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Decoding of Reed-Solomon codes via polynomial approximations

Reed-Solomon codes

At most e = n − t errors during transmission of a code word

w = w0+· · ·+wkX
k encoding−−−−−−→ (w(x1), . . . ,w(xn))

noise−−−→ y = (y1, . . . , yn)

i.e. #{i | w(xi ) 6= yi} 6 e or #{i | w(xi ) = yi} > t

Vincent Neiger (ENS de Lyon) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 4 / 22



Decoding of Reed-Solomon codes via polynomial approximations

Decoding of Reed-Solomon codes

Polynomial Reconstruction

Input: x1, . . . , xn the n distinct evaluation points in K
k the degree bound, e = n − t the error-correction radius
(y1, . . . , yn) the received word in Kn

Output: All polynomials w in K[X ] such that

degw 6 k and #{i | w(xi ) = yi} > t
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Decoding of Reed-Solomon codes via polynomial approximations

Key equations & Unique decoding

Master, Interpolation and error-locator polynomials

G (X ) =
∏

16i6n(X − xi ), R(xi ) = yi , Λ(X ) =
∏

i | error(X − xi )

Key equations: for every i , Λ(xi )R(xi ) = Λ(xi )w(xi )

Modular key equation

ΛR = Λw mod G

where deg(Λ) 6 e, deg(Λw) 6 e + k , Λ monic.

Unique decoding:
e + k < n − e ⇔ e < n−k

2 ⇒ unique rational solution Λw
Λ = w

computed in O (̃n) using e.g. the Extended Euclidean algorithm
[Modern Computer Algebra, von zur Gathen - Gerhard, 2013]
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Decoding of Reed-Solomon codes via polynomial approximations

List-decoding: Guruswami-Sudan algorithm

If e < n−k
2 , unique decoding. If e < n −

√
kn, polynomial-time decoding.

Recall:
degw 6 k and #{i | w(xi ) = yi} > t

[Guruswami - Sudan, 1999]

Interpolation step
compute a polynomial Q(X ,Y ) such that:

Q(X ,w) has many roots
Q(X ,w) has small degree

−→ w solution ⇒ Q(X ,w) = 0

Root-finding step
find all Y -roots of Q(X ,Y ), keep those that are solutions

Here we focus on the Interpolation step.
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Decoding of Reed-Solomon codes via polynomial approximations

The interpolation step

Interpolation With Multiplicities

Input:
number of points n, degree weight k, weighted-degree bound b=mt
points {(xi , yi )}16i6n in K2 (xi ’s distinct)
list-size `, multiplicity m (m 6 `)

Output:
a nonzero polynomial Q in K[X ,Y ] such that

(i) degY Q 6 `, (list-size condition)
(ii) degX Q(X ,X kY ) < b, (weighted-degree condition)
(iii) ∀i , Q(xi , yi ) = 0 with multiplicity m (vanishing condition)

Guruswami-Sudan: t2 > kn ⇒ solution exists for some well-chosen m, `
−→ linear system, compute a solution in polynomial time
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Decoding of Reed-Solomon codes via polynomial approximations

Simultaneous polynomial approximations

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011]
vanishing condition ⇔ system of modular equations:

write Q(X ,Y ) = Q0(X ) + Q1(X )Y + · · ·+ Q`(X )Y `

for i ∈ {1, . . . , n}, Q(xi , yi ) = 0 with multiplicity m

⇐⇒



Q0 + · · · + Qm−1R
m−1 + · · · + Q`R

` = 0 mod Gm

Q1 + · · ·+ Qm−1mRm−2 + · · ·+ Q``R
`−1 = 0 mod Gm−1

. . .
...

... = 0 mod G ···

Qm−1 + · · · + Q`
(

`
m−1

)
R`−m+1 = 0 mod G

where G =
∏

16i6n(X − xi ) and ∀i ,R(xi ) = yi .

Dimensions of linearized problem:

M = 1
2m(m + 1)n equations, N =

∑
06j6`(b − jk) unknowns
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Decoding of Reed-Solomon codes via polynomial approximations

Algorithms based on linearization

Strategy:

use degree bounds to linearize the problem[
Q

(0)
0 · · ·Q

(b−1)
0 | Q(0)

1 · · ·Q
(b−k−1)
1 | · · · | Q(0)

` · · ·Q
(b−`k−1)
`

]
vanishing condition ⇔ solution to an under-determined linear system

[Guruswami - Sudan, 1999]
Structure “not used”, cost O((m2n)ω) (ω = exponent of mat. mult.)

