularization-based approach

▶problem and context
▶ acceleration via polynomial matrices
▶ overview of the main new ingredients

▶problem and result
▶ assumptions and existing algorithms
▶paradigm shift: sparse → structured

56

