## Vincent Neiger

# designing and exploiting fast algorithms for univariate polynomial matrices 

Journées Nationales de Calcul Formel
Centre International de Rencontre Mathématiques
Marseille Luminy, France, 4 March 2024

## outline

approximate/interpolate
characteristic polynomial
modular composition
change of order

## outline

approximate/interpolate

- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
> characteristic polynomial
modular composition
change of order


## approximation and interpolation

## rational approximation and interpolation

## Padé approximation:

given power series $f(x)$ at precision $d$, given degree constraints $d_{1}, d_{2}>0$,
$\rightarrow$ compute polynomials $\left(\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})\right.$ ) of degrees $<\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$
and such that $f=\frac{p}{q} \bmod x^{d}$
strong links with linearly recurrent sequences

## approximation and interpolation

## rational approximation and interpolation

## Padé approximation:

given power series $f(x)$ at precision $d$, given degree constraints $d_{1}, d_{2}>0$,
$\rightarrow$ compute polynomials $\left(\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})\right.$ ) of degrees $<\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$
and such that $f=\frac{p}{q} \bmod x^{d}$
strong links with linearly recurrent sequences

## Cauchy interpolation:

given $M(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{K}[x]$, for pairwise distinct $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$, given degree constraints $d_{1}, d_{2}>0$, $\rightarrow$ compute polynomials $(p(x), q(x))$ of degrees $<\left(d_{1}, d_{2}\right)$ and such that $f=\frac{p}{q} \bmod M(x)$

## approximation and interpolation

## rational approximation and interpolation

## Padé approximation:

given power series $f(x)$ at precision $d$, given degree constraints $d_{1}, d_{2}>0$,
$\rightarrow$ compute polynomials $\left(\mathrm{p}(\mathrm{x}), \mathrm{q}(\mathrm{x})\right.$ ) of degrees $<\left(\mathrm{d}_{1}, \mathrm{~d}_{2}\right)$
and such that $f=\frac{p}{q} \bmod x^{d}$
strong links with linearly recurrent sequences

## Cauchy interpolation:

given $M(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{d}\right) \in \mathbb{K}[x]$, for pairwise distinct $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$, given degree constraints $d_{1}, d_{2}>0$, $\rightarrow$ compute polynomials $(p(x), q(x))$ of degrees $<\left(d_{1}, d_{2}\right)$ and such that $f=\frac{p}{q} \bmod M(x)$

- degree constraints specified by the context
- usual choices have $\mathrm{d}_{1}+\mathrm{d}_{2} \approx \mathrm{~d}$ and existence of a solution


## approximation and interpolation

approximation and structured linear system

$$
\begin{aligned}
& \mathbb{K}=\mathbb{F}_{7} \\
& f=2 x^{7}+2 x^{6}+5 x^{4}+2 x^{2}+4 \\
& d=8, d_{1}=3, d_{2}=6 \\
& \rightarrow \text { look for }(p, q) \text { of degree }<(3,6) \text { such that } f=\frac{p}{q} \bmod x^{8}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
q & p
\end{array}\right]\left[\begin{array}{c}
f \\
-1
\end{array}\right] \quad=0 \bmod x^{8}
$$

## approximation and interpolation

## approximation and structured linear system

$$
\begin{aligned}
& \mathbb{K}=\mathbb{F}_{7} \\
& f=2 x^{7}+2 x^{6}+5 x^{4}+2 x^{2}+4 \\
& d=8, d_{1}=3, d_{2}=6 \\
& \rightarrow \text { look for }(p, q) \text { of degree }<(3,6) \text { such that } f=\frac{p}{q} \bmod x^{8}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
q & p
\end{array}\right]\left[\begin{array}{c}
f \\
-1
\end{array}\right] \quad=0 \bmod x^{8}} \\
& {\left[\begin{array}{lllllllll}
q_{0} & q_{1} & q_{2} & q_{3} & q_{4} & 1 \mid & p_{0} & p_{1} & p_{2}
\end{array}\right]} \\
& {\left[\begin{array}{cccccccc}
4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\
& 4 & 0 & 2 & 0 & 5 & 0 & 2 \\
& & 4 & 0 & 2 & 0 & 5 & 0 \\
& & & 4 & 0 & 2 & 0 & 5 \\
& & & & 4 & 0 & 2 & 0 \\
& & & & & & 4 & 0 \\
\overline{6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 6 & 0 & 0 & 0 & 0 & 0 & 0 \\
& & 6 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=0}
\end{aligned}
$$

## approximation and interpolation

## approximation and structured linear system

$$
\begin{aligned}
& \mathbb{K}=\mathbb{F}_{7} \\
& f=2 x^{7}+2 x^{6}+5 x^{4}+2 x^{2}+4 \\
& d=8, d_{1}=3, d_{2}=6 \\
& \rightarrow \text { look for }(p, q) \text { of degree }<(3,6) \text { such that } f=\frac{p}{q} \bmod x^{8}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
q & p
\end{array}\right]\left[\begin{array}{c}
f \\
-1
\end{array}\right] \quad=0 \bmod x^{8}
$$

$$
\left[\begin{array}{lllllllll}
q_{0} & q_{1} & q_{2} & q_{3} & q_{4} & 1 \mid & p_{0} & p_{1} & p_{2}
\end{array}\right]
$$

$$
\left[\begin{array}{cccccccc}
4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\
& 4 & 0 & 2 & 0 & 5 & 0 & 2 \\
& & 4 & 0 & 2 & 0 & 5 & 0 \\
& & & 4 & 0 & 2 & 0 & 5 \\
& & & & 4 & 0 & 2 & 0 \\
\hdashline & & & & & 4 & 0 & 2 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 \\
& & 6 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=0
$$

Sur la généralisation des fractions continues algébriques;

## Par M. H. Padé,

Docteur ès Sciences mathématiques, Professeur au lycée de Lille.
[1894, Journal de mathématiques pures et appliquées] INTRODUCTION.
M. Hermite s'est, dans un travail récemment paru ('), occupé de la généralisation des fractions continues algébriques. La question est de déterminer les polynomes $X_{1}, X_{2}, \ldots, X_{n}$, de degrés $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$, qui satisfont à l'équation

$$
S_{1} X_{1}+S_{2} X_{2}+\ldots+S_{n} X_{n}=S x_{1}^{\mu_{1}+\mu_{2}+\ldots+\mu_{n}+n-1}
$$

$S_{1}, S_{2}, \ldots, S_{n}$ étant des séries entières données, et $S$ une série également entière. Ou plutôt, il s'agit d'obtenir un algorithme qui permette le calcul de proche en proche de ces systèmes de $n$ polynomes, et qui soit analogue à l'algorithme par lequel le numérateur et le dénominateur d'une réduite d'une fraction continue se déduisent des numérateurs et dénominateurs des réduites précédentes. D'élégantes considè-

## approximation and interpolation

## the vector case

## Hermite-Padé approximation

[Hermite 1893, Padé 1894]
input:

- polynomials $f_{1}, \ldots, f_{m} \in \mathbb{K}[x]$
- precision $d \in \mathbb{Z}_{>0}$
- degree bounds $d_{1}, \ldots, d_{m} \in \mathbb{Z}_{>0}$
output:
polynomials $p_{1}, \ldots, p_{m} \in \mathbb{K}[x]$ such that
- $p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod x^{d}$
- $\operatorname{deg}\left(p_{i}\right)<d_{i}$ for all $i$
(Padé approximation: particular case $m=2$ and $f_{2}=-1$ )


## approximation and interpolation

## the vector case

## M-Padé approximation / vector rational interpolation

[Cauchy 1821, Mahler 1968]
input:

- polynomials $f_{1}, \ldots, f_{m} \in \mathbb{K}[x]$
- pairwise distinct points $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$
- degree bounds $d_{1}, \ldots, d_{m} \in \mathbb{Z}_{>0}$
output:
polynomials $p_{1}, \ldots, p_{m} \in \mathbb{K}[x]$ such that
- $p_{1}\left(\alpha_{i}\right) f_{1}\left(\alpha_{i}\right)+\cdots+p_{m}\left(\alpha_{i}\right) f_{m}\left(\alpha_{i}\right)=0$ for all $1 \leqslant i \leqslant d$
- $\operatorname{deg}\left(p_{i}\right)<d_{i}$ for all $i$
(rational interpolation: particular case $m=2$ and $f_{2}=-1$ )


## approximation and interpolation

## the vector case

## this talk: modular equation and fast algebraic algorithms

[van Barel-Bultheel 1992; Beckermann-Labahn 1994, 1997, 2000; Giorgi-Jeannerod-Villard 2003; Storjohann 2006; Zhou-Labahn 2012; Jeannerod-Neiger-Schost-Villard 2017, 2020]
input:
-polynomials $\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}} \in \mathbb{K}[x]$

- field elements $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$
- degree bounds $d_{1}, \ldots, d_{m} \in \mathbb{Z}_{>0}$
$\rightsquigarrow$ not necessarily distinct
$\rightsquigarrow$ general "shift" $\mathbf{s} \in \mathbb{Z}^{m}$
output:
polynomials $p_{1}, \ldots, p_{m} \in \mathbb{K}[x]$ such that
- $\mathrm{p}_{1} \mathrm{f}_{1}+\cdots+\mathrm{p}_{\mathrm{m}} \mathrm{f}_{\mathrm{m}}=0 \bmod \prod_{1 \leqslant i \leqslant \mathrm{~d}}\left(x-\alpha_{\mathrm{i}}\right)$
- $\operatorname{deg}\left(p_{i}\right)<d_{i}$ for all $i$
$\rightsquigarrow$ minimal s-row degree
(Hermite-Padé: $\alpha_{1}=\cdots=\alpha_{d}=0$; interpolation: pairwise distinct points)


## approximation and interpolation

## (bivariate) interpolation and structured linear system

application to bivariate interpolation:
given pairwise distinct points $\left\{\left(\alpha_{i}, \beta_{i}\right), 1 \leqslant i \leqslant 8\right\}$
$=\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\}$,
compute a bivariate polynomial $\mathrm{Q}(\mathrm{x}, \mathrm{y}) \in \mathbb{K}[\mathrm{x}, \mathrm{y}]$
such that $Q\left(\alpha_{i}, \beta_{i}\right)=0$ for $1 \leqslant i \leqslant 8$
$\left.\begin{array}{l}M(x)=(x-24) \cdots(x-59) \\ L(x)=\text { Lagrange interpolant }\end{array}\right\} \rightarrow$ solutions $=$ ideal $\langle M(x), y-L(x)\rangle$
solutions of smaller $x$-degree: $Q(x, y)=Q_{0}(x)+Q_{1}(x) y+Q_{2}(x) y^{2}$

$$
Q(x, L(x))=\left[\begin{array}{lll}
Q_{0} & Q_{1} & Q_{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
L \\
L^{2}
\end{array}\right]=0 \bmod M(x)
$$

- instance of univariate rational vector interpolation
- with a structured input equation (powers of $L \bmod M$ )


## approximation and interpolation

## (bivariate) interpolation and structured linear system

application to bivariate interpolation:
given pairwise distinct points $\left\{\left(\alpha_{i}, \beta_{i}\right), 1 \leqslant i \leqslant 8\right\}$
$=\{(24,80),(31,73),(15,73),(32,35),(83,66),(27,46),(20,91),(59,64)\}$,
compute a bivariate polynomial $\mathrm{Q}(\mathrm{x}, \mathrm{y}) \in \mathbb{K}[\mathrm{x}, \mathrm{y}]$
such that $Q\left(\alpha_{i}, \beta_{i}\right)=0$ for $1 \leqslant i \leqslant 8$
add degree constraints: seek $Q(x, y)$ of the form $\mathrm{q}_{00}+\mathrm{q}_{01} x+\mathrm{q}_{02} \mathrm{x}^{2}+\mathrm{q}_{03} \mathrm{x}^{3}+\mathrm{q}_{04} \mathrm{x}^{4}+\left(\mathrm{q}_{10}+\mathrm{q}_{11} x+\mathrm{q}_{12} \mathrm{x}^{2}\right) \mathrm{y}+\mathrm{q}_{20} \mathrm{y}^{2}:$


$$
Q(x, y)=\left(2 x^{4}+56 x^{3}+42 x^{2}+48 x+15\right)+\left(72 x^{2}+12 x+30\right) y+y^{2}
$$

# approximation and interpolation 

polynomial matrices enter the arena
why polynomial matrices here?

## approximation and interpolation

polynomial matrices enter the arena
why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{S}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[x]^{m} \mid p_{1} f_{1}+\cdots+p_{\mathfrak{m}} f_{\mathfrak{m}}=0 \bmod M\right\} \\
\text { recall } M(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

## approximation and interpolation

## polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{S}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[x]^{m} \mid p_{1} f_{1}+\cdots+p_{\mathfrak{m}} f_{\mathfrak{m}}=0 \bmod M\right\} \\
\text { recall } M(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

$\mathcal{S}$ is a "free $\mathbb{K}[x]$-module of rank m ": admits a basis consisting of m elements

## approximation and interpolation

## polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{S}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[x]^{m} \mid p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod M\right\} \\
\text { recall } M(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

$\mathcal{S}$ is a "free $\mathbb{K}[x]$-module of rank $m$ ": admits a basis consisting of $m$ elements

## basis of solutions:

- square nonsingular matrix $\mathbf{P}$ in $\mathbb{K}[x]^{m \times m}$
- each row of $\mathbf{P}$ is a solution $\left[p_{i, 1} \cdots p_{i, m}\right]$
- any solution is a $\mathbb{K}[x]$-combination $\mathbf{u P}, \mathbf{u} \in \mathbb{K}[x]^{1 \times m}$
i.e. $\mathcal{S}$ is the $\mathbb{K}[x]$-row space of $\mathbf{P}$


## approximation and interpolation

## polynomial matrices enter the arena

why polynomial matrices here?
omitting degree constraints, the set of solutions is

$$
\begin{array}{r}
\mathcal{S}=\left\{\left(p_{1}, \ldots, p_{m}\right) \in \mathbb{K}[x]^{m} \mid p_{1} f_{1}+\cdots+p_{m} f_{m}=0 \bmod M\right\} \\
\text { recall } M(x)=\prod_{1 \leqslant i \leqslant d}\left(x-\alpha_{i}\right)
\end{array}
$$

$\mathcal{S}$ is a "free $\mathbb{K}[x]$-module of rank $m$ ": admits a basis consisting of $m$ elements

## basis of solutions:

- square nonsingular matrix $\mathbf{P}$ in $\mathbb{K}[x]^{m \times m}$
- each row of $\mathbf{P}$ is a solution $\left[p_{i, 1} \cdots p_{i, m}\right]$
- any solution is a $\mathbb{K}[x]$-combination $\mathbf{u P}, \mathbf{u} \in \mathbb{K}[x]^{1 \times m}$

$$
\text { i.e. } \mathcal{S} \text { is the } \mathbb{K}[x] \text {-row space of } \mathbf{P}
$$

computing a basis of $\mathcal{S}$ with "minimal degrees"

- has many more applications than a single small-degree solution
- is in most cases the fastest known strategy anyway(!)
$\rightsquigarrow$ degree minimality ensured via shifted reduced forms


## polynomial matrices: reminder

$\mathbf{A}=\left[\begin{array}{ccc}3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\ 5 & 5 x^{2}+3 x+1 & 5 x+3 \\ 3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1\end{array}\right] \in \mathbb{K}[x]^{3 \times 3}$
$3 \times 3$ matrix of degree 3 with entries in $\mathbb{K}[x]=\mathbb{F}_{7}[x]$
operations on $\mathbb{K}[x]_{<d}^{m \times m}$

- combination of matrix and polynomial computations
- addition in $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}\right)$, naive multiplication in $\mathrm{O}\left(\mathrm{m}^{3} \mathrm{~d}^{2}\right)$
[Cantor-Kaltofen'91]
multiplication in $\mathrm{O}\left(m^{\omega} \mathrm{d} \log (\mathrm{d})+m^{2} \mathrm{~d} \log (\mathrm{~d}) \log \log (\mathrm{d})\right)$

$$
\in \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \subset \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)
$$

## applying univariate polynomial techniques directly:

- Newton truncated inversion, matrix-QuoRem
- inversion \& determinant by evaluation-interpolation
- vector rational approximation \& interpolation ??? applying matrix techniques directly: echelonization is exponential time


## polynomial matrices: main computational problems

## reductions to PolMatMul via vector interpolation

matrix $\mathrm{m} \times \mathrm{m}$ of degree d

$$
\begin{array}{ll}
\text { of degree } \mathrm{d} \\
\text { of "average" degree } \frac{\mathrm{D}}{\mathrm{~m}} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right)
\end{array}
$$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $\quad \mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$
univariate specific operations
- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
-syzygies / modular equations
transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
-diagonalization: Smith form


## polynomial matrices: main computational problems

## reductions to PolMatMul via vector interpolation

matrix $m \times m$ of degree $d$

$$
\begin{array}{ll}
\text { of degree d } \\
\text { of "average" degree } \frac{D}{m} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right)
\end{array}
$$

classical matrix operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$
univariate specific operations
- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
-syzygies / modular equations
transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
-diagonalization: Smith form


## polynomial matrices: main computational problems

## reductions to PolMatMul via vector interpolation

matrix $m \times m$ of degree $d$

$$
\begin{array}{ll}
\text { of degree } \mathrm{d} \\
\text { of "average" degree } \frac{\mathrm{D}}{\mathrm{~m}} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(m^{\omega} \frac{D}{m}\right)
\end{array}
$$

classical matrix operations univariate specific operations

- multiplication $\rightarrow$ truncated inverse, QuoRem
- kernel, system solving
- rank, determinant
- inversion $\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$

transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
-diagonalization: Smith form


## polynomial matrices: main computational problems

## reductions to PolMatMul via vector interpolation

matrix $m \times m$ of degree $d$

$$
\begin{array}{ll}
\text { of degree d } \\
\text { of "average" degree } \frac{D}{m} & \rightarrow \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right) \\
\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right)
\end{array}
$$

classical matrix operations

## univariate specific operations

- multiplication
- kernel, system solving
- rank, determinant
- inversion $\mathrm{O}^{\sim}\left(\mathrm{m}^{3} \mathrm{~d}\right)$

transformation to normal forms
- echelonization: Hermite form
- row reduction: Popov form
-diagonalization: Smith form


## matrix normal forms

working over $\mathbb{K}=\mathbb{Z} / 7 \mathbb{Z}$

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 x+4 & x^{3}+4 x+1 & 4 x^{2}+3 \\
5 & 5 x^{2}+3 x+1 & 5 x+3 \\
3 x^{3}+x^{2}+5 x+3 & 6 x+5 & 2 x+1
\end{array}\right]
$$

using elementary row operations, transform A into...