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011]
Mosaic-Hankel system, cost O(`m4n2) using [Feng - Tzeng, 1991]

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]
Mosaic-Hankel system, cost O (̃`ω−1m2n)
using [Bostan - Jeannerod - Schost, 2007]
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Decoding of Reed-Solomon codes via polynomial approximations

Algorithms based on reduced lattice bases

Based on polynomial lattice reduction
[Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010]
[Bernstein, 2011] [Cohn - Heninger, 2011]

Compute a known basis of approximants

Use lattice reduction to find a small-degree approximant

Cost O (̃`ωmn) using [Giorgi - Jeannerod - Villard, 2003] (probabilistic)
or [Gupta - Sarkar - Storjohann - Valeriote, 2012]

Based on order basis computation

Mirror all polynomials −→ simultaneous Hermite-Padé equations

Compute an order basis of the resulting matrix of power series

Cost O (̃`ω−1m2n) using [Zhou - Labahn, 2012]
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Re-encoding technique via polynomial approximations
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Re-encoding technique via polynomial approximations

When some yi ’s are zero (case m = 1)

Recall Q(xi , yi ) = Q0(xi ) + Q1(xi )yi + · · ·+ Q`y
`
i

Assume y1 = y2 = · · · = yi0 = 0, then

for i 6 i0, Q(xi , yi ) = 0 ⇔ Q0(xi ) = 0

Thus
(for every i 6 i0, Q(xi , yi ) = 0) ⇔ Q0 = G0Q̂0

for some Q̂0 of degree < b − i0, where G0 =
∏

16i6i0
(X − xi )

−→ Equations for points i = 1, . . . , i0 are pre-solved

Then remains an easier approximation problem

Q̂0 + Q1R/G0 + · · ·+ Q`R
`/G0 = 0 mod (G/G0)

Smaller dimensions: M − i0 equations, N − i0 unknowns
Vincent Neiger (ENS de Lyon) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 13 / 22



Re-encoding technique via polynomial approximations

Interpolation step with y1 = · · · = yi0 = 0

Vanishing condition: Q(xi , yi ) = 0 with multiplicity m for i = 1, . . . , n

⇔



Q0 + · · · + Qm−1R
m−1 + · · · + Q`R

` = 0 mod Gm

Q1 + · · ·+ Qm−1mRm−2 + · · ·+ Q``R
`−1 = 0 mod Gm−1

. . .
...

... = 0 mod G ···

Qm−1 + · · · + Q`
(

`
m−1

)
R`−m+1 = 0 mod G

Q(xi , 0) = 0 with multiplicity m for i = 1, . . . , i0

⇔



Qm−1 = G0Q̂m−1 with deg Q̂m−1 < b − (m − 1)k − i0

Qm−2 = G 2
0 Q̂m−2 with deg Q̂m−2 < b − (m − 2)k − 2i0

...

Q0 = Gm
0 Q̂0 with deg Q̂0 < b −mi0
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Re-encoding technique via polynomial approximations

Cost bounds when y1 = · · · = yi0 = 0

Q(xi , yi ) = 0 with multiplicity m for every i ∈ {1, . . . , n}

⇔


Qm−1 = G0Q̂m−1, Qm−2 = G 2

0 Q̂m−2, . . . , Q0 = Gm
0 Q̂0

∀r < m,
∑

r6j<m Q̂j

(j
r

)
R j−r/G j−r

0

+
∑

m6j6`Qj

(j
r

)
R j−r/Gm−r

0 = 0 mod (G/G0)m−r

Smaller dimensions: M̂ = M − 1
2m(m + 1)i0 and N̂ = N − 1

2m(m + 1)i0

M̂ =
1

2
m(m + 1)(n − i0)

Cost bounds:

Lattice reduction: O (̃`ωm(n − i0))

Order basis / structured system: O (̃`ω−1m2(n − i0))
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Re-encoding technique via polynomial approximations

Re-encoding technique

[Koetter - Ma - Vardy, 2011]

Decoding: search for all w such that

degw 6 k and #{i | w(xi ) = yi} > t

Re-encoding technique: shift the received word by a code word

(y1, . . . , yn)
shift−−−→ (0, . . . , 0, yk+2 − w0(xk+2), . . . , yn − w0(xn))

where degw0 6 k and w0(xi ) = yi for 1 6 i 6 k + 1

Q̂(X ,Y ) ←− Interpolation step with ŷi = yi − w0(xi )
taking advantage of ŷ1 = · · · = ŷk+1 = 0 (i0 = k + 1)