Hermite form $\quad \mathbf{H}=\left[\begin{array}{ccc}x^{6}+6 x^{4}+x^{3}+x+4 & 0 & 0 \\ 5 x^{5}+5 x^{4}+6 x^{3}+2 x^{2}+6 x+3 & x & 0 \\ 3 x^{4}+5 x^{3}+4 x^{2}+6 x+1 & 5 & 1\end{array}\right]$

Popov form $\quad \mathbf{P}=\left[\begin{array}{ccc}x^{3}+5 x^{2}+4 x+1 & 2 x+4 & 3 x+5 \\ 1 & x^{2}+2 x+3 & x+2 \\ 3 x+2 & 4 x & x^{2}\end{array}\right]$

## Hermite and Popov forms

## nonsingular $\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times \mathfrak{m}}$

elementary row transformations

Hermite form [Hermite, 1851]

- triangular
- column normalized
$\left[\begin{array}{llll}\mathbf{1 6} & & & \\ 15 & \mathbf{0} & & \\ 15 & & 0 & \\ 15 & & & 0\end{array}\right]\left[\begin{array}{llll}4 & & & \\ 3 & 7 & & \\ 1 & 5 & 3 & \\ 3 & 6 & 1 & 2\end{array}\right]$


## Hermite and Popov forms

## nonsingular $\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times \mathfrak{m}}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Popov form [Popov, 1972]

- minimal row degrees
- column normalized
$\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}7 & 0 & 1 & 5 \\ 0 & 1 & & 0 \\ 6 & & 2 & \\ 6 & & 1 & 6\end{array}\right]$


## Hermite and Popov forms

## nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Popov form [Popov, 1972]

- minimal row degrees - column normalized

$$
\mathbb{K}[x] \text {-module } \mathcal{S} \subset \mathbb{K}[x]^{1 \times \mathfrak{m}} \text { of rank } m
$$

## Hermite and Popov forms

## nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized

Popov form [Popov, 1972]

- minimal row degrees
- column normalized
invariant: $\mathrm{D}=\operatorname{deg}(\operatorname{det}(\mathbf{A}))=4+7+3+2=7+1+2+6$
- average column degree is $\frac{D}{m}$
target cost: $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{m}}\right)$
- size of object is $m D+m^{2}=m^{2}\left(\frac{D}{m}+1\right)$


## Hermite and Popov forms

nonsingular $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

Hermite form [Hermite, 1851]

- triangular
- column normalized
$\left[\begin{array}{llll}16 & & & \\ 15 & \mathbf{0} & & \\ 15 & & 0 & \\ 15 & & & 0\end{array}\right]\left[\begin{array}{llll}4 & & & \\ 3 & \mathbf{7} & & \\ 1 & 5 & \mathbf{3} & \\ 3 & 6 & 1 & 2\end{array}\right] \quad\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right] \quad\left[\begin{array}{llll}7 & 0 & 1 & 5 \\ 0 & 1 & & 0 \\ 6 & & \mathbf{2} & \\ 6 & 1 & \mathbf{6}\end{array}\right]$
[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]


## shifted reduced form:

arbitrary degree constraints + no column normalization
$\approx$ minimal, non-reduced, $\prec$-Gröbner basis

## shifted forms

shift: integer tuple $\boldsymbol{s}=\left(s_{1}, \ldots, s_{m}\right)$ acting as column weights $\rightarrow$ connects Popov and Hermite forms

| $\begin{aligned} \mathbf{s}= & (0,0,0,0) \\ & \text { Popov } \end{aligned}$ | $\left[\begin{array}{llll}4 & 3 & 3 & 3 \\ 3 & 4 & 3 & 3 \\ 3 & 3 & 4 & 3 \\ 3 & 3 & 3 & 4\end{array}\right]$ | $\left[\begin{array}{llll}7 & 0 & 1 & 5 \\ 0 & 1 & & 0 \\ 6 & 0 & 2 & \\ 0\end{array}\right]$ |
| :---: | :---: | :---: |
| $\begin{gathered} \mathbf{s}=(0,2,4,6) \\ \boldsymbol{s} \text {-Popov } \end{gathered}$ | $\left[\begin{array}{llll}\mathbf{7} & 4 & 2 & 0 \\ 6 & \mathbf{5} & 2 & 0 \\ 6 & 4 & 3 & 0 \\ 6 & 4 & 2 & 1\end{array}\right]$ | $\left[\begin{array}{llll}8 & 5 & 1 & \\ 7 & \mathbf{6} & 1 & \\ & & 2 & \\ 0 & 1 & & 0\end{array}\right]$ |
| $\begin{gathered} \mathbf{s}=\underset{\text { Hermite }}{(0, \mathrm{D}, 2 \mathrm{D}, 3 \mathrm{D})} \\ \text { He } \end{gathered}$ | $\left[\begin{array}{llll}\mathbf{1 6} & & & \\ 15 & \mathbf{0} & & \\ 15 & & \mathbf{0} & \\ 15 & & & 0\end{array}\right]$ | $\left[\begin{array}{llll}4 & & & \\ 3 & 7 & & \\ 1 & 5 & 3 & \\ 3 & 6 & 1 & 2\end{array}\right]$ |

- normal form, average column degree $\mathrm{D} / \mathrm{m}$
- shifts arise naturally in algorithms (approximants, kernel, ...)
-they allow one to specify non-uniform degree constraints


## from normal forms to relations

$$
\left\{\begin{array}{ccc}
p_{1} f_{11}+\cdots+p_{m} f_{1 m} & = & 0 \bmod g_{1} \\
\vdots & \vdots & \vdots \\
p_{1} f_{n 1}+\cdots+p_{m} f_{n m} & = & 0 \bmod g_{n}
\end{array}\right.
$$

reconstruction as relations

high-order lifting
[Storjohann, 2003]
[Giorgi-Jeannerod--
normal form 2016] [Nei


## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
input: vector $\mathbf{F}=\left[\begin{array}{c}{ }^{f_{1}} \\ \vdots \\ f_{m}\end{array}\right]$, points $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{K}$, shift $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right) \in \mathbb{Z}^{m}$

1. $\mathbf{P}=\left[\begin{array}{c}-\mathbf{p}_{1}- \\ \vdots \\ -\mathbf{p}_{m}-\end{array}\right]=$ identity matrix in $\mathbb{K}[x]^{m \times m}$
2. for $i$ from 1 to $d$ :
a. choose pivot $\pi$ with smallest $s_{\pi}$ such that $f_{\pi}\left(\alpha_{i}\right) \neq 0$ update pivot shift $s_{\pi}=s_{\pi}+1$
b. constant elimination: for $j \neq \pi$ do $\mathbf{p}_{j} \leftarrow \mathbf{p}_{j}-\frac{f_{j}\left(\alpha_{i}\right)}{f_{\pi}\left(\alpha_{i}\right)} \mathbf{p}_{\pi}$ polynomial elimination: $\mathbf{p}_{\pi} \leftarrow\left(x-\alpha_{i}\right) \mathbf{p}_{\pi}$
c. compute residual equation: for $j \neq \pi$ do $f_{j} \leftarrow f_{j}-\frac{f_{j}\left(\alpha_{i}\right)}{f_{\pi}\left(\alpha_{i}\right)} f_{\pi}$

$$
f_{\pi} \leftarrow\left(x-\alpha_{i}\right) f_{\pi}
$$

after $i$ iterations: $\mathbf{P}$ is an $\boldsymbol{s}$-reduced basis of solutions for $\left(\alpha_{1}, \ldots, \alpha_{i}\right)$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6), \quad$ base field $\mathbb{F}_{97}$ input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=1$
point: $24,31,15,32,83,27,20,59$
shift
basis $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 \\ 95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 \\ 34 & 47 & 47 & 1 & 85 & 45 & 75 & 50\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=1$
point: $24,31,15,32,83,27,20,59$

## shift

$\left[\begin{array}{llll}0 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 \\ 95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 \\ 34 & 47 & 47 & 1 & 85 & 45 & 75 & 50\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]

$$
\text { parameters: } \quad d=8 \quad m=4 \quad s=(0,2,4,6), \quad \text { base field } \mathbb{F}_{97}
$$

$$
\text { input: }(24,31,15,32,83,27,20,59) \text { and } \mathbf{F}=\left[\begin{array}{lll}
1 & L & L^{2}
\end{array} L^{3}\right]^{\top}
$$

iteration: $\mathfrak{i}=1$
point: $24,31,15,32,83,27,20,59$
shift
basis $\left[\begin{array}{c}1 \\ 17 \\ 2 \\ 63\end{array}\right.$
$\left[\begin{array}{cccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\ 0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\ 0 & 13 & 13 & 64 & 51 & 11 & 41 & 16\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=1$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}1 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{c}x+73 \\ 17 \\ 2 \\ 63\end{array}\right.$
$\left.\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{cccccccc}0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\ 0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\ 0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\ 0 & 13 & 13 & 64 & 51 & 11 & 41 & 16\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=2$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}1 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{c}x+73 \\ 17 \\ 2 \\ 63\end{array}\right.$
$\left.\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{cccccccc}0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\ 0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\ 0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\ 0 & 13 & 13 & 64 & 51 & 11 & 41 & 16\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=2$
point: $24,31,15,32,83,27,20,59$

## shift

$\left[\begin{array}{llll}1 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{c}x+73 \\ x+90 \\ 56 x+16 \\ 12 x+66\end{array}\right.$
$\left.\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\ 0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\ 0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\ 0 & 0 & 2 & 63 & 80 & 47 & 90 & 48\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=2$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}2 & 2 & 4 & 6\end{array}\right]$

$$
\left.\begin{array}{clll}
x^{2}+42 x+65 & 0 & 0 & 0 \\
x+90 & 1 & 0 & 0 \\
56 x+16 & 0 & 1 & 0 \\
12 x+66 & 0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{cccccccc}0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\ 0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\ 0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\ 0 & 0 & 2 & 63 & 80 & 47 & 90 & 48\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=3$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}2 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{2}+42 x+65 & 0 & 0 & 0 \\ x+90 & 1 & 0 & 0 \\ 56 x+16 & 0 & 1 & 0 \\ 12 x+66 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\ 0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\ 0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\ 0 & 0 & 2 & 63 & 80 & 47 & 90 & 48\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=3$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}3 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{clll}x^{3}+27 x^{2}+17 x+92 & 0 & 0 & 0 \\ 54 x^{2}+38 x+11 & 1 & 0 & 0 \\ 17 x^{2}+91 x+54 & 0 & 1 & 0 \\ 66 x^{2}+68 x+88 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\ 0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\ 0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\ 0 & 0 & 0 & 9 & 32 & 31 & 84 & 29\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=4$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}3 & 2 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{clll}x^{3}+27 x^{2}+17 x+92 & 0 & 0 & 0 \\ 54 x^{2}+38 x+11 & 1 & 0 & 0 \\ 17 x^{2}+91 x+54 & 0 & 1 & 0 \\ 66 x^{2}+68 x+88 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\ 0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\ 0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\ 0 & 0 & 0 & 9 & 32 & 31 & 84 & 29\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $i=4$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}3 & 3 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{3}+31 x^{2}+27 x+3 & 36 & 0 & 0 \\ 54 x^{3}+56 x^{2}+56 x+36 & x+65 & 0 & 0 \\ 56 x^{2}+43 x+35 & 60 & 1 & 0 \\ 52 x^{2}+33 x+60 & 68 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 95 & 50 & 66 & 0 \\ 0 & 0 & 0 & 0 & 54 & 0 & 19 & 58 \\ 0 & 0 & 0 & 0 & 4 & 45 & 79 & 95 \\ 0 & 0 & 0 & 0 & 7 & 31 & 41 & 17\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=5$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}4 & 3 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{4}+45 x^{3}+73 x^{2}+90 x+42 & 36 x+19 & 0 & 0 \\ 81 x^{3}+20 x^{2}+9 x+20 & x+67 & 0 & 0 \\ 2 x^{3}+21 x^{2}+41 & 35 & 1 & 0 \\ 52 x^{3}+15 x^{2}+79 x+22 & 0 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 13 & 13 & 0 \\ 0 & 0 & 0 & 0 & 0 & 89 & 55 & 58 \\ 0 & 0 & 0 & 0 & 0 & 48 & 17 & 95 \\ 0 & 0 & 0 & 0 & 0 & 12 & 78 & 17\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $\quad d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array}\right]^{\top}$
iteration: $\mathfrak{i}=6$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}4 & 4 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{4}+19 x^{3}+57 x^{2}+44 x+26 & 74 x+43 & 0 & 0 \\ 81 x^{4}+64 x^{3}+51 x^{2}+68 x+42 & x^{2}+40 x+34 & 0 & 0 \\ 3 x^{3}+44 x^{2}+54 x+64 & 6 x+49 & 1 & 0 \\ 28 x^{3}+45 x^{2}+44 x+52 & 50 x+52 & 0 & 1\end{array}\right]$
values $\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 66 & 70 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 13 \\ 0 & 0 & 0 & 0 & 0 & 0 & 56 & 55 \\ 0 & 0 & 0 & 0 & 0 & 0 & 15 & 7\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=7$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}5 & 4 & 4 & 6\end{array}\right]$
basis $\quad\left[\begin{array}{c}x^{5}+96 x^{4}+65 x^{3}+68 x^{2}+19 x+62 \\ 6 x^{4}+94 x^{3}+44 x^{2}+66 x+32 \\ 55 x^{4}+78 x^{3}+75 x^{2}+49 x+39 \\ 13 x^{4}+81 x^{3}+10 x^{2}+34 x+2\end{array}\right.$
$\left.\begin{array}{ccc}74 x^{2}+18 x+13 & 0 & 0 \\ x^{2}+19 x+10 & 0 & 0 \\ 2 x+86 & 1 & 0 \\ 42 x+29 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{cccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 44\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6)$, base field $\mathbb{F}_{97}$
input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=8$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}5 & 5 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{5}+12 x^{4}+10 x^{3}+34 x^{2}+65 x+2 & 60 x^{2}+43 x+67 & 0 & 0 \\ 6 x^{5}+31 x^{4}+27 x^{3}+89 x^{2}+18 x+52 & x^{3}+57 x^{2}+53 x+89 & 0 & 0 \\ 2 x^{4}+56 x^{3}+42 x^{2}+48 x+15 & 72 x^{2}+12 x+30 & 1 & 0 \\ 40 x^{4}+19 x^{3}+14 x^{2}+40 x+49 & 53 x^{2}+79 x+74 & 0 & 1\end{array}\right]$
values $\quad\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

## iterative \& divide and conquer algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn / Kötter-Vardy]
parameters: $d=8 \quad m=4 \quad s=(0,2,4,6), \quad$ base field $\mathbb{F}_{97}$ input: $(24,31,15,32,83,27,20,59)$ and $\mathbf{F}=\left[\begin{array}{lll}1 & L & L^{2}\end{array} L^{3}\right]^{\top}$
iteration: $\mathfrak{i}=8$
point: $24,31,15,32,83,27,20,59$
shift
$\left[\begin{array}{llll}5 & 5 & 4 & 6\end{array}\right]$
basis $\left[\begin{array}{cccc}x^{5}+12 x^{4}+10 x^{3}+34 x^{2}+65 x+2 & 60 x^{2}+43 x+67 & 0 & 0 \\ 6 x^{5}+31 x^{4}+27 x^{3}+89 x^{2}+18 x+52 & x^{3}+57 x^{2}+53 x+89 & 0 & 0 \\ 2 x^{4}+56 x^{3}+42 x^{2}+48 x+15 & 72 x^{2}+12 x+30 & 1 & 0 \\ 40 x^{4}+19 x^{3}+14 x^{2}+40 x+49 & 53 x^{2}+79 x+74 & 0 & 1\end{array}\right]$

$$
Q(x, y)=\left(2 x^{4}+56 x^{3}+42 x^{2}+48 x+15\right)+\left(72 x^{2}+12 x+30\right) y+y^{2}
$$

values
$\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

## iterative \& divide and conquer algorithms

## iterative algorithm: complexity aspects

at step $i, \mathbf{P}$ and $\mathbf{F}$ are left multiplied by $\mathbf{E}_{i}=\left[\begin{array}{ccc}\mathbf{I}_{\pi-1} & \boldsymbol{\lambda}_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & x-\alpha & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\lambda}_{\mathbf{2}} & \mathbf{I}_{\mathrm{m}-\pi}\end{array}\right]$ where $\lambda_{1} \in \mathbb{K}^{(\pi-1) \times 1}$ and $\lambda_{2} \in \mathbb{K}^{(m-\pi) \times 1}$ are constant

## iterative \& divide and conquer algorithms

## iterative algorithm: complexity aspects

at step $i, \mathbf{P}$ and $\mathbf{F}$ are left multiplied by $\mathbf{E}_{i}=\left[\begin{array}{ccc}\mathbf{I}_{\pi-1} & \boldsymbol{\lambda}_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & x-\alpha & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\lambda}_{\mathbf{2}} & \mathbf{I}_{\mathrm{m}-\pi}\end{array}\right]$ where $\lambda_{1} \in \mathbb{K}^{(\pi-1) \times 1}$ and $\lambda_{2} \in \mathbb{K}^{(m-\pi) \times 1}$ are constant

## complexity $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}^{2}\right)$ :

- iteration with d steps
- each step: evaluation of $\mathbf{F}+$ multiplications $\mathbf{E}_{i} \mathbf{F}$ and $\mathbf{E}_{\mathrm{i}} \mathbf{P}$
- at any stage $\mathbf{P}$ has degree $\leqslant \mathrm{d}$ and dimensions $\mathrm{m} \times \mathrm{m}$
- at any stage $\mathbf{F}$ has degree $<2 \mathrm{~d}$ and dimensions $\mathrm{m} \times 1$ one gets $\mathrm{O}\left(\mathrm{md}^{2}\right)$ with either:
. normalizing at each step + finer analysis
. "balanced" input shift + finer analysis


## iterative \& divide and conquer algorithms

## iterative algorithm: complexity aspects

at step $i, \mathbf{P}$ and $\mathbf{F}$ are left multiplied by $\mathbf{E}_{i}=\left[\begin{array}{ccc}\mathbf{I}_{\pi-1} & \boldsymbol{\lambda}_{\mathbf{1}} & \mathbf{0} \\ \mathbf{0} & x-\alpha & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\lambda}_{\mathbf{2}} & \mathbf{I}_{\mathrm{m}-\pi}\end{array}\right]$ where $\lambda_{1} \in \mathbb{K}^{(\pi-1) \times 1}$ and $\lambda_{\mathbf{2}} \in \mathbb{K}^{(\mathfrak{m}-\pi) \times 1}$ are constant

## complexity $\mathrm{O}\left(\mathrm{m}^{2} \mathrm{~d}^{2}\right)$ :

- iteration with d steps
- each step: evaluation of $\mathbf{F}+$ multiplications $\mathbf{E}_{i} \mathbf{F}$ and $\mathbf{E}_{\mathrm{i}} \mathbf{P}$
- at any stage $\mathbf{P}$ has degree $\leqslant \mathrm{d}$ and dimensions $\mathrm{m} \times \mathrm{m}$
- at any stage $\mathbf{F}$ has degree $<2 \mathrm{~d}$ and dimensions $\mathrm{m} \times 1$
one gets $\mathrm{O}\left(\mathrm{md}^{2}\right)$ with either:
. normalizing at each step + finer analysis
. "balanced" input shift + finer analysis


## correctness:

- the main task is to prove the base case ( $\mathrm{d}=1$, single point)
-then, correctness follows from the "basis multiplication theorem"


## iterative \& divide and conquer algorithms

## general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

- compute a first basis $\mathbf{P}_{1}$ for a subproblem
- update the input instance to get the second subproblem
- compute a second basis $\mathbf{P}_{2}$ for this second subproblem
- the output basis of solutions is $\mathbf{P}_{2} \mathbf{P}_{1}$
we want $\mathbf{P}_{2} \mathbf{P}_{1}$ shifted reduced
$\mathbf{P}_{2} \mathbf{P}_{1}$ reduced not implied by " $\mathbf{P}_{1}$ reduced and $\mathbf{P}_{2}$ reduced"


## iterative \& divide and conquer algorithms

## general multiplication-based approach for relations

algorithms based on polynomial matrix multiplication
[Beckermann-Labahn '94+'97] [Giorgi-Jeannerod-Villard 2003]

- compute a first basis $\mathbf{P}_{1}$ for a subproblem
- update the input instance to get the second subproblem
- compute a second basis $\mathbf{P}_{2}$ for this second subproblem
- the output basis of solutions is $\mathbf{P}_{2} \mathbf{P}_{1}$
we want $\mathbf{P}_{2} \mathbf{P}_{1}$ shifted reduced
$\mathbf{P}_{2} \mathbf{P}_{1}$ reduced not implied by " $\mathbf{P}_{1}$ reduced and $\mathbf{P}_{2}$ reduced"


## theorem:

( $\mathbf{P}_{1}$ is s-reduced and $\mathbf{P}_{2}$ is t-reduced" $) \Rightarrow \mathbf{P}_{2} \mathbf{P}_{1}$ is s-reduced where $t$ is a shift trivially computed from $\mathbf{s}$ and $\mathbf{P}_{1} \quad\left(\mathbf{t}=\operatorname{rdeg}_{s}\left(\mathbf{P}_{1}\right)\right)$

## iterative \& divide and conquer algorithms

## bonus: detailed statement and proof

let $\mathcal{M} \subseteq \mathcal{M}_{1}$ be two $\mathbb{K}[x]$-submodules of $\mathbb{K}[x]^{m}$ of rank $\mathfrak{m}$, let $\mathbf{P}_{1} \in \mathbb{K}[x]^{m \times m}$ be a basis of $\mathcal{M}_{1}$, let $\mathbf{s} \in \mathbb{Z}^{\mathrm{m}}$ and $\mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$,
-the rank of the module $\mathcal{M}_{2}=\left\{\boldsymbol{\lambda} \in \mathbb{K}[x]^{1 \times m} \mid \lambda \mathbf{P}_{1} \in \mathcal{M}\right\}$ is $m$ and for any basis $\mathbf{P}_{2} \in \mathbb{K}[x]^{m \times m}$ of $\mathcal{M}_{2}$, the product $\mathbf{P}_{2} \mathbf{P}_{1}$ is a basis of $\mathcal{M}$

- if $\mathbf{P}_{1}$ is $\boldsymbol{s}$-reduced and $\mathbf{P}_{2}$ is $\mathbf{t}$-reduced, then $\mathbf{P}_{2} \mathbf{P}_{1}$ is $\boldsymbol{s}$-reduced


## iterative \& divide and conquer algorithms

## bonus: detailed statement and proof

let $\mathcal{M} \subseteq \mathcal{M}_{1}$ be two $\mathbb{K}[x]$-submodules of $\mathbb{K}[x]^{m}$ of rank $m$, let $\mathbf{P}_{1} \in \mathbb{K}[x]^{m \times m}$ be a basis of $\mathcal{M}_{1}$, let $\mathbf{s} \in \mathbb{Z}^{\mathfrak{m}}$ and $\mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$,
-the rank of the module $\mathcal{M}_{2}=\left\{\boldsymbol{\lambda} \in \mathbb{K}[x]^{1 \times m} \mid \lambda \mathbf{P}_{1} \in \mathcal{M}\right\}$ is $m$ and for any basis $\mathbf{P}_{2} \in \mathbb{K}[x]^{m \times m}$ of $\mathcal{M}_{2}$, the product $\mathbf{P}_{2} \mathbf{P}_{1}$ is a basis of $\mathcal{M}$

- if $\mathbf{P}_{1}$ is $\mathbf{s}$-reduced and $\mathbf{P}_{2}$ is $\mathbf{t}$-reduced, then $\mathbf{P}_{2} \mathbf{P}_{1}$ is $\boldsymbol{s}$-reduced

Let $\mathbf{A} \in \mathbb{K}[x]^{\mathfrak{m} \times \mathfrak{m}}$ denote the adjugate of $\mathbf{P}_{1}$. Then, we have $\mathbf{A} \mathbf{P}_{1}=\operatorname{det}\left(\mathbf{P}_{1}\right) \mathbf{I}_{\mathfrak{m}}$. Thus, $\mathbf{p A} \mathbf{P}_{1}=\operatorname{det}\left(\mathbf{P}_{1}\right) \mathbf{p} \in \mathcal{M}$ for all $\mathbf{p} \in \mathcal{M}$, and therefore $\mathcal{M} \mathbf{A} \subseteq \mathcal{M}_{2}$. Now, the nonsingularity of $\mathbf{A}$ ensures that $\mathcal{M} \mathbf{A}$ has rank $\mathfrak{m}$; this implies that $\mathcal{N}_{2}$ has rank $m$ as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix $\mathbf{P}_{2} \mathbf{P}_{1}$ is nonsingular since $\operatorname{det}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right) \neq 0$. Now let $\mathbf{p} \in \mathcal{M}$; we want to prove that $\mathbf{p}$ is a $\mathbb{K}[x]$-linear combination of the rows of $\mathbf{P}_{2} \mathbf{P}_{1}$. First, $\mathbf{p} \in \mathcal{M}_{1}$, so there exists $\boldsymbol{\lambda} \in$ $\mathbb{K}[x]^{1 \times m}$ such that $\mathbf{p}=\lambda \mathbf{P}_{1}$. But then $\boldsymbol{\lambda} \in \mathcal{M}_{2}$, and thus there exists $\boldsymbol{\mu} \in \mathbb{K}[x]^{1 \times m}$ such that $\lambda=\mu \mathbf{P}_{2}$. This yields the combination $\mathbf{p}=\mu \mathbf{P}_{2} \mathbf{P}_{1}$.

## iterative \& divide and conquer algorithms

## bonus: detailed statement and proof

let $\mathcal{M} \subseteq \mathcal{M}_{1}$ be two $\mathbb{K}[x]$-submodules of $\mathbb{K}[x]^{m}$ of rank $m$, let $\mathbf{P}_{1} \in \mathbb{K}[x]^{m \times m}$ be a basis of $\mathcal{M}_{1}$, let $\mathbf{s} \in \mathbb{Z}^{\mathrm{m}}$ and $\mathbf{t}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$,

- the rank of the module $\mathcal{M}_{2}=\left\{\boldsymbol{\lambda} \in \mathbb{K}[x]^{1 \times m} \mid \lambda \mathbf{P}_{1} \in \mathcal{M}\right\}$ is $m$ and for any basis $\mathbf{P}_{2} \in \mathbb{K}[x]^{m \times m}$ of $\mathcal{M}_{2}$, the product $\mathbf{P}_{2} \mathbf{P}_{1}$ is a basis of $\mathcal{M}$
- if $\mathbf{P}_{1}$ is $\mathbf{s}$-reduced and $\mathbf{P}_{2}$ is t-reduced, then $\mathbf{P}_{2} \mathbf{P}_{1}$ is $\boldsymbol{s}$-reduced

Let $\mathbf{d}=\operatorname{rdeg}_{\mathfrak{t}}\left(\mathbf{P}_{2}\right)$; we have $\mathbf{d}=\operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right)$ by the predictable degree property. Using $\mathbf{X}^{-d} \mathbf{P}_{2} \mathbf{P}_{1} \mathbf{X}^{\mathbf{s}}=\mathbf{X}^{-\mathrm{d}} \mathbf{P}_{2} \mathbf{X}^{\mathbf{t}} \mathbf{X}^{-\mathbf{t}} \mathbf{P}_{1} \mathbf{X}^{\mathbf{s}}$, we obtain that $\operatorname{Im}_{\mathbf{s}}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right)=$ $\operatorname{lm}_{\mathfrak{t}}\left(\mathbf{P}_{2}\right) \operatorname{lm}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$. By assumption, $\operatorname{lm}_{\mathfrak{t}}\left(\mathbf{P}_{2}\right)$ and $\operatorname{lm}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$ are invertible, and therefore $\operatorname{lm}_{\mathbf{s}}\left(\mathbf{P}_{2} \mathbf{P}_{1}\right)$ is invertible as well; thus $\mathbf{P}_{2} \mathbf{P}_{1}$ is $\mathbf{s}$-reduced.

## iterative \& divide and conquer algorithms

## divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: $\mathbf{F},\left(\alpha_{1}, \ldots, \alpha_{d}\right), \mathbf{s}$
output: $\mathbf{P}$

- if $d \leqslant$ threshold: call iterative algorithm
- else:
a. $M_{1} \leftarrow\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\lfloor d / 2\rfloor}\right) ; M_{2} \leftarrow\left(x-\alpha_{\lfloor d / 2\rfloor+1}\right) \cdots\left(x-\alpha_{d}\right)$
b. $\mathbf{P}_{1} \leftarrow$ recursive call on $\mathbf{F}$ rem $M_{1},\left(\alpha_{1}, \ldots, \alpha_{\lfloor d / 2\rfloor}\right)$, $\mathbf{s}$
c. updated shift: $\mathbf{t} \leftarrow \operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$
d. residual equation: $\mathbf{G} \leftarrow \frac{1}{\mathrm{M}_{1}} \mathbf{P}_{1} \mathbf{F}$
e. $\mathbf{P}_{2} \leftarrow$ recursive call on $\mathbf{G}$ rem $M_{2},\left(\alpha_{\lfloor d / 2\rfloor+1}, \ldots, \alpha_{d}\right)$, $\mathbf{t}$
f. return the product $\mathbf{P}_{2} \mathbf{P}_{1}$


## iterative \& divide and conquer algorithms

## divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: $\mathbf{F},\left(\alpha_{1}, \ldots, \alpha_{d}\right), \mathbf{s}$
output: $\mathbf{P}$

- if $d \leqslant$ threshold: call iterative algorithm
- else:
a. $M_{1} \leftarrow\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\lfloor d / 2\rfloor}\right) ; M_{2} \leftarrow\left(x-\alpha_{\lfloor d / 2\rfloor+1}\right) \cdots\left(x-\alpha_{d}\right)$
b. $\mathbf{P}_{1} \leftarrow$ recursive call on $\mathbf{F}$ rem $M_{1},\left(\alpha_{1}, \ldots, \alpha_{\lfloor d / 2\rfloor}\right)$, $\mathbf{s}$
c. updated shift: $\mathbf{t} \leftarrow \operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$
d. residual equation: $\mathbf{G} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
e. $\mathbf{P}_{2} \leftarrow$ recursive call on $\mathbf{G}$ rem $M_{2},\left(\alpha_{\lfloor d / 2\rfloor+1}, \ldots, \alpha_{d}\right)$, $\mathbf{t}$
f. return the product $\mathbf{P}_{2} \mathbf{P}_{1}$


## correctness:

- correctness of base case
-then, direct consequence of the "basis multiplication theorem"
- residual: $\left\{\mathbf{p} \mid \mathbf{p} \mathbf{P}_{1} \mathbf{F}=0 \bmod M\right\}=\left\{\mathbf{p} \left\lvert\, \mathbf{p}\left(\frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}\right)=0 \bmod \mathrm{M}_{2}\right.\right\}$


## iterative \& divide and conquer algorithms

## divide and conquer algorithm [Beckermann-Labahn '94+'97]

input: $\mathbf{F},\left(\alpha_{1}, \ldots, \alpha_{d}\right), \mathbf{s}$
output: $\mathbf{P}$

- if $d \leqslant$ threshold: call iterative algorithm
- else:
a. $M_{1} \leftarrow\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{\lfloor d / 2\rfloor}\right) ; M_{2} \leftarrow\left(x-\alpha_{\lfloor d / 2\rfloor+1}\right) \cdots\left(x-\alpha_{d}\right)$
b. $\mathbf{P}_{1} \leftarrow$ recursive call on $\mathbf{F}$ rem $M_{1},\left(\alpha_{1}, \ldots, \alpha_{\lfloor d / 2\rfloor}\right)$, $\mathbf{s}$
c. updated shift: $\mathbf{t} \leftarrow \operatorname{rdeg}_{\mathbf{s}}\left(\mathbf{P}_{1}\right)$
d. residual equation: $\mathbf{G} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
e. $\mathbf{P}_{2} \leftarrow$ recursive call on $\mathbf{G}$ rem $M_{2},\left(\alpha_{\lfloor d / 2\rfloor+1}, \ldots, \alpha_{d}\right)$, $\mathbf{t}$
f. return the product $\mathbf{P}_{2} \mathbf{P}_{1}$
complexity $O\left(m^{\omega} M(d) \log (d)\right)$ :
- if $\omega=2$, quasi-linear in worst-case output size (yet: s-Popov basis is smaller)
- most expensive step in the recursion is the product $\mathbf{P}_{2} \mathbf{P}_{1}$
- equation $\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right)$


## iterative \& divide and conquer algorithms

## divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

$$
\text { output: } \operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}
$$

## complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- $\mathbf{F}$ rem $M_{1}$ and $\mathbf{F}$ rem $M_{2}$
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
-two recursive calls

$$
\begin{array}{r}
O\left(m^{2} M(d)\right) \\
O(m M(d)) \\
O\left(m^{\omega} M(d)\right) \\
2 \mathcal{C}(m, L d / 2\rceil)
\end{array}
$$

## iterative \& divide and conquer algorithms

## divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

$$
\text { output: } \operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}
$$

## complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{\mathrm{M}_{1}} \mathbf{P}_{1} \mathbf{F} \quad \mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{d})\right)$
- $\mathbf{F}$ rem $M_{1}$ and $\mathbf{F}$ rem $M_{2}$
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
- two recursive calls

$$
\begin{array}{r}
\mathrm{O}\left(\mathrm{~m}^{2} \mathrm{M}(\mathrm{~d})\right) \\
\mathrm{O}(\mathrm{mM}(\mathrm{~d})) \\
\mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d})\right) \\
2 \mathrm{C}(\mathrm{~m},\lfloor\mathrm{~d} / 2\rceil)
\end{array}
$$