Root-finding + filtering step on Q̂, obtaining {w (1), . . . ,w (¯̀)}
Return {w (1) + w0, . . . ,w

(¯̀) + w0}

Cost bound: O (̃`ω−1m2(n − k))
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Wu reduction via polynomial approximations
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Wu reduction via polynomial approximations

Central idea

[Wu, 2008] [Trifonov - Lee, 2012] [Beelen - Høholdt - Nielsen - Wu, 2013]

Focus changes from correct locations to erroneous locations

In terms of Key Equations,

R = w mod (G/Λ)y
aB = bA mod Λ

Problem changes from polynomial reconstruction to rational reconstruction

degw 6 k and #{i | w(xi ) = yi} > ty
deg a 6 θ1, deg b 6 θ2, gcd(a, b) = 1 and #{i | a(xi )z

′
i = b(xi )zi} > e

(technical details are omitted, they would explain how to find θ1, θ2 and
why deg Λ 6 e in the key equation has become #{· · · } > e)
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Wu reduction via polynomial approximations

The Interpolation step, revisited

Algo: Guruswami-Sudan via a minor modification of the interpolation step

Interpolation With Multiplicities allowing points at infinity

Input:
number of points n, degree weight θ0, weighted-degree bound b
points {(xi , zi : z ′i )}16i6n in K× (K ∪ {∞}) (xi ’s distinct)
list-size `, multiplicity m (m 6 `)

Output: a nonzero polynomial Q in K[X ,Y ] such that
(i) degY Q 6 `, (list-size condition)
(ii) degX Q(X ,X θ0Y ) < b, (weighted-deg. condition)
(iii) ∀i , Q(xi , zi : z ′i ) = 0 with multiplicity m (vanishing condition)

Where we have defined when zi : z ′i =∞,

Q(xi ,∞) = 0 with multiplicity m ⇔ Q(xi , 0) = 0 with multiplicity m

and Q = Y `Q(X ,Y−1) = Q` + Q`−1Y + · · ·+ Q1Y
`−1 + Q0Y

`
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Wu reduction via polynomial approximations

Simultaneous polynomial approximations

Assume zi : z ′i =∞ for i = 1, . . . , n∞ (with possibly n∞ = 0)

Like in re-encoding technique,

Q(xi ,∞) = 0 with multiplicity m for i = 1, . . . , n∞

⇔ Q`−m+1 = G∞Q̂`−m+1, Q`−m+2 = G 2
∞Q̂`−m+2, . . . , Q` = Gm

∞Q̂`

where G∞ =
∏

16i6n∞
(X − xi ),

with updated degree constraints for Q`−m+1, . . . ,Q`.

Equations for points i = 1, . . . , n∞ are pre-solved,
remains an easier approximation problem without points at infinity

Points at infinity are not a complication but an advantage!

Note: can be combined with re-encoding on |θ0| = |θ1 − θ2| points.
But we expect θ1 ≈ θ2. . .
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Wu reduction via polynomial approximations

Cost bounds

Solving this problem of simultaneous approximations

Lattice reduction: O (̃`ωm(n − n∞ − |θ0|))

Order basis / structured system: O (̃`ω−1m2(n − n∞ − |θ0|))

Recall we expect n∞ ≈ 0 and θ0 ≈ 0. . .
−→ what advantage over original Guruswami-Sudan approach?

Smaller parameter m!

More precisely, `Wu = `GS =: `, but mWu = `−mGS

For “well-chosen” parameters, ` ≈ mGSt/k ⇒ mWu ≈ mGS(t/k − 1)

Cost bounds:

Lattice reduction: O (̃`ωmGS(t/k − 1)(n − n∞ − |θ0|))

Order basis / struct. system: O (̃`ω−1m2
GS(t/k − 1)2(n− n∞ − |θ0|))
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Wu reduction via polynomial approximations

Conclusion

List-decoding Reed-Solomon codesy
Simultaneous polynomial approximations

Fast algorithms:

lattice basis reduction

solution of structured system

order basis computation

Can benefit from cost-reducing techniques:

Re-encoding

Wu reduction to rational reconstruction

Other applications:

Interpolation step of soft-decoding [Koetter - Vardy, 2003]
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