$\left\{\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right)\right.$ d base cases, each one costs $\mathrm{O}(\mathrm{m})$

$$
\Rightarrow \quad \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d}) \log (\mathrm{d})\right)
$$

unrolling: $m^{\omega}\left(M(d)+2 M\left(\frac{d}{2}\right)+4 M\left(\frac{d}{4}\right)+\cdots+\frac{d}{2} M(2)\right)+d m$

## iterative \& divide and conquer algorithms

## divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

## complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- $\mathbf{F}$ rem $\mathrm{M}_{1}$ and $\mathbf{F}$ rem $\mathrm{M}_{2}$
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
- two recursive calls
output: $\operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}$

$$
\begin{array}{r}
O\left(m^{2} M(d)\right) \\
O(m M(d)) \\
O\left(m^{\omega} M(d)\right) \\
2 \mathbb{C}(m, L d / 2\rceil)
\end{array}
$$

output: $\operatorname{deg}(\mathbf{P}) \approx\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil$
$\mathrm{S}=0$ and generic F :
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged

- partial linearization
$\left\{\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right)\right.$
$d$ base cases, each one costs $O(m)$

$$
\Rightarrow \quad \mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d}) \log (\mathrm{d})\right)
$$

## iterative \& divide and conquer algorithms

## divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

## complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- $\mathbf{F}$ rem $\mathrm{M}_{1}$ and $\mathbf{F}$ rem $\mathrm{M}_{2}$
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
-two recursive calls
output: $\operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}$
$\mathrm{O}\left(\mathrm{m}^{2} \mathrm{M}(\mathrm{d})\right)$
$\mathrm{O}(\mathrm{mM}(\mathrm{d}))$
$O\left(m^{\omega} M(d)\right)$
$2 \mathcal{C}(m,\lfloor d / 2\rceil)$
output: $\operatorname{deg}(\mathbf{P}) \approx\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil$
$\mathrm{S}=0$ and generic F :
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
- partial linearization
- base case for $\mathrm{d} \approx \mathrm{m}$,
$\left\{\begin{array}{l}\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right) \quad \text { costs } O\left(m^{\omega}\right) \\ d \text { base cases, each one costs } O(m) \\ \Rightarrow O\left(m^{\omega} M(d) \log (d)\right) \quad O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right) \log \left(\left\lceil\frac{d}{m}\right\rceil\right)\right)\end{array}\right.$


## iterative \& divide and conquer algorithms

## divide and conquer: complexity aspects

input: $\operatorname{deg}(\mathbf{F})<\mathrm{d}$

## complexity of each step:

- residual $\mathbf{F} \leftarrow \frac{1}{M_{1}} \mathbf{P}_{1} \mathbf{F}$
- $\mathbf{F}$ rem $M_{1}$ and $\mathbf{F}$ rem $M_{2}$
- product $\mathbf{P}_{2} \mathbf{P}_{1}$
-two recursive calls
output: $\operatorname{deg}(\mathbf{P}) \leqslant \mathrm{d}$

$$
\begin{array}{r}
O\left(m^{2} M(d)\right) \\
O(m M(d)) \\
O\left(m^{\omega} M(d)\right) \\
2 \mathcal{C}(m, L d / 2\rceil)
\end{array}
$$

output: $\operatorname{deg}(\mathbf{P}) \approx\left\lceil\frac{\mathrm{d}}{\mathrm{m}}\right\rceil$
$\mathrm{S}=0$ and generic F :
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged
$O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right)\right)$
unchanged

- partial linearization
- base case for $\mathrm{d} \approx \mathrm{m}$,
$\left\{\mathcal{C}(m, d)=\mathcal{C}(m,\lfloor d / 2\rfloor)+\mathcal{C}(m,\lceil d / 2\rceil)+O\left(m^{\omega} M(d)\right)\right.$ costs $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
d base cases, each one costs $\mathrm{O}(\mathrm{m})$

$$
\Rightarrow \quad O\left(m^{\omega} M(d) \log (d)\right) \quad O\left(m^{\omega} M\left(\left\lceil\frac{d}{m}\right\rceil\right) \log \left(\left\lceil\frac{d}{m}\right\rceil\right)\right)
$$

| $m$ | $n$ | $d$ | PM-BASIS | PM-BASIS with linearization |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 65536 | 1.6693 | $\mathbf{1 . 2 6 8 9 1}$ |
| 16 | 1 | 16384 | 1.8535 | $\mathbf{0 . 8 9 6 5 2}$ |
| 64 | 1 | 2048 | 2.2865 | $\mathbf{0 . 1 4 3 6 2}$ |
| 256 | 1 | 1024 | 36.620 | $\mathbf{0 . 2 0 6 6 0}$ |

## iterative \& divide and conquer algorithms

vector rational interpolation: recent progress

## overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $n>1$
- [Giorgi-Jeannerod-Villard 2003] achieved $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$ for $\mathbf{F} \bmod x^{d}$, with $n \geqslant 1$ and $n \in O(m)$
- for $\mathbf{s}=\mathbf{0}$ and generic $\mathbf{F}: \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega}\left\lceil\frac{\mathrm{nd}}{\mathrm{m}}\right\rceil\right)$ [Lecerf, ca 2001, unpublished]


## iterative \& divide and conquer algorithms

vector rational interpolation: recent progress

## overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $n>1$
- [Giorgi-Jeannerod-Villard 2003] achieved $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$ for $\mathbf{F} \bmod x^{d}$, with $n \geqslant 1$ and $n \in O(m)$
- for $\mathbf{s}=\mathbf{0}$ and generic $\mathbf{F}: \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega}\left\lceil\frac{\mathrm{nd}}{\mathrm{m}}\right\rceil\right)$ [Lecerf, ca 2001, unpublished]
- more recently: $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega-1} n d\right)$ for $\mathbf{F} \bmod x^{\mathrm{d}}$
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020] $\rightsquigarrow$ any s, no genericity assumption, returns the canonical s-Popov basis


## iterative \& divide and conquer algorithms

vector rational interpolation: recent progress

## overview of the state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé) it also works for $\mathbf{F} \in \mathbb{K}[x]^{m \times n}$ with $n>1$
- [Giorgi-Jeannerod-Villard 2003] achieved $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d}) \log (\mathrm{d})\right)$ for $\mathbf{F} \bmod x^{d}$, with $n \geqslant 1$ and $n \in O(m)$
- for $\mathbf{s}=\mathbf{0}$ and generic $\mathbf{F}: \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega}\left\lceil\frac{\mathrm{nd}}{\mathrm{m}}\right\rceil\right)$ [Lecerf, ca 2001, unpublished]
- more recently: $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega-1} n d\right)$ for $\mathbf{F} \bmod x^{d}$
[Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
$\rightsquigarrow$ any s, no genericity assumption, returns the canonical s-Popov basis
- $\mathbf{F} \bmod M$ and general modular matrix equations in similar complexity [Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017]
[Neiger-Vu 2017] [Rosenkilde-Storjohann 2021]
$\rightsquigarrow$ any s, no genericity assumption, returns the canonical s-Popov basis


## polynomial matrices: two open questions

## deterministic Smith form

$$
\left[\begin{array}{rl}
{[\mathbf{A}}
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
\mathrm{s}_{1} & & & \\
& \mathrm{~s}_{2} & & \\
& & \ddots & \\
& & & \mathrm{~s}_{\mathrm{m}}
\end{array}\right] \quad \begin{aligned}
& \text { - complexity } \mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{\mathrm{~m}}\right) \text { [Storjohann'03] } \\
& \\
& \\
& s_{i+1} \text { divides } \mathrm{s}_{\mathrm{i}}
\end{aligned} \quad \begin{aligned}
& \text { - } \text { requires large field } \mathbb{K}
\end{aligned}
$$

## polynomial matrices: two open questions

## deterministic Smith form



## outline

approximate/interpolate

- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
> characteristic polynomial
modular composition
change of order


## outline

approximate/interpolate
> characteristic polynomial
modular composition
change of order
rer

- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
- previous work and log factors to remove
- result: "asymptotically optimal" algorithm
- new triangularization-based approach


## characteristic polynomial of a matrix

## given $\mathbf{M} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}$, compute $\operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[x]$

$\mathbb{K}$-linear algebra: reductions of most problems to matrix multiplication

$\left.\begin{array}{c}\text { LinSys } \\ \text { Det } \\ \text { Rank } \\ \text { PLUQ } \\ \text { TRSM } \\ \text { Inverse }\end{array}\right\}=\mathrm{O}($ MatMul $)$

## characteristic polynomial of a matrix

$$
\text { given } \mathbf{M} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}} \text {, compute } \operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[x]
$$

$\mathbb{K}$-linear algebra: reductions of most problems to matrix multiplication


MatMul $=\mathrm{O}$ (CharPoly) [Baur-Strassen 1983]

## characteristic polynomial of a matrix

## given $\mathbf{M} \in \mathbb{K}^{\mathfrak{m} \times \mathfrak{m}}$, compute $\operatorname{det}\left(x \mathbf{I}_{\mathfrak{m}}-\mathbf{M}\right) \in \mathbb{K}[\mathrm{x}]$

$\mathbb{K}$-linear algebra: reductions of most problems to matrix multiplication


## charpoly via $\mathbb{K}$-linear algebra

## traces of powers <br> $$
\mathrm{O}\left(\mathrm{~m}^{4}\right) \text { or } \mathrm{O}\left(\mathrm{~m}^{\omega+1}\right)
$$

- [LeVerrier 1840] [Faddeev'49, Souriau'48, ...]
- used by [Csanky'75] to prove CharPoly $\in \mathcal{N} \mathrm{C}^{2}$


## charpoly via $\mathbb{K}$-linear algebra

## traces of powers $\quad \mathrm{O}\left(\mathrm{m}^{4}\right)$ or $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$ <br> - [LeVerrier 1840] [Faddeev'49, Souriau'48, ...] <br> - used by [Csanky'75] to prove CharPoly $\in \mathcal{N e}^{2}$

## determinant expansion

- [Samuelson'42, Berkowitz'84]
- suited to division free algorithms
[Abdlejaoued-Malaschonok'01, Kaltofen-Villard'05]


## charpoly via $\mathbb{K}$-linear algebra

## traces of powers $\quad \mathrm{O}\left(\mathrm{m}^{4}\right)$ or $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$ <br> - [LeVerrier 1840] [Faddeev'49, Souriau'48, ...] <br> - used by [Csanky'75] to prove CharPoly $\in \mathcal{N} \mathrm{C}^{2}$

## determinant expansion

- [Samuelson'42, Berkowitz'84]
- suited to division free algorithms
[Abdlejaoued-Malaschonok'01, Kaltofen-Villard'05]

Krylov methods [Danilevskij'37, Keller-Gehrig'85, P.-Storjohann'07]

- deterministic $\mathrm{O}\left(\mathrm{m}^{3}\right)$ or $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})\right)$
- generic $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- Las Vegas randomized, requires large field $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$

$$
\text { i.e. } \operatorname{card}(\mathbb{K}) \geqslant 2 m^{2}
$$

## charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

## charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

## evaluation-interpolation [folklore] <br> $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$

at $\sim m d$ points, requires large field

## charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

## evaluation-interpolation [folklore] <br> $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$

at $\sim$ md points, requires large field
diagonalization [Storjohann 2003] $\quad \mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})^{2}\right)$
Smith form: Las Vegas randomized, requires large field

## charpoly via polynomial matrices

determinant of matrix $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$

## evaluation-interpolation [folklore] <br> $\mathrm{O}\left(\mathrm{m}^{\omega+1}\right)$

at $\sim$ md points, requires large field

diagonalization [Storjohann 2003] $\mathrm{O}\left(\mathrm{m}^{\omega} \log (\mathrm{m})^{2}\right)$
Smith form: Las Vegas randomized, requires large field

## partial triangularization

- iterative [Mulders-Storjohann 2003]
via weak Popov form computations
- divide and conquer, generic [Giorgi-Jeannerod-Villard 2003] $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ diagonal of Hermite form must be $1, \ldots, 1, \operatorname{det}(\mathbf{A})$
- divide and conquer [N.-Labahn-Zhou 2017]
logarithmic factors in m and d
- divide and conquer with half-dimension blocks $\rightarrow$ no $\log (m)$
- iterative approaches in $m$ steps $\rightarrow$ sometimes no $\log (m)$ [Pernet-Storiohann'07]
- multi-vector Krylov iterates: $\operatorname{CRP}\left(\mathrm{V}\right.$ MV $\left.\ldots \mathbf{M}^{\mathrm{m}} \mathrm{V}\right) \rightarrow \log (\mathrm{m})$

$$
\text { in } \mathbb{K} \text {-linear algebra }
$$

## sources of log factors

## for polynomial matrices

- divide and conquer with half-dimension blocks $\rightarrow$ no $\log (\mathfrak{m})$
- iterative approaches in $m$ steps $\rightarrow$ sometimes no $\log (m)$ [Pemet-Storiohannor]
- multi-vector Krylov iterates: $\operatorname{CRP}\left(\mathrm{V}\right.$ MV $\left.\cdots \mathrm{M}^{\mathrm{m}} \mathrm{V}\right) \rightarrow \log (\mathrm{m})$


## in $\mathbb{K}$-linear algebra

## sources of log factors

## for polynomial matrices

- divide and conquer with half-dimension blocks $\rightarrow$ no $\log (m)$
provided degrees are controlled, e.g. kernel basis [Zhou-Labahn-Storjohann'12]
- divide and conquer on degree $\rightarrow \log (d)$ but no $\log (m)$
e.g. $\mathbb{K}[x]$-MatMul and approximant basis [Giorgi-Jeannerod-Villard'03]
- multi-vector Krylov iterates e.g. [Jeannerod-N.-Schost-Villard'17]
since base cases of recursions on degree $=$ matrices over $\mathbb{K}$ typically adds $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{d} \log (\mathrm{m})\right)$ to the cost, non-negligible when $\mathrm{d}=\mathrm{O}(1)$
- looking for a matrix with unpredictable, unbalanced degrees $\log (m)$ steps in dimension $m \times m$, to uncover the degree profile [Zhou-Labahn'13] reminiscent of obstacles in the derandomization of [Pernet-Storjohann'07]


# [Vincent Neiger \& Clément Pernet, 2021] deterministic algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ 

- polynomial matrices
- ternary divide and conquer
- partial triangularization
- exploiting degree knowledge
characteristic polynomial in the time of matrix multiplication


# [Vincent Neiger \& Clément Pernet, 2021] deterministic algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ 

```
- polynomial matrices
- ternary divide and conquer
- partial triangularization
- exploiting degree knowledge
```


## characteristic polynomial in the time of matrix multiplication

framework for complexity - clarification is needed!

For any MatMul exponent $\omega$ feasible (as of today),
there is a MatMul algorithm in $\mathrm{O}\left(\mathrm{m}^{\omega-\varepsilon}\right)$ for some $\varepsilon>0$
$\Rightarrow$ the CharPoly algorithm of [Keller-Gehrig'85] is

- deterministic
$\rightarrow$ in $\mathrm{O}\left(\mathrm{m}^{\omega-\varepsilon} \log (\mathrm{m})\right) \subset \mathrm{O}\left(\mathrm{m}^{\omega}\right)$
not entirely satisfactory...


# [Vincent Neiger \& Clément Pernet, 2021] deterministic algorithm with complexity $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$ 

```
- polynomial matrices
- ternary divide and conquer
- partial triangularization
- exploiting degree knowledge
```


## characteristic polynomial in the time of matrix multiplication

framework for complexity - classical requirements
matrix multiplication in $\mathbb{K}^{\mathfrak{m} \times m}$

- choose a MatMul algorithm in $\mathrm{O}\left(\mathrm{m}^{\omega}\right)$
- use this one for all MatMul instances
our requirement: $2<\omega \leqslant 3$
we gladly accept $\omega=2.1$, please provide the algorithm
requirement: matrices in $\mathbb{K}[x]_{\leqslant d}^{m \times m}$ multiplied in $\mathrm{O}\left(\mathrm{m}^{\omega} \mathrm{M}(\mathrm{d})\right)$
polynomial multiplication in $\mathbb{K}[x]$
- choose a PolMul algorithm in $\mathrm{O}(\mathrm{M}(\mathrm{d}))$
- use this one for all PolMul instances
our requirement: $M(d)$ is superlinear and submultiplicative and reasonably good

```
2M(d)\leqslantM(2d) M( d, d
M(d) }\inO(\mp@subsup{d}{}{\omega-1-\varepsilon})\mathrm{ for some }\varepsilon>
```


## ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M\left(\frac{D}{m}\right) \log \left(\frac{D}{m}\right)\right)
$$

## ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M\left(\frac{D}{m}\right) \log \left(\frac{D}{m}\right)\right)
$$



## ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M\left(\frac{D}{m}\right) \log \left(\frac{D}{m}\right)\right)
$$



## ternary recursion \& complexity analysis

determinant of $\mathbf{A} \in \mathbb{K}[x]^{m \times m}$ of average row degree $\frac{D}{m}=\frac{\text { degdet }}{m}$

$$
\mathcal{C}(m, D) \leqslant 2 \mathcal{C}\left(\frac{m}{2}, \frac{D}{2}\right)+\mathcal{C}\left(\frac{m}{2}, D\right)+O\left(m^{\omega} M\left(\frac{D}{m}\right) \log \left(\frac{D}{m}\right)\right)
$$



## partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017] triangularization of $m \times m$ matrix $\mathbf{A}$ using $\frac{\mathfrak{m}}{2} \times \frac{\mathfrak{m}}{2}$ blocks
kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$


$$
\text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})
$$

## partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017] triangularization of $m \times m$ matrix $\mathbf{A}$ using $\frac{m}{2} \times \frac{m}{2}$ blocks
not computed

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$\mathbf{K}_{1} \mathbf{A}_{2}+\mathbf{K}_{2} \mathbf{A}_{4}$
 row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$$
\text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})
$$

generic input $\Rightarrow \operatorname{det}(\mathbf{A})$ without $\log (\mathrm{m})$

```
[Giorgi-Jeannerod-Villard'03]
```

$\mathbf{A}_{1}$ and $\mathbf{A}_{3}$ are coprime $\Rightarrow \mathbf{R}=\mathbf{I}_{\mathrm{m} / 2} \Rightarrow \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})$

- compute kernel $\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$; deduce B by MatMul
- recursively, compute $\operatorname{det}(\mathbf{B})$, return it

A and $\left[\begin{array}{ll}\mathbf{K}_{1} & \mathbf{K}_{2}\end{array}\right]$ have degree $\mathrm{d} \Rightarrow \mathbf{B}$ has degree 2d: controlled total degree

$$
\text { complexity } \mathcal{C}(m, d)=\mathcal{C}\left(\frac{\mathrm{m}}{2}, 2 \mathrm{~d}\right)+\mathrm{O}\left(\mathrm{~m}^{\omega} \mathrm{M}(\mathrm{~d}) \log (\mathrm{d})\right)
$$

## partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017] triangularization of $m \times m$ matrix $\mathbf{A}$ using $\frac{\mathrm{m}}{2} \times \frac{\mathrm{m}}{2}$ blocks
not computed

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$\mathbf{K}_{1} \mathbf{A}_{\mathbf{2}}+\mathbf{K}_{2} \mathbf{A}_{4}$
 row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$$
\text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})
$$

general input $\Rightarrow \operatorname{det}(\mathbf{A})$ with $\log (m)$
[Labahn-N.-Zhou'17]
matrix degree not controlled: degree of $\mathbf{B}$ up to $\mathrm{D}=|\operatorname{rdeg}(\mathbf{A})| \leqslant \mathrm{md}$ but controlled average row degree: at most $\frac{D}{m}$

- compute kernel $\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]$; deduce $B$ by MatMul
- compute row basis $\mathbf{R}$
$\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \frac{\mathrm{D}}{m}\right)$ with $\log (m)$
- recursively, compute $\operatorname{det}(\mathbf{R})$ and $\operatorname{det}(\mathbf{B})$, return $\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})$


## partial block triangularization

[Mulders-Storjohann 2003, Giorgi-Jeannerod-Villard 2003, Zhou 2012, N.-Labahn-Zhou 2017] triangularization of $m \times m$ matrix $\mathbf{A}$ using $\frac{\mathrm{m}}{2} \times \frac{\mathrm{m}}{2}$ blocks
not computed

kernel basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$\mathbf{K}_{1} \mathbf{A}_{\mathbf{2}}+\mathbf{K}_{2} \mathbf{A}_{4}$
 row basis of $\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{3}\end{array}\right]$

$$
\text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{R}) \operatorname{det}(\mathbf{B})
$$

be lazy: if hard to compute, don't compute
obstacle $=$ removing log factors in row basis computation
$\Rightarrow$ solution: remove row basis computation

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

## further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

## further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

16 no $\log (m)$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$

- 9 requires nonsingular $\mathbf{A}_{1}$, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
- 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{1}$, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.
(this implies $\sum \operatorname{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2$ )


## further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

16 no $\log (m)$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$

- $\boldsymbol{r}$ requires nonsingular $\mathbf{A}_{1}$, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
- 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{1}$, but requires $\sum \operatorname{rdeg}\left(\mathrm{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.
(this implies $\left.\sum \operatorname{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2\right)$


## solution: require A in weak Popov form

## (the characteristic matrix $\mathbf{A}=x \mathbf{I}_{m}-\mathbf{M}$ is in Popov form)

1. implies $\mathbf{A}_{1}$ nonsingular and $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ up to easy transformations
${ }_{16}$ both $\mathbf{A}_{1}$ and $\mathbf{B}$ are also in weak Popov form $\Rightarrow$ suitable for recursive calls
${ }_{\boldsymbol{q}} \mathbf{K}_{2}$ is in "shifted reduced" form... find weak Popov $\mathbf{P}$ with same determinant

## further obstacles (consequences of laziness)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{I}_{\mathfrak{m} / 2} & \mathbf{0} \\
\mathbf{K}_{1} & \mathbf{K}_{2}
\end{array}\right]\left[\begin{array}{ll}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{A}_{3} & \mathbf{A}_{4}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{A}_{2} \\
\mathbf{0} & \mathbf{B}
\end{array}\right]} \\
& \text { property: } \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{A}_{1}\right) \operatorname{det}(\mathbf{B}) / \operatorname{det}\left(\mathbf{K}_{2}\right)
\end{aligned}
$$

16 no $\log (m)$ in the computation of $\mathbf{A}_{1}, \mathbf{B}, \mathbf{K}_{2}$

- $\mathbf{r}$ requires nonsingular $\mathbf{A}_{1}$, otherwise $\operatorname{det}\left(\mathbf{K}_{2}\right)=0$
- 3 recursive calls in matrix size $m / 2$ is $\boldsymbol{i}$, but requires $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ otherwise degree control is too weak.
(this implies $\left.\sum \operatorname{rdeg}\left(\mathbf{K}_{2}\right) \leqslant \mathrm{D} / 2\right)$


## solution: require A in weak Popov form

## (the characteristic matrix $\mathbf{A}=x \mathbf{I}_{\mathrm{m}}-\mathbf{M}$ is in Popov form)

${ }^{6}$ implies $\mathbf{A}_{1}$ nonsingular and $\sum \operatorname{rdeg}\left(\mathbf{A}_{1}\right) \leqslant \mathrm{D} / 2$ up to easy transformations
${ }_{16}$ both $\mathbf{A}_{1}$ and $\mathbf{B}$ are also in weak Popov form $\Rightarrow$ suitable for recursive calls
${ }^{9} \mathbf{K}_{2}$ is in "shifted reduced" form... find weak Popov $\mathbf{P}$ with same determinant
solution: exploit degree knowledge to accelerate transformations

$$
\text { s-reduced } \Rightarrow \text { s-weak Popov } \Rightarrow \text { s-Popov }
$$

## outline

approximate/interpolate
> characteristic polynomial
modular composition
change of order
rer

- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
- previous work and log factors to remove
- result: "asymptotically optimal" algorithm
- new triangularization-based approach


## outline

approximate/interpolate
characteristic polynomial
modular composition

- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
- previous work and log factors to remove
- result: "asymptotically optimal" algorithm
- new triangularization-based approach
- problem and context
- acceleration via polynomial matrices
- overview of the main new ingredients


## univariate polynomials: open problems

polynomials in $\mathbb{K}[x]_{\leqslant n}$ : almost all basic operations are quasi-linear
i.e. complexity $\mathrm{O}^{\sim}(\mathrm{n})$

- addition $f+g$, multiplication $f * g$
- division with remainder $f=q g+r$
- extended GCD $\mathrm{fu}+\mathrm{gv}=\operatorname{gcd}(\mathrm{f}, \mathrm{g})$
- truncated inverse $\mathrm{f}^{-1} \bmod \mathrm{x}^{\mathrm{n}}$
- multipoint eval. $\mathrm{f} \mapsto \mathrm{f}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right)$
- interpolation $f\left(x_{1}\right), \ldots, f\left(x_{n}\right) \mapsto f$
[von zur Gathen, Gerhard - Modern Computer Algebra]


## except...

## univariate polynomials: open problems

## minimal polynomial

given $g$, $a$, compute $f$ such that $f(a)=0 \bmod g$

## modular composition

given $g$, $a, h$, compute $h(a) \bmod g$
related problems: power projections \& inverse composition


The year is 2021 A.D.
Basic Polynomial Algebra is entirely occupied by Computer Algebraists.
Well not entirely!
One small village of indomitable open problems still holds out against the invaders. And life is not easy for the scientists who garrison the fortified camps of ISSAC, JNCF, Inria, CNRS...

## complexity improvements

## [Neiger-Salvy-Schost-Villard J.ACM 2024]

for generic input || using randomization

## minimal polynomial modular composition

```
exponent (\omega+2)/3: 1.67 for }\omega=3,\quad1.6\mathrm{ for }\omega=2.8,\quad1.46\mathrm{ for }\omega=2.3
```

previous work (composition)

- naive: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$
- [Brent-Kung 1978]: $\mathrm{O}\left(\mathrm{n}^{(\omega+1) / 2}\right)$
exponent $(\omega+1) / 2$ : 2 for $\omega=3$,
previous work (minpoly)
- naive: $\mathrm{O}^{\sim}\left(\mathrm{n}^{\omega}\right)$ or $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$
- [Shoup 1994]: O( $\left.\mathrm{n}^{(\omega+1) / 2}\right)$
1.9 for $\omega=2.8, \quad 1.69$ for $\omega=2.38$
breakthough [Kedlaya-Umans 2011]:
composition in $\mathrm{O}^{\sim}(\mathrm{n} \log (\mathrm{q}))$ bit operations, over $\mathbb{K}=\mathbb{F}_{\mathrm{q}}$
quasi-linear bit complexity, yet currently impractical [van der Hoeven-Lecerf 2020]


## software improvements

## efficient implementation for the minimal polynomial for large degrees, outperforms the state of the art

implementation for modular composition is in progress
field $\mathbb{K}=\mathbb{F}_{p}$, prime $p$ with 60 bits Intel Core i7-7600U @ 2.80 GHz
random input polynomials $\Rightarrow$ "generic"

|  | general |  | prime | FFT |  | prime |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | NTL | new | NTL | new |  |  |
| 5 k | 0.349 | 0.496 | 0.130 | 0.208 |  |  |
| 20 k | 3.13 | 3.19 | 1.21 | 1.39 |  |  |
| 80k | 31.5 | 23.6 | 13.9 | 10.7 |  |  |
| 320k | 311 | 178 | 158 | 91.0 |  |  |

relies on PML for polynomial matrix operations:

- multiplication for various parameters
- determinant
- matrix-Padé approximation
- matrix division with remainder
- system solving
- kernel
input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
$h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g
naive via Horner evaluation
classical composition algorithms
baby-step giant-step algorithm
input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
$h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g


## naive via Horner evaluation

## classical composition algorithms

## baby-step giant-step algorithm

[Paterson-Stockmeyer 1971, Brent-Kung 1978]
rely on matrix multiplication using "slices" of length $v=\sqrt{n}$ $h(y)=S_{0}(y)+y^{v} S_{1}(y)+y^{2 v} S_{2}(y)+\cdots+y^{(v-1)^{v}} S_{v-1}(y)$
define $\alpha=a^{v} \bmod g$

$$
h(a)=S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \bmod g
$$

complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{3 / 2}\right)$ for $\mathrm{O}(\sqrt{\mathrm{n}})$ multiplications by a and $\alpha$ modulo g $+\mathrm{O}\left(\mathrm{n}^{(\omega+1) / 2}\right)$ for matrix multiplication
in practice: - much faster than naive approach

- $\mathrm{O}^{\sim}\left(\mathrm{n}^{3 / 2}\right)$ regime lasts until largish $n$
input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
$h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g in practice: constant-factor speedup via precomputations on a and g


## naive via Horner evaluation

## classical composition algorithms

## baby-step giant-step algorithm

| // Horner evaluation $\mathrm{h}(\mathrm{a})$, modulo g | n | Horner | Horner with precomputations | NTL built-in Brent-Kung |
| :---: | :---: | :---: | :---: | :---: |
| zz_pX b; | 100 | 0.00229 | 0.00227 | 0.000441 |
| $\mathrm{b}=\operatorname{coeff}(\mathrm{h}, \mathrm{n}-1)$; | 200 | 0.0162 | 0.00691 | 0.00110 |
| for (long $k=n-2 ; k>=0 ; \cdots$ ) | 400 | 0.117 | 0.0278 | 0.00312 |
| $\mathrm{b}=(\mathrm{a} * \mathrm{~b}) \% \mathrm{~g}$; | 800 | 0.637 | 0.116 | 0.00944 |
| $\mathrm{b}=\mathrm{b}+\operatorname{coeff}(\mathrm{h}, \mathrm{k})$; | 1600 | 2.52 | 0.515 | 0.0281 |
| \} | 3200 | 10.4 | 2.23 | 0.0884 |
|  | 6400 | 45.8 | 9.61 | 0.273 |

field $\mathbb{K}=\mathbb{F}_{p}$, prime $p$ with 60 bits
NTL 11.4.3 on Intel Core i7-7600U @ 2.80 GHz
input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
$h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

## naive via Horner evaluation

## classical composition algorithms

## baby-step giant-step algorithm

$$
\begin{aligned}
h(a) & =S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \quad \text { recall: } \alpha=a^{v} \bmod g \\
& =\left[\begin{array}{llll}
1 & \alpha & \cdots & \alpha^{v-1}
\end{array}\right]\left[\begin{array}{c}
S_{0}(a) \\
S_{1}(a) \\
\vdots \\
S_{v-1}(a)
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & \alpha & \cdots & \alpha^{v-1}
\end{array}\right]\left[\begin{array}{cccc}
S_{0,0} & S_{0,1} & \cdots & S_{0, v-1} \\
S_{1,0} & S_{1,1} & \cdots & S_{1, v-1} \\
\vdots & \vdots & & \vdots \\
S_{v-1,0} & S_{v-1,1} & \cdots & S_{v-1, v-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
a \\
\vdots \\
a^{v-1}
\end{array}\right]
\end{aligned}
$$

input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
$h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

## naive via Horner evaluation

## classical composition algorithms

## baby-step giant-step algorithm

$$
\begin{aligned}
h(a) & =S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \quad \text { recall: } \alpha=a^{v} \bmod g \\
& =\left[\begin{array}{llll}
1 & \alpha & \cdots & \alpha^{v-1}
\end{array}\right]\left[\begin{array}{c}
S_{0}(a) \\
S_{1}(a) \\
\vdots \\
S_{v-1}(a)
\end{array}\right] \\
& =\left[\begin{array}{lllll}
1 & \alpha & \cdots & \alpha^{v-1}
\end{array}\right]\left[\begin{array}{cccc}
S_{0,0} & S_{0,1} & \cdots & S_{0, v-1} \\
S_{1,0} & S_{1,1} & \cdots & S_{1, v-1} \\
\vdots & \vdots & & \vdots \\
S_{v-1,0} & S_{v-1,1} & \cdots & S_{v-1, v-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
a \\
\vdots \\
a^{v-1}
\end{array}\right]
\end{aligned}
$$

input: $g(x)$ of degree $n, \quad a(x)$ of degree $<n, \quad h(y)$ of degree $<n$ output: $h(a(x)) \bmod g(x)$
$h(a) \bmod g=h_{0}+h_{1}(a \bmod g)+h_{2}\left(a^{2} \bmod g\right)+\cdots+h_{n-1}\left(a^{n-1} \bmod g\right)$
complexity: $\mathrm{O}^{\sim}\left(\mathrm{n}^{2}\right)$ for $\mathrm{O}(\mathrm{n})$ multiplications by a modulo g
in practice: constant-factor speedup via precomputations on a and g

## naive via Horner evaluation

## classical composition algorithms

## baby-step giant-step algorithm

$$
\begin{aligned}
h(a) & =S_{0}(a)+\alpha S_{1}(a)+\alpha^{2} S_{2}(a)+\cdots+\alpha^{v-1} S_{v-1}(a) \quad \text { recall: } \alpha=a^{v} \bmod g \\
& =\left[\begin{array}{llll}
1 & \alpha & \cdots & \alpha^{v-1}
\end{array}\right]\left[\begin{array}{c}
S_{0}(a) \\
S_{1}(a) \\
\vdots \\
S_{v-1}(a)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
S_{0,0} & S_{0,1} & \text { length } v \text { vectors over } \mathbb{K}[x]<n \\
S_{1} & S_{0, v-1} \\
& =\text { matrix multiplication over } \mathbb{K}(n \times \sqrt{n}) *(\sqrt{n} \times \sqrt{n}) *(\sqrt{n} \times n)
\end{array}\right.
\end{aligned}
$$

## Shoup's minpoly algorithm

[Shoup 1994, 1999]
0 . choose random vector $\left[\ell_{1} \cdots \ell_{n}\right] \in \mathbb{K}^{n}$
$\rightarrow$ defines a linear form $\ell: \mathbb{K}[x] /\langle\mathbf{g}\rangle \rightarrow \mathbb{K}$

1. compute linear recurrent sequence $\ell(1), \ell(a \bmod g), \ldots, \ell\left(a^{2 n-1} \bmod g\right)$
2. compute minimal recurrence relation $f(y)$ via Berlekamp-Massey / Padé approximation

$$
\begin{gathered}
\text { minpoly } f(y) \\
\Downarrow \\
f(a)=0 \bmod g \\
\Downarrow \\
f(y)=\text { relation for }\left(a^{k} \bmod g\right)_{k} \\
\Downarrow \\
f(y)=\text { relation for }\left(\ell\left(a^{k} \bmod g\right)\right)_{k}
\end{gathered}
$$

## Shoup's minpoly algorithm

## [Shoup 1994, 1999]

0 . choose random vector $\left[\ell_{1} \cdots \ell_{n}\right] \in \mathbb{K}^{n}$
$\rightarrow$ defines a linear form $\ell: \mathbb{K}[\mathbf{x}] /\langle\mathrm{g}\rangle \rightarrow \mathbb{K}$

1. compute linear recurrent sequence $\ell(1), \ell(a \bmod g), \ldots, \ell\left(a^{2 n-1} \bmod g\right)$
2. compute minimal recurrence relation $f(y)$ via Berlekamp-Massey / Padé approximation

$$
\begin{gathered}
\text { minpoly } f(y) \\
\Downarrow \\
f(a)=0 \bmod g
\end{gathered}
$$

$$
f(y)=\text { relation for }\left(a^{k} \bmod g\right)_{k}
$$ $\Downarrow$

$f(y)=$ relation for $\left(\ell\left(a^{k} \bmod g\right)\right)_{k}$
$\rightarrow$ related to algorithm of [Wiedemann 1986]:

$$
\ell\left(a^{\mathrm{k}} \bmod \mathrm{~g}\right)=\left[\begin{array}{lll}
\ell_{1} & \cdots & \ell_{n}
\end{array}\right] \quad \mathbf{A}^{\mathrm{k}}\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

where $\mathbf{A} \in \mathbb{K}^{n \times n}$ is the "multiplication matrix" of $a(x)$ modulo $g(x)$
for generic $a(x)$ and $g(0) \neq 0$, choose $\ell=\left[\begin{array}{llll}1 & 0 & \cdots & 0\end{array}\right]$
then $\ell\left(a^{k} \bmod g\right)=$ constant coeff of $a^{k} \bmod g$

## new minpoly algorithm: blocking \& baby-step giant-step

block Wiedemann approach [Coppersmith 1994]
iterating projection by $1 \times n$ vector on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 n-1}$
$\Rightarrow$ iterating projection by $\mathrm{m} \times \mathfrak{n}$ matrix on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 \mathrm{~d}-1}$ choose $\mathrm{m} \ll \mathrm{n}$ and take $\mathrm{d}=\mathrm{n} / \mathrm{m}$

## new minpoly algorithm: blocking \& baby-step giant-step

block Wiedemann approach [Coppersmith 1994]
iterating projection by $1 \times n$ vector on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 n-1}$
$\Rightarrow$ iterating projection by $\mathrm{m} \times \mathfrak{n}$ matrix on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 \mathrm{~d}-1}$

$$
\text { choose } \mathrm{m} \ll \mathrm{n} \text { and take } \mathrm{d}=\mathrm{n} / \mathrm{m}
$$

1. compute linear recurrent matrix sequence:

$$
\mathbf{I}_{m}, \quad\left[\begin{array}{ll}
\mathbf{I}_{m} & \mathbf{0}
\end{array}\right] \mathbf{A}\left[\begin{array}{c}
\mathbf{I}_{m} \\
\mathbf{0}
\end{array}\right], \ldots, \quad\left[\begin{array}{ll}
\mathbf{I}_{m} & \mathbf{0}
\end{array}\right] \mathbf{A}^{2 \mathrm{~d}-1}\left[\begin{array}{c}
\mathbf{I}_{\mathrm{m}} \\
\mathbf{0}
\end{array}\right]
$$

2. compute minimal matrix recurrence relation $\mathbf{P}(y) \in \mathbb{K}[y]^{m \times m}$ via matrix-Berlekamp-Massey / matrix-Padé, complexity $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)$

## new minpoly algorithm: blocking \& baby-step giant-step

block Wiedemann approach [Coppersmith 1994] iterating projection by $1 \times n$ vector on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 n-1}$
$\Rightarrow$ iterating projection by $\mathrm{m} \times \mathrm{n}$ matrix on powers $\mathbf{A}^{0}, \mathbf{A}^{1}, \ldots, \mathbf{A}^{2 \mathrm{~d}-1}$

$$
\text { choose } \mathrm{m} \ll \mathrm{n} \text { and take } \mathrm{d}=\mathrm{n} / \mathrm{m}
$$

1. compute linear recurrent matrix sequence:

$$
\mathbf{I}_{m}, \quad\left[\begin{array}{ll}
\mathbf{I}_{\mathrm{m}} & \mathbf{0}
\end{array}\right] \mathbf{A}\left[\begin{array}{c}
\mathbf{I}_{\mathrm{m}} \\
\mathbf{0}
\end{array}\right], \ldots, \quad\left[\begin{array}{ll}
\mathbf{I}_{\mathrm{m}} & \mathbf{0}
\end{array}\right] \mathbf{A}^{2 \mathrm{~d}-1}\left[\begin{array}{c}
\mathbf{I}_{\mathrm{m}} \\
\mathbf{0}
\end{array}\right]
$$

2. compute minimal matrix recurrence relation $\mathbf{P}(\mathrm{y}) \in \mathbb{K}[y]^{m \times m}$ via matrix-Berlekamp-Massey / matrix-Padé, complexity $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)$
step 1: computing coefficient $i$ of $x^{j} a^{k} \bmod g$, for $i, j<m, k<2 d$ $\rightarrow$ new baby-step giant-step in $\mathrm{O}^{\sim}\left(\mathrm{md}^{(\omega+1) / 2}\right)$

- $f(y)=\operatorname{det}(\mathbf{P}(y))$ is the minimal polynomial of a modulo $g$
$\rightarrow \mathbf{P}(\mathrm{y})$ is useful for modular composition


## modular composition, first step

summary of the minpoly algorithm:

- specialization of first step of bivariate resultant [Villard 2018]
- accelerated by baby-step giant-step $\rightarrow \mathrm{O}^{\sim}\left(\mathrm{md}^{(\omega+1) / 2}+\mathrm{m}^{\omega} \mathrm{d}\right)$
- genericity or randomization required for efficiency
computes an $\mathfrak{m} \times \mathfrak{m}$ polynomial matrix $\mathbf{P}(y)$ of degree $\leqslant d$ whose columns are minimal polynomial vectors of a mod g
change of representation
univariate vector $\longleftrightarrow$ bivariate polynomial

$$
\left[\begin{array}{c}
F_{0}(y) \\
F_{1}(y) \\
\vdots
\end{array}\right] \longleftrightarrow F(x, y)=\sum_{i<m} F_{i}(y) x^{i}
$$

$$
\left[F_{m-1}(y)\right]
$$

$$
F(x, a)=0 \bmod g
$$

columns of $\mathbf{P}(y) \quad \Rightarrow \quad F(x, a)=0 \bmod g$

Popov basis of submodule of canceling vectors in $\mathbb{K}[y]^{m}$

## modular composition, second step

$$
\begin{aligned}
\text { composition } h(y) \rightarrow b(x) & =h(a) \bmod g & & H(x, y)=h(y)+F(x, y) \text { for any } \\
& =h(a)+F(x, a) \bmod g & & F(x, y) \text { generated by } \mathbf{P}(y)
\end{aligned}
$$

find $H(x, y)$ such that $\left\{\begin{array}{l}\operatorname{deg}_{x}(H)<m, \quad \operatorname{deg}_{y}(H)<d \\ h(a)=H(x, a) \bmod g\end{array}\right.$

## modular composition, second step

$$
\begin{aligned}
\text { composition } h(y) \rightarrow b(x) & =h(a) \bmod g & & H(x, y)=h(y)+F(x, y) \text { for any } \\
& =h(a)+F(x, a) \bmod g & & F(x, y) \text { generated by } \mathbf{P}(y)
\end{aligned}
$$

find $H(x, y)$ such that $\left\{\begin{array}{l}\operatorname{deg}_{x}(H)<m, \quad \operatorname{deg}_{y}(H)<d \\ h(a)=H(x, a) \bmod g\end{array}\right.$
computing $\mathrm{H}(\mathrm{x}, \mathrm{a}) \bmod \mathrm{g}$ costs $\mathrm{O}^{\sim}\left(\mathrm{md}^{(\omega+1) / 2}\right)$
extending Brent\&Kung's approach [Nüsken-Ziegler'04]


## modular composition, second step

$$
\begin{aligned}
\text { composition } h(y) \rightarrow b(x) & =h(a) \bmod g & & H(x, y)=h(y)+F(x, y) \text { for any } \\
& =h(a)+F(x, a) \bmod g & & F(x, y) \text { generated by } \mathbf{P}(y)
\end{aligned}
$$

$$
\text { find } H(x, y) \text { such that } \quad\left\{\begin{array}{l}
\operatorname{deg}_{x}(H)<m, \quad \operatorname{deg}_{y}(H)<d \\
h(a)=H(x, a) \bmod g
\end{array}\right.
$$

computing $\mathrm{H}(\mathrm{x}, \mathrm{a}) \bmod \mathrm{g}$ costs $\mathrm{O}^{\sim}\left(\mathrm{md}^{(\omega+1) / 2}\right)$
extending Brent\&Kung's approach [Nüsken-Ziegler'04]
finding $\mathrm{H}(\mathrm{x}, \mathrm{y})$ : matrix division with remainder
$\left[\begin{array}{c}h(y) \\ 0 \\ \vdots \\ 0\end{array}\right]=\mathbf{P}(y) \mathbf{Q}(y)+\left[\begin{array}{c}\mathrm{H}_{0}(\mathrm{y}) \\ \mathrm{H}_{1}(\mathrm{y}) \\ \vdots \\ \mathrm{H}_{\mathrm{m}-1}(\mathrm{y})\end{array}\right]$ degree $<\mathrm{d}$

$$
\begin{gathered}
\text { complexity minimized for } \\
m=n^{1 / 3}, d=n^{2 / 3} \\
O^{\sim}\left(n^{(\omega+2) / 3}\right)
\end{gathered}
$$

complexity $\mathrm{O}^{\sim}\left(\mathrm{m}^{\omega} \mathrm{d}\right)$

## outline

approximate/interpolate
characteristic polynomial
modular composition

- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
- previous work and log factors to remove
- result: "asymptotically optimal" algorithm
- new triangularization-based approach
- problem and context
- acceleration via polynomial matrices
- overview of the main new ingredients


## outline

approximate/interpolate
characteristic polynomial
modular composition
change of order

- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
- previous work and log factors to remove
- result: "asymptotically optimal" algorithm
- new triangularization-based approach
- problem and context
- acceleration via polynomial matrices
- overview of the main new ingredients
- problem and result
- assumptions and existing algorithms
- paradigm shift: sparse $\rightarrow$ structured


## problem: change of monomial order

## Input:

- two monomial orders $\preccurlyeq_{1}$ and $\preccurlyeq_{2}$ on $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$
- a reduced $\preccurlyeq_{1}$-Gröbner basis $\mathcal{G}$


## Assumption:

- the ideal $\mathcal{J}=\langle\mathcal{G}\rangle$ is zero-dimensional


## Output:

- the reduced $\preccurlyeq 2$-Gröbner basis of $\mathcal{J}$


## problem: change of monomial order

## Input:

$\rightarrow$ two monomial orders $\preccurlyeq_{1}$ and $\preccurlyeq_{2}$ on $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$

- a reduced $\preccurlyeq_{1}$-Gröbner basis $\mathcal{G}$


## Assumption:

- the ideal $\mathcal{J}=\langle\mathcal{G}\rangle$ is zero-dimensional


## Output:

- the reduced $\preccurlyeq_{2}$-Gröbner basis of $\mathcal{J}$
example: solving multivariate polynomial systems

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array} \quad \text { with finitely many solutions over } \overline{\mathbb{K}}\right.
$$

$\mathcal{G}_{\text {drr }}$ the reduced $\preccurlyeq_{\text {drrl }}-\mathrm{GB}$ of $\left\langle\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right\rangle$ [Faugère's F4/F5, 2002]

$$
\begin{aligned}
& \quad \text { change of order } \preccurlyeq_{\text {drl }} \rightarrow \preccurlyeq_{\text {lex }} \\
& \mathcal{G}_{\text {lex }} \text { the reduced } \preccurlyeq_{\text {lex }}-\mathrm{GB} \text { of }\left\langle\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right\rangle
\end{aligned}
$$

## problem: change of monomial order

## Input:

$\rightarrow$ two monomial orders $\preccurlyeq_{1}$ and $\preccurlyeq_{2}$ on $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$

- a reduced $\preccurlyeq_{1}$-Gröbner basis $\mathcal{G}$


## Assumption:

- the ideal $\mathcal{J}=\langle\mathcal{G}\rangle$ is zero-dimensional


## Output:

- the reduced $\preccurlyeq_{2}$-Gröbner basis of $\mathcal{J}$
example: multivariate interpolation with degree constraints
$\mathcal{J}=$ vanishing ideal of known points $\alpha_{1}, \ldots, \alpha_{D} \in \mathbb{K}^{n}$
$\preccurlyeq=$ monomial order defined from the degree constraints
$\mathcal{G}_{\text {lex }}$ the reduced $\preccurlyeq_{\text {lex }}-\mathrm{GB}$ of $\mathcal{J}$
[Möller-Bucherberger 1982, Cerlienco-Mureddu 1995, Ceria-Mora 2019]
change of order $\preccurlyeq$ lex $\rightarrow \preccurlyeq$
$\mathcal{G}$ the reduced $\preccurlyeq-G B$ of $\mathcal{J}$

July 4-7, 2022
International Symposium on
Symbolic and Algebraic Computation

1
[Jérémy Berthomieu \& Vincent Neiger \& Mohab Safey EI Din, ISSAC 2022] deterministic change of order with complexity $\mathrm{O}^{\sim}\left(\mathrm{t}^{\omega-1} \mathrm{D}\right)$
change of order: better complexity \& faster implementation for $\preccurlyeq_{2}=\preccurlyeq_{\text {lex }}$, under classical assumptions (stability + shape position)
change of order: better complexity \& faster implementation for $\preccurlyeq_{2}=\preccurlyeq_{\text {lex }}$, under classical assumptions (stability + shape position)

## description of complexity

- $\omega=$ complexity exponent of matrix multiplication
$\mathrm{O}^{\sim}(\cdot)$ hides a few logarithmic terms in $\frac{\mathrm{D}}{\mathrm{t}}$
- $\mathrm{D}=$ degree of the ideal $\mathcal{J}=\langle\mathcal{G}\rangle$
$=$ vector space dimension of $\mathbb{K}[x] / \mathcal{J}$
$\bullet \mathrm{t}=$ number of polynomials in $\mathcal{G}$ with leading term divisible by $\mathrm{x}_{\mathrm{n}}$ (in particular, $\mathrm{t} \leqslant \mathrm{D}$ )
change of order: better complexity \& faster implementation for $\preccurlyeq_{2}=\preccurlyeq_{\text {lex }}$, under classical assumptions (stability + shape position)


## summary of previous results

general algorithms (deterministic, $\preccurlyeq_{1} \rightarrow \preccurlyeq_{2}$ ):

- no assumption: $\mathrm{O}\left(\mathrm{nD}^{3}\right)$
[Faugere-Gianni-Lazard-Mora 1993]
- with stability: $\mathrm{O}\left(\mathrm{nD}^{\omega} \log (\mathrm{D})\right)$ [Neiger-Schost 2020]
specific algorithms (randomized, $\preccurlyeq_{\text {drl }} \rightarrow \preccurlyeq_{\text {lex }}$, with stability+shape):
- dense linear algebra: $\mathrm{O}\left(\mathrm{D}^{\omega} \log (\mathrm{D})\right) \quad$ [Faugère-Gaudry-Huot-Renault 2014]
- sparse linear algebra: $\mathrm{O}\left(\mathrm{tD}^{2}\right)$
[Faugère-Mou 2011+2017]
change of order: better complexity \& faster implementation

$$
\text { for } \preccurlyeq_{2}=\preccurlyeq_{\text {lex }} \text {, under classical assumptions (stability }+ \text { shape position) }
$$

## ingredients of new algorithm

- paradigm shift concerning the core computational object:
$M \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}$ with t dense rows $\xrightarrow{\text { compress }} \mathbf{P} \in \mathbb{K}\left[x_{n}\right]^{\mathrm{t} \mathrm{\times t}}$ of degree $\frac{\mathrm{D}}{\mathrm{t}}$ multiplication by $x_{n}$ in $\mathbb{K}[x] / \mathcal{J} \longrightarrow \mathbb{K}\left[x_{n}\right]$-module, generates $\mathcal{J}$
- preserving essential consequence of stability: $\mathbf{P}$ obtained for free from $\mathcal{G}$
- new result: Hermite normal form of $\mathbf{P}$ yields $\mathcal{G}_{\text {lex }}$
sage: M. degree matrix (shifts $=[-1,2]$, row wise $=$ False
$\left[\begin{array}{lll}0 & -2 & -1\end{array}\right]$
$\left[\begin{array}{llll}5 & -2 & -21\end{array}\right.$
hermite_form(include_zero_rows=True, transformation=False)
Return the Hermite form of this matrix.
The Hermite form is also normalized, i.e., the pivot polynomials are monic.
INPUT:
- include_zero_rows - boolean (default: True); if False, the zero rows in the output 177 deleted
- transformation - boolean (default: False); if True, return the transformation mat ${ }^{179}$

Veclong rem order(order);
// indtces of columns/orders that remain to be dealt with Veclong rem index(cdim);
std: :iota(rem_index,begin( ), ren_index,end (), 0);
11 atl along the algorthm, shift $=$ shifted row degrees of approximant // (initially, input shift $=$ shifted row degree of the identity matrix)

```
Whtle (not rem_order.empty())
```

\{
/** Invariant:

*     - appbas is a shift-ordered weak Popov approximant bastis for (pmat, reached_order) where doneorder is the tuple such that
* $\rightarrow$ reached_order[j] + rem_order[j] $==$ order[j] for $]$ appearing $\rightarrow \rightarrow$ reached order $[j]==$ order $[j]$ for $f$ not appearing in ren index


## software performance

```
EXAMPLES:
```

```
sage: M.<x> = GF(7) []
```

sage: M.<x> = GF(7) []
sage: A = natrix(M, 2, 3, lx, 1, 2*x, x, 1+x, 2])
sage: A = natrix(M, 2, 3, lx, 1, 2*x, x, 1+x, 2])
sage: A hermite form()
sage: A hermite form()
[ [$$
\begin{array}{cccc}{[}&{x}&{\overline{1}}&{\mp@subsup{2}{}{*}x}\end{array}
$$]
[ [$$
\begin{array}{cccc}{[}&{x}&{\overline{1}}&{\mp@subsup{2}{}{*}x}\end{array}
$$]
10 < 5*x + 2]
10 < 5*x + 2]
sage: A.hermite form(transformation=True)
sage: A.hermite form(transformation=True)
llll
llll
sage: A}=\mathrm{ natrix (M, 2, 3, lx, 1, 2*x, 2*x, 2, 4*x])
sage: A}=\mathrm{ natrix (M, 2, 3, lx, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite form(transformation=Frue, include zero rows=False)
sage: A.hermite form(transformation=Frue, include zero rows=False)
(t x 12kx1, [% 41)
(t x 12kx1, [% 41)
sage: H,U.= A.hermite_forn(transformation=True, include_zero_rows=True); H,U
sage: H,U.= A.hermite_forn(transformation=True, include_zero_rows=True); H,U
[ x 1 2*x] [04]
[ x 1 2*x] [04]
[ 0}0
[ 0}0
sage: U * A == H
sage: U * A == H
True
True
sage: H, U = A.hermite forn(transformation=True, include zero row/s=False)
sage: H, U = A.hermite forn(transformation=True, include zero row/s=False)
sage: U' A
sage: U' A
5alge: (U A
5alge: (U A
sage: | - A =- H
sage: | - A =- H
True

```
True
```


## See also: is hermite()

is_hermite(row wise=True, lower_echelon=False, include _zero vectors=True)
Return a boolean indicating whether this matrix is in Hermite form

```
if (order_wise)
    j = std::dtstance(rem_order.begin(), std::max_element(rem_order.b
long deg = order[rem_index[j]] - rem_order[j];
If record the coefticients of degree deg on+the column jo of residual
// also keep track of which of these are nonzero,
// and among the nonzero ones, which is the first with smallest shift
Vec<zz_p> const_residual;
const_residuat. SetLength(rdin);
veclong indices_nonzero;
long piv= =-1;
for (long i = 0; i < rdim; ++i)
[
    const_residual[i] = coeff(residual[i][j],deg);
    if (const_residual[i] != 0)
    {
        tndtces_nonzero.push_back(i);
        if (piv<0 || shift[i] < shift[piv])
        ptv=l;
    }
}
// tf indices_nonzero is empty, const_residual is already zero, there
if (not indices_nonzero,empty())
[
    1/ update all rows of appoas and residual in indices nonzero ex
src/mat lzz pX approximant.cpp
    );
open-source \(\mathrm{C} / \mathrm{C}++\) software libraries multivariate polynomial systems msolve https://msolve.lip6.fr/
univariate polynomial matrices
PML https://github.com/vneiger/pml

VecLong rem_order(order);
VecLong rem index(cdim);
std:iiota(rem_index,begin(), ren_index.end (), 0); If dth atong the atgorthm, stiti = shtuced pow degrees of approximan Whtle (not rem_order.empty())

Invartant
- appbas is a shift-ordered weak Popoy approximant basts for
(pmat, reached_order) where doneorder is the tuple such that

\section*{software performance}

open-source \(\mathrm{C} / \mathrm{C}++\) software libraries multivariate polynomial systems msolve https://msolve.lip6.fr/ univariate polynomial matrices PML https://github.com/vneiger/pml
compared algorithms:
- sparse FGLM [Faugère-Mou 2011,2017]
- block-Wiedemann variant [folklore]
- new Hermite normal form-based algorithm (without SIMD vectorization for the moment)

\section*{software performance}

\section*{EXAMPLES:}
\(\square\)

\footnotetext{
See also: is hermite(
}

if (not indices_nonzero, empty())
open-source \(C / C++\) software libraries multivariate polynomial systems msolve https://msolve.lip6.fr/
univariate polynomial matrices
PML https://github.com/vneiger/pml
compared algorithms:
- sparse FGLM [Faugère-Mou 2011,2017]
- block-Wiedemann variant [folklore]
- new Hermite normal form-based algorithm (without SIMD vectorization for the moment)

\section*{software performance}
random square system, \(n\) variables, degree \(d\) over \(\mathbb{K}=\mathbb{Z} / \mathrm{p} \mathbb{Z}\) with 30 -bit modulus p
open-source \(C / C++\) software libraries
multivariate polynomial systems msolve https://msolve.lip6.fr/
univariate polynomial matrices
PML https://github.com/vneiger/pml
compared algorithms:
- sparse FGLM [Faugère-Mou 2011,2017]
- block-Wiedemann variant [folklore]
- new Hermite normal form-based algorithm (without SIMD vectorization for the moment)

\section*{software performance}

EXAMPLES:

\section*{random square system, \(n\) variables, degree \(d\)} over \(\mathbb{K}=\mathbb{Z} / \mathrm{p} \mathbb{Z}\) with 30 -bit modulus \(p\)
\begin{tabular}{cccc}
n & d & D & t \\
\hline 12 & 2 & 4096 & 924 \\
14 & 2 & 16384 & 3432 \\
16 & 2 & 65536 & 12870 \\
8 & 3 & 6561 & 1107 \\
9 & 3 & 19683 & 3139 \\
10 & 3 & 59049 & 8953 \\
6 & 4 & 4096 & 580 \\
7 & 4 & 16384 & 2128 \\
8 & 4 & 65536 & 8092
\end{tabular}
\begin{tabular}{ccc} 
spFGLM & block & HNF \\
\hline 6.5 & 5.5 & 5.3 \\
1011 & 358 & 240 \\
58744 & 22059 & \(\mathbf{1 1 3 5 9}\) \\
23.6 & 18.7 & \(\mathbf{1 5 . 1}\) \\
1302 & 525 & 314 \\
34844 & 13315 & \(\mathbf{6 7 0 9}\) \\
4 & 3.5 & 3.5 \\
575 & 225 & \(\mathbf{1 5 7}\) \\
36454 & 13609 & \(\mathbf{7 2 3 1}\)
\end{tabular}
\(x_{n}\)-stability: for any monomial \(\mu \in \mathrm{It}_{\preccurlyeq}(\mathcal{J})\) such that \(x_{n}\) divides \(\mu\), \(\frac{x_{i}}{x_{n}} \mu \in \mathrm{It}_{\preccurlyeq}(\mathcal{J})\) for all \(i \in\{1, \ldots, n-1\}\)

- \(x_{n}\)-stability \(\Leftrightarrow\) multiplying element \(\varepsilon \in \mathcal{B}\) by \(x_{n}\) gives either \(x_{n} \varepsilon \in \mathcal{B}\) or \(x_{n} \varepsilon=\mathrm{It}_{\preccurlyeq}(g)\) for some \(g \in \mathcal{G}\)
- in \(\mathbb{K}[x] / \mathcal{J}\), the representation of \(\mathrm{It}_{\preccurlyeq}(\mathrm{g})\) on \(\mathcal{B}\) is \(\mathrm{It}_{\preccurlyeq}(\mathrm{g})-\mathrm{g}\)
\(x_{n}\)-stability: for any monomial \(\mu \in \mathrm{I}_{\preccurlyeq}(\mathcal{J})\) such that \(\mathrm{x}_{\mathrm{n}}\) divides \(\mu\), \(\frac{x_{i}}{x_{n}} \mu \in \mathrm{It}_{\preccurlyeq}(\mathcal{J})\) for all \(i \in\{1, \ldots, n-1\}\)

\(Y\)
- related to classical notions of stability and of Borel-fixedness
[Herzog-Hibi 2011, Galligo 1974, Bayer-Stillman 1987]
- easily verified: considering \(\mu=\mathrm{It}_{\preccurlyeq}(\mathrm{g})\) for \(g \in \mathcal{G}\) is sufficient
\[
\preccurlyeq \text {-monomial basis } \begin{aligned}
\mathcal{B} & =\left\{\varepsilon_{1}, \ldots, \varepsilon_{\mathrm{D}}\right\} \\
& =\text { monomials not in } \mathrm{It}_{\preccurlyeq}(\mathcal{J}) \\
& =\text { vector space basis of } \mathbb{K}[\mathrm{x}] / \mathcal{J}
\end{aligned}
\]
- \(x_{n}\)-stability \(\Leftrightarrow\) multiplying element \(\varepsilon \in \mathcal{B}\) by \(x_{n}\) gives either \(x_{n} \varepsilon \in \mathcal{B}\) or \(x_{n} \varepsilon=\mathrm{It}_{\preccurlyeq}(\mathrm{g})\) for some \(\mathrm{g} \in \mathcal{G}\)
- in \(\mathbb{K}[x] / \mathcal{J}\), the representation of \(\mathrm{It}_{\preccurlyeq}(\mathrm{g})\) on \(\mathcal{B}\) is \(\mathrm{It}_{\preccurlyeq}(\mathrm{g})-\mathrm{g}\)
> multiplication matrix \(\mathrm{M}_{\mathrm{n}} \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}\) of \(\chi_{\mathrm{n}}\) in \(\mathbb{K}[\chi] / \mathcal{J}\)
> - row \(i=\) representation of \(x_{n} \varepsilon_{i}\) on \(\mathcal{B}\)
> - deduced directly from \(\hat{\mathcal{G}}=\left\{\mathrm{g} \in \mathcal{G} \mid x_{\mathrm{n}}\right.\) divides \(\left.\mathrm{It}_{\preccurlyeq}(\mathrm{g})\right\}\) - has \(\mathrm{t}=\# \hat{\mathrm{~g}}\) dense rows and \(\mathrm{D}-\mathrm{t}\) identity rows

\section*{shape position and lexicographic ideals}
[Becker-Mora-Marinari-Traverso 1994]
shape position: \(\mathcal{G}_{\text {lex }}=\left\{x_{1}-g_{1}\left(x_{n}\right), \ldots, x_{n-1}-g_{n-1}\left(x_{n}\right), h\left(x_{n}\right)\right\} \quad x_{n}=\) smallest variable with \(g_{1}, \ldots, g_{n-1}, h\) univariate in \(\mathbb{K}\left[x_{n}\right]\)
and \(\operatorname{deg}\left(g_{i}\right)<\operatorname{deg}(h)=D\)
\(g_{i}=\) parametrizations

\section*{shape position and lexicographic ideals}
[Becker-Mora-Marinari-Traverso 1994]
shape position: \(\mathcal{G}_{\text {lex }}=\left\{x_{1}-g_{1}\left(x_{n}\right), \ldots, x_{n-1}-g_{n-1}\left(x_{n}\right), h\left(x_{n}\right)\right\} \quad x_{n}=\) smallest variable with \(g_{1}, \ldots, g_{n-1}, h\) univariate in \(\mathbb{K}\left[x_{n}\right]\)
and \(\operatorname{deg}\left(g_{i}\right)<\operatorname{deg}(h)=D\)
\(g_{i}=\) parametrizations

\section*{for polynomial system solving:}
- solutions \(=\left(g_{1}(\alpha), \ldots, g_{n-1}(\alpha), \alpha\right)\) for all roots \(\alpha\) of \(h\left(x_{n}\right)\)
- ensured by generic change of coordinates, if ideal is radical

\section*{shape position and lexicographic ideals}
[Becker-Mora-Marinari-Traverso 1994]
shape position: \(\mathcal{G}_{\text {lex }}=\left\{x_{1}-g_{1}\left(x_{n}\right), \ldots, x_{n-1}-g_{n-1}\left(x_{n}\right), h\left(x_{n}\right)\right\} \quad x_{n}=\) smallest variable with \(g_{1}, \ldots, g_{n-1}, h\) univariate in \(\mathbb{K}\left[x_{n}\right]\) and \(\operatorname{deg}\left(g_{i}\right)<\operatorname{deg}(h)=D\)

\section*{for polynomial system solving:}
- solutions \(=\left(g_{1}(\alpha), \ldots, g_{n-1}(\alpha), \alpha\right)\) for all roots \(\alpha\) of \(h\left(x_{n}\right)\)
- ensured by generic change of coordinates, if ideal is radical
computation from the multiplication matrix \(M_{n}\)
\(h \in \mathcal{J} \Rightarrow h\left(x_{n}\right)\) is zero in \(\mathbb{K}[x] / \mathcal{J}\)
\(\rightarrow h\) gives a \(\mathbb{K}\)-linear combination between \(\varepsilon_{1}, \varepsilon_{1} \mathbf{M}_{n}, \ldots, \varepsilon_{1} \mathbf{M}_{n}^{D}\)
\(\rightarrow\) the matrix \(\left[\begin{array}{c}\varepsilon_{1} \mathcal{\varepsilon}_{n} \\ \vdots \\ \varepsilon_{1} M_{n}^{D}-1\end{array}\right] \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}\) is invertible (taking \(\varepsilon_{1}=1\) )
\(\Rightarrow h\left(x_{n}\right)\) is the minpoly/charpoly of \(M_{n}\)

\section*{previously: dense or sparse linear algebra}

\section*{using dense linear algebra}
\[
1]\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{1} \mathbf{M}_{n} \\
\vdots \\
\varepsilon_{1} M_{n}^{D-1} \\
\varepsilon_{1} M_{n}^{\mathrm{D}} \\
\varepsilon_{x_{1}} \\
\vdots \\
\varepsilon_{\chi_{n-1}}
\end{array}\right]=0
\]
- compute Krylov iterates
in \(\mathrm{O}\left(\mathrm{D}^{\omega} \log (\mathrm{D})\right)\)
in \(\mathrm{O}\left(\mathrm{D}^{\omega}\right)\)
- nullspace in \(\mathrm{O}\left(\mathrm{D}^{\omega}\right)\) [Ibarra-Hui-Moran 1982]
deterministic algo in \(O\left(D^{\omega}\right)\)

\section*{previously: dense or sparse linear algebra}

\section*{using dense linear algebra}

using sparse linear algebra [Wiedemann 1986]
for random column vector \(r \in \mathbb{K}^{\mathrm{D} \times 1}\), scalar sequence \(\left(\varepsilon_{1} \mathbf{M}_{n}^{k} r\right)_{0 \leqslant k<2 D}\) \(\rightsquigarrow\) its minimal generator is \(h\left(x_{n}\right)\)
- compute recurrent sequence in \(\mathrm{O}\left(\mathrm{tD}^{2}\right)\) via matrix-vector products
- find generator \(h\) in \(\mathrm{O}^{\sim}(\mathrm{D})\) [GCD/Padé]
- find \(g_{1}, \ldots, g_{n-1}\) in \(O^{\sim}(n D)\) via \(n-1\)

Hankel systems [Faugère-Mou 2011, 2017]

\section*{randomized algo in \(\mathrm{O}\left(t \mathrm{D}^{2}\right)\)}

\section*{paradigm shift: sparse \(\rightarrow\) structured}
multiplication by \(x_{n}\) in \(\mathbb{K}\left[x_{n}\right] /\left\langle h\left(x_{n}\right)\right\rangle\)


\section*{paradigm shift: sparse \(\rightarrow\) structured}
ideal \(\mathcal{J} \subset \mathbb{F}_{29}\left[x_{1}, x_{2}, x_{3}\right]\) generated by the \(\preccurlyeq\) drl -GB
\[
\left\{\begin{array}{l}
x_{3}^{4}+3 x_{3}^{3}+15 x_{1} x_{3}+23 x_{2} x_{3}+3 x_{3}^{2}+26 x_{2}+22 x_{3}, \\
x_{2} x_{3}^{2}+5 x_{1} x_{3}+28 x_{2} x_{3}+3 x_{3}^{2}+19 x_{1}+15 x_{2}+17, \\
x_{1} x_{3}^{2}+18 x_{3}^{3}+24 x_{1} x_{3}+27 x_{2} x_{3}+19 x_{3}^{2}+2 x_{1}+9 x_{3}+3, \\
x_{2}^{2}+12 x_{1} x_{3}+26 x_{2} x_{3}+5 x_{3}^{2}+9 x_{1}+6 x_{2}+8 x_{3}+6, \\
x_{1} x_{2}+6 x_{1} x_{3}+x_{2} x_{3}+1 x_{3}^{2}+28 x_{1}+12 x_{2}+8 x_{3}+11, \\
x_{1}^{2}+x_{1} x_{3}+10 x_{2} x_{3}+2 x_{3}^{2}+3 x_{1}+16 x_{2}+21
\end{array}\right.
\]
\(-t=3\) polynomials with \(\preccurlyeq\) dr-leading term divisible by \(x_{3}\) the first 3 , with leading terms \(x_{3}^{4}, x_{2} x_{3}^{2}, x_{1} x_{3}^{2}\)
- \(x_{3}\)-stability holds
easily verified: for \(\mu \in\left\{x_{2} x_{3}^{2}, x_{1} x_{3}^{2}, x_{3}^{4}\right\}, \frac{x_{1}}{x_{3}} \mu\) and \(\frac{x_{2}}{x_{3}} \mu\) are in \(I_{\preccurlyeq d r}(\mathcal{J})\)
-zero-dimensional with \(\mathrm{D}=8\)
\(\preccurlyeq\) dr-monomial basis \(\mathcal{B}=\left(1, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{2}, x_{2} x_{3}, x_{1}, x_{1} x_{3}\right)\)

\section*{paradigm shift: sparse \(\rightarrow\) structured}
ideal \(\mathcal{J} \subset \mathbb{F}_{29}\left[x_{1}, x_{2}, x_{3}\right]\) generated by the \(\preccurlyeq\) drl \(-G B\)
\[
\left\{\begin{array}{l}
x_{3}^{4}+3 x_{3}^{3}+15 x_{1} x_{3}+23 x_{2} x_{3}+3 x_{3}^{2}+26 x_{2}+22 x_{3}, \\
x_{2} x_{3}^{2}+5 x_{1} x_{3}+28 x_{2} x_{3}+3 x_{3}^{2}+19 x_{1}+15 x_{2}+17, \\
x_{1} x_{3}^{2}+18 x_{3}^{3}+24 x_{1} x_{3}+27 x_{2} x_{3}+19 x_{3}^{2}+2 x_{1}+9 x_{3}+3,
\end{array}\right.
\]
\(\rightarrow t=3, D=8\)
- x \(x_{3}\)-stable
- monomial basis \(\mathcal{B}=\)
\(\left(1, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{2}, x_{2} x_{3}, x_{1}, x_{1} x_{3}\right)\)

\section*{paradigm shift: sparse \(\rightarrow\) structured}
ideal \(\mathcal{J} \subset \mathbb{F}_{29}\left[x_{1}, x_{2}, x_{3}\right]\) generated by the \(\preccurlyeq\) drl -GB
\[
\left\{\begin{array}{l}
x_{3}^{4}+3 x_{3}^{3}+15 x_{1} x_{3}+23 x_{2} x_{3}+3 x_{3}^{2}+26 x_{2}+22 x_{3}, \\
x_{2} x_{3}^{2}+5 x_{1} x_{3}+28 x_{2} x_{3}+3 x_{3}^{2}+19 x_{1}+15 x_{2}+17, \\
x_{1} x_{3}^{2}+18 x_{3}^{3}+24 x_{1} x_{3}+27 x_{2} x_{3}+19 x_{3}^{2}+2 x_{1}+9 x_{3}+3,
\end{array}\right.
\]
- \(x_{3}\)-stable
- monomial basis \(\mathcal{B}=\)
\(\left(1, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{2}, x_{2} x_{3}, x_{1}, x_{1} x_{3}\right)\)
multiplication by \(x_{3}\) in \(\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right] / \mathcal{J} \longleftrightarrow \mathbb{K}\left[x_{3}\right]\)-module structure
\[
\mathbf{M}=\left[\begin{array}{cccc|cc|cc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -22 & -3 & -3 & -26 & -23 & 0 & -15 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-17 & 0 & -3 & 0 & -15 & -28 & -19 & -5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-3 & -9 & -19 & -18 & 0 & -27 & -2 & -24
\end{array}\right] \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}
\]

\section*{paradigm shift: sparse \(\rightarrow\) structured}
ideal \(\mathcal{J} \subset \mathbb{F}_{29}\left[x_{1}, x_{2}, x_{3}\right]\) generated by the \(\preccurlyeq\) drl \(-G B\)
\[
\left\{\begin{array}{l}
x_{3}^{4}+3 x_{3}^{3}+15 x_{1} x_{3}+23 x_{2} x_{3}+3 x_{3}^{2}+26 x_{2}+22 x_{3}, \\
x_{2} x_{3}^{2}+5 x_{1} x_{3}+28 x_{2} x_{3}+3 x_{3}^{2}+19 x_{1}+15 x_{2}+17, \\
x_{1} x_{3}^{2}+18 x_{3}^{3}+24 x_{1} x_{3}+27 x_{2} x_{3}+19 x_{3}^{2}+2 x_{1}+9 x_{3}+3,
\end{array}\right.
\]
- \(x_{3}\)-stable
- monomial basis \(\mathcal{B}=\)
\(\left(1, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{2}, x_{2} x_{3}, x_{1}, x_{1} x_{3}\right)\)
\(\preccurlyeq\)-Gröbner basis \(+x_{3}\)-stability \(\Rightarrow\) basis of \(\mathbb{K}\left[x_{3}\right]\)-submodule of \(J\)
\[
\mathbf{M}=\left[\begin{array}{cccc|cc|cc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -22 & -3 & -3 & -26 & -23 & 0 & -15 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-17 & 0 & -3 & 0 & -15 & -28 & -19 & -5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-3 & -9 & -19 & -18 & 0 & -27 & -2 & -24
\end{array}\right] \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}
\]
basis of \(\mathbb{K}\left[x_{3}\right]\)-module \(\mathcal{J} \cap\left(\mathbb{K}\left[x_{3}\right]+x_{2} \mathbb{K}\left[x_{3}\right]+x_{1} \mathbb{K}\left[x_{3}\right]\right)\)
\[
\mathbf{P}=\left[\begin{array}{ccc}
x_{3}^{4}+3 x_{3}^{3}+3 x_{3}^{2}+22 x_{3} & 23 x_{3}+26 & 15 x_{3} \\
3 x_{3}^{2}+17 & x_{3}^{2}+28 x_{3}+15 & 5 x_{3}+19 \\
18 x_{3}^{3}+19 x_{3}^{2}+9 x_{3}+3 & 27 x_{3} & x_{3}^{2}+24 x_{3}+2
\end{array}\right] \in \mathbb{K}\left[x_{3}\right]^{t \times t}
\]

\section*{paradigm shift: sparse \(\rightarrow\) structured}
ideal \(\mathcal{J} \subset \mathbb{F}_{29}\left[x_{1}, x_{2}, x_{3}\right]\) generated by the \(\preccurlyeq\) drl \(-G B\)
\[
\bullet t=3, D=8
\]
\[
\left\{\begin{array}{l}
x_{3}^{4}+3 x_{3}^{3}+15 x_{1} x_{3}+23 x_{2} x_{3}+3 x_{3}^{2}+26 x_{2}+22 x_{3}, \\
x_{2} x_{3}^{2}+5 x_{1} x_{3}+28 x_{2} x_{3}+3 x_{3}^{2}+19 x_{1}+15 x_{2}+17, \\
x_{1} x_{3}^{2}+18 x_{3}^{3}+24 x_{1} x_{3}+27 x_{2} x_{3}+19 x_{3}^{2}+2 x_{1}+9 x_{3}+3,
\end{array}\right.
\]
- \(x_{3}\)-stable
- monomial basis \(\mathcal{B}=\)
\(\left(1, x_{3}, x_{3}^{2}, x_{3}^{3}, x_{2}, x_{2} x_{3}, x_{1}, x_{1} x_{3}\right)\)
\(\preccurlyeq\)-Gröbner basis \(+x_{3}\)-stability \(\Rightarrow\) basis of \(\mathbb{K}\left[x_{3}\right]\)-submodule of \(\mathcal{J}\)
- \(\operatorname{det}(\mathbf{P})=\) charpoly \((\mathbf{M})\)
\(-\operatorname{Smith}(\mathbf{P}) \simeq \operatorname{Frob}(\mathbf{M})\)
- [Storjohann 2000]
[Pernet-Storjohann 2007]
- column degrees (4,2,2)
\[
\mathbf{M}=\left[\begin{array}{cccc|cc|cc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & -22 & -3 & -3 & -26 & -23 & 0 & -15 \\
\hline 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-17 & 0 & -3 & 0 & -15 & -28 & -19 & -5 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
-3 & -9 & -19 & -18 & 0 & -27 & -2 & -24
\end{array}\right] \in \mathbb{K}^{\mathrm{D} \times \mathrm{D}}
\]
basis of \(\mathbb{K}\left[x_{3}\right]\)-module \(\mathcal{J} \cap\left(\mathbb{K}\left[x_{3}\right]+x_{2} \mathbb{K}\left[x_{3}\right]+x_{1} \mathbb{K}\left[x_{3}\right]\right)\)
\[
\mathbf{P}=\left[\begin{array}{ccc}
x_{3}^{4}+3 x_{3}^{3}+3 x_{3}^{2}+22 x_{3} & 23 x_{3}+26 & 15 x_{3} \\
3 x_{3}^{2}+17 & x_{3}^{2}+28 x_{3}+15 & 5 x_{3}+19 \\
18 x_{3}^{3}+19 x_{3}^{2}+9 x_{3}+3 & 27 x_{3} & x_{3}^{2}+24 x_{3}+2
\end{array}\right] \in \mathbb{K}\left[x_{3}\right]^{t \times t}
\]

\section*{from Hermite normal form to lex basis}
\[
\begin{array}{ccc}
\mu_{1}=1 & \mu_{2}=x_{2} & \mu_{3}=x_{1} \\
\hat{\mathcal{G}}=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right] \simeq\left[\begin{array}{ccc}
x_{3}^{4}+3 x_{3}^{3}+3 x_{3}^{2}+22 x_{3} & 23 x_{3}+26 & 15 x_{3} \\
3 x_{3}^{2}+17 & x_{3}^{2}+28 x_{3}+15 & 5 x_{3}+19 \\
18 x_{3}^{3}+19 x_{3}^{2}+9 x_{3}+3 & 27 x_{3} & x_{3}^{2}+24 x_{3}+2
\end{array}\right] \in \mathbb{K}\left[x_{3}\right]^{t \times t}
\end{array}
\]

\section*{from Hermite normal form to lex basis}
\[
\begin{array}{ccc}
\mu_{1}=1 & \mu_{2}=x_{2} & \mu_{3}=x_{1} \\
\vdots & \vdots & \vdots \\
\left.\hat{\mathcal{G}}=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right] \simeq\left[\begin{array}{ccc}
x_{3}^{4}+3 x_{3}^{3}+3 x_{3}^{2}+22 x_{3} & 23 x_{3}+26 & 15 x_{3} \\
3 x_{3}^{2}+17 & x_{3}^{2}+28 x_{3}+15 & 5 x_{3}+19 \\
18 x_{3}^{3}+19 x_{3}^{2}+9 x_{3}+3 & 27 x_{3} & x_{3}^{2}+24 x_{3}+2
\end{array}\right] \in \mathbb{K}\left[x_{3}\right]\right]^{+\times t}
\end{array}
\]

\section*{Hermite normal form}
complexity \(\mathrm{O}^{\sim}\left(\mathrm{t}^{\omega-1} \mathrm{D}\right) \stackrel{\text { GGorgi-Jeannerod-Villard }}{[\text { Gupta-Storjohann 2011] }}\)
[Labahn-Neiger-Zhou 2017]
\[
\left[\begin{array}{cccc}
x_{3}^{8}+26 x_{3}^{7}+8 x_{3}^{6}+17 x_{3}^{5}+19 x_{3}^{4}+x_{3}^{3}+28 x_{3}^{2}+20 x_{3}+18 & 0 & 0 \\
28 x_{3}^{7}+23 x_{3}^{6}+17 x_{3}^{5}+25 x_{3}^{4}+24 x_{3}^{3}+17 x_{3}^{2}+14 x_{3}+4 & 1 & 0 \\
6 x_{3}^{7}+13 x_{3}^{6}+22 x_{3}^{5}+12 x_{3}^{4}+28 x_{3}^{3}+24 x_{3}^{2}+26 x_{3}+14 & 0 & 1
\end{array}\right]
\]

\section*{from Hermite normal form to lex basis}
\[
\left.\left.\begin{array}{c}
\mu_{1}=1 \\
\mu_{2}=x_{2}
\end{array}\right] \mu_{3}=x_{1}, \begin{array}{c}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right] \simeq\left[\begin{array}{ccc}
x_{3}^{4}+3 x_{3}^{3}+3 x_{3}^{2}+22 x_{3} & 23 x_{3}+26 & 15 x_{3} \\
3 x_{3}^{2}+17 & x_{3}^{2}+28 x_{3}+15 & 5 x_{3}+19 \\
18 x_{3}^{3}+19 x_{3}^{2}+9 x_{3}+3 & 27 x_{3} & x_{3}^{2}+24 x_{3}+2
\end{array}\right] \in \mathbb{K}\left[x_{3}\right]^{t \times t}
\]

\section*{Hermite normal form}

\section*{complexity \(\mathrm{O}^{\sim}\left(\mathrm{t}^{\omega-1} \mathrm{D}\right) \begin{aligned} & \text { [Giorgi-Jeannerod-Villard } \\ & \text { [Gupta-Storjohann 2011] }\end{aligned}\)}
[Labahn-Neiger-Zhou 2017]
\[
\left[\begin{array}{cccc}
x_{3}^{8}+26 x_{3}^{7}+8 x_{3}^{6}+17 x_{3}^{5}+19 x_{3}^{4}+x_{3}^{3}+28 x_{3}^{2}+20 x_{3}+18 & 0 & 0 \\
28 x_{3}^{7}+23 x_{3}^{6}+17 x_{3}^{5}+25 x_{3}^{4}+24 x_{3}^{3}+17 x_{3}^{2}+14 x_{3}+4 & 1 & 0 \\
6 x_{3}^{7}+13 x_{3}^{6}+22 x_{3}^{5}+12 x_{3}^{4}+28 x_{3}^{3}+24 x_{3}^{2}+26 x_{3}+14 & 0 & 1
\end{array}\right]
\]
row \(i \simeq\) polynomial \(p_{i 1}\left(x_{3}\right)+p_{i 2}\left(x_{3}\right) x_{2}+p_{i 3}\left(x_{3}\right) x_{1}\)
\[
\begin{aligned}
& x_{3}^{8}+26 x_{3}^{7}+8 x_{3}^{6}+17 x_{3}^{5}+19 x_{3}^{4}+x_{3}^{3}+28 x_{3}^{2}+20 x_{3}+18 \\
& x_{2}+28 x_{3}^{7}+23 x_{3}^{6}+17 x_{3}^{5}+25 x_{3}^{4}+24 x_{3}^{3}+17 x_{3}^{2}+14 x_{3}+4, \\
& x_{1}+6 x_{3}^{7}+13 x_{3}^{6}+22 x_{3}^{5}+12 x_{3}^{4}+28 x_{3}^{3}+24 x_{3}^{2}+26 x_{3}+14
\end{aligned}
\]

\section*{from Hermite normal form to lex basis}
\[
\begin{aligned}
& \mu_{1}=1 \quad \mu_{2}=x_{2} \quad \mu_{3}=x_{1} \\
& \hat{\mathcal{G}}=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right] \simeq\left[\begin{array}{ccc}
x_{3}^{4}+3 x_{3}^{3}+3 x_{3}^{2}+22 x_{3} & 23 x_{3}+26 & 15 x_{3} \\
3 x_{3}^{2}+17 & x_{3}^{2}+28 x_{3}+15 & 5 x_{3}+19 \\
18 x_{3}^{3}+19 x_{3}^{2}+9 x_{3}+3 & 27 x_{3} & x_{3}^{2}+24 x_{3}+2
\end{array}\right] \in \mathbb{K}\left[x_{3}\right]^{t \times t} \\
& \text { [Labahn-Neiger-Zhou 2017] } \\
& {\left[\begin{array}{cccc}
x_{3}^{8}+26 x_{3}^{7}+8 x_{3}^{6}+17 x_{3}^{5}+19 x_{3}^{4}+x_{3}^{3}+28 x_{3}^{2}+20 x_{3}+18 & 0 & 0 \\
28 x_{3}^{7}+23 x_{3}^{6}+17 x_{3}^{5}+25 x_{3}^{4}+24 x_{3}^{3}+17 x_{3}^{2}+14 x_{3}+4 & 1 & 0 \\
6 x_{3}^{7}+13 x_{3}^{6}+22 x_{3}^{5}+12 x_{3}^{4}+28 x_{3}^{3}+24 x_{3}^{2}+26 x_{3}+14 & 0 & 1
\end{array}\right]} \\
& \text { row } i \simeq \text { polynomial } p_{i 1}\left(x_{3}\right)+p_{i 2}\left(x_{3}\right) x_{2}+p_{i 3}\left(x_{3}\right) x_{1} \\
& x_{3}^{8}+26 x_{3}^{7}+8 x_{3}^{6}+17 x_{3}^{5}+19 x_{3}^{4}+x_{3}^{3}+28 x_{3}^{2}+20 x_{3}+18 \text {, } \\
& x_{2}+28 x_{3}^{7}+23 x_{3}^{6}+17 x_{3}^{5}+25 x_{3}^{4}+24 x_{3}^{3}+17 x_{3}^{2}+14 x_{3}+4 \text {, } \\
& =\text { lex basis } \\
& x_{1}+6 x_{3}^{7}+13 x_{3}^{6}+22 x_{3}^{5}+12 x_{3}^{4}+28 x_{3}^{3}+24 x_{3}^{2}+26 x_{3}+14
\end{aligned}
\]
- improved complexity bound and faster software implementation
- based on the identification and exploitation of an algebraic structure
\(\rightsquigarrow \mathbb{K}\left[x_{n}\right]\)-modules and univariate polynomial matrix computations
- relating the Hermite normal form of a \(\mathbb{K}\left[x_{n}\right]\)-submodule of \(\mathcal{J}\) and the lexicographic Gröbner basis of the ideal \(\mathcal{J}\)

\section*{summary}

\section*{change of order: conclusion}

\section*{perspectives}
- software: add SIMD vectorization + integrate into msolve
\[
\begin{array}{r}
\text { https://github.com/algebraic-solving/msolve } \\
\text { https://msolve.lip6.fr/ }
\end{array}
\]
- handle case with J non-radical but \(\sqrt{\mathcal{J}}\) in shape position?
- relax assumptions about stability and shape position?

\section*{summary}
approximate/interpolate
characteristic polynomial
modular composition
change of order
- introduction, links with structured matrices
- vector interpolation \& matrix normal forms
- iterative \& divide and conquer algorithms
- previous work and log factors to remove
- result: "asymptotically optimal" algorithm
- new triangularization-based approach
- problem and context
- acceleration via polynomial matrices
- overview of the main new ingredients
- problem and result
- assumptions and existing algorithms
- paradigm shift: sparse \(\rightarrow\) structured```

