List-decoding Reed-Solomon codes: re-encoding techniques and Wu algorithm via simultaneous polynomial approximations

Vincent Neiger ${ }^{\S, \uparrow, \ddagger}$

Claude-Pierre Jeannerod ${ }^{\S}$ Éric Schost † Gilles Villard ${ }^{\S}$
${ }^{\text {§ AriC, LIP, École Normale Supérieure de Lyon, France }}$
${ }^{\dagger}$ ORCCA, Computer Science Department, Western University, London, ON, Canada
\ddagger Supported by the international mobility grant Explo'ra doc from Région Rhône-Alpes
Journées nationales de calcul formel
CIRM, Luminy, France, November 5, 2014

Outline

(1) Decoding of Reed-Solomon codes via polynomial approximations
(2) Re-encoding technique via polynomial approximations
(3) Wu reduction via polynomial approximations

Outline

(1) Decoding of Reed-Solomon codes via polynomial approximations
(2) Re-encoding technique via polynomial approximations
(3) Wu reduction via polynomial approximations

Reed-Solomon codes

At most $e=n-t$ errors during transmission of a code word
$w=w_{0}+\cdots+w_{k} X^{k} \xrightarrow{\text { encoding }}\left(w\left(x_{1}\right), \ldots, w\left(x_{n}\right)\right) \xrightarrow{\text { noise }} y=\left(y_{1}, \ldots, y_{n}\right)$
i.e. $\quad \#\left\{i \mid w\left(x_{i}\right) \neq y_{i}\right\} \leqslant e \quad$ or $\quad \#\left\{i \mid w\left(x_{i}\right)=y_{i}\right\} \geqslant t$

- = code word

Decoding of Reed-Solomon codes

Polynomial Reconstruction

Input: x_{1}, \ldots, x_{n} the n distinct evaluation points in \mathbb{K} k the degree bound, $e=n-t$ the error-correction radius $\left(y_{1}, \ldots, y_{n}\right)$ the received word in \mathbb{K}^{n}

Output: All polynomials w in $\mathbb{K}[X]$ such that

$$
\operatorname{deg} w \leqslant k \quad \text { and } \quad \#\left\{i \mid w\left(x_{i}\right)=y_{i}\right\} \geqslant t
$$

Key equations \& Unique decoding

Master, Interpolation and error-locator polynomials

$$
G(X)=\prod_{1 \leqslant i \leqslant n}\left(X-x_{i}\right), \quad R\left(x_{i}\right)=y_{i}, \quad \Lambda(X)=\prod_{i \mid \text { error }}\left(X-x_{i}\right)
$$

Key equations: \quad for every $i, \quad \Lambda\left(x_{i}\right) R\left(x_{i}\right)=\Lambda\left(x_{i}\right) w\left(x_{i}\right)$
Modular key equation

$$
\Lambda R=\Lambda w \bmod G
$$

where $\quad \operatorname{deg}(\Lambda) \leqslant e, \quad \operatorname{deg}(\Lambda w) \leqslant e+k, \quad \Lambda$ monic.
Unique decoding:
$e+k<n-e \Leftrightarrow e<\frac{n-k}{2} \quad \Rightarrow$ unique rational solution $\frac{\Lambda w}{\Lambda}=w$ computed in $\mathcal{O}^{\sim}(n)$ using e.g. the Extended Euclidean algorithm [Modern Computer Algebra, von zur Gathen - Gerhard, 2013]

List-decoding: Guruswami-Sudan algorithm

If $e<\frac{n-k}{2}$, unique decoding. If $e<n-\sqrt{k n}$, polynomial-time decoding. Recall:

$$
\operatorname{deg} w \leqslant k \quad \text { and } \quad \#\left\{i \mid w\left(x_{i}\right)=y_{i}\right\} \geqslant t
$$

[Guruswami - Sudan, 1999]

- Interpolation step compute a polynomial $Q(X, Y)$ such that:
- $Q(X, w)$ has many roots
- $Q(X, w)$ has small degree
$\longrightarrow w$ solution $\Rightarrow Q(X, w)=0$
- Root-finding step find all Y-roots of $Q(X, Y)$, keep those that are solutions

Here we focus on the Interpolation step.

The interpolation step

Interpolation With Multiplicities
Input:
number of points n, degree weight k, weighted-degree bound $b=\mathrm{mt}$ points $\left\{\left(x_{i}, y_{i}\right)\right\}_{1 \leqslant i \leqslant n}$ in $\mathbb{K}^{2}\left(x_{i}\right.$'s distinct) list-size ℓ, multiplicity $m \quad(m \leqslant \ell)$

Output:
a nonzero polynomial Q in $\mathbb{K}[X, Y]$ such that
(i) $\operatorname{deg}_{Y} Q \leqslant \ell$,
(ii) $\operatorname{deg}_{X} Q\left(X, X^{k} Y\right)<b$,
(iii) $\forall i, Q\left(x_{i}, y_{i}\right)=0$ with multiplicity m
(list-size condition)
(weighted-degree condition)
(vanishing condition)

Guruswami-Sudan: $t^{2}>k n \Rightarrow$ solution exists for some well-chosen m, ℓ \longrightarrow linear system, compute a solution in polynomial time

Simultaneous polynomial approximations

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011] vanishing condition \Leftrightarrow system of modular equations:
write $Q(X, Y)=Q_{0}(X)+Q_{1}(X) Y+\cdots+Q_{\ell}(X) Y^{\ell}$
for $i \in\{1, \ldots, n\}, Q\left(x_{i}, y_{i}\right)=0$ with multiplicity m

where $G=\prod_{1 \leqslant i \leqslant n}\left(X-x_{i}\right)$ and $\forall i, R\left(x_{i}\right)=y_{i}$.
Dimensions of linearized problem:

$$
M=\frac{1}{2} m(m+1) n \text { equations, } \quad N=\sum_{0 \leqslant j \leqslant \ell}(b-j k) \text { unknowns }
$$

Algorithms based on linearization

Strategy:

- use degree bounds to linearize the problem

$$
\left[Q_{0}^{(0)} \cdots Q_{0}^{(b-1)}\left|Q_{1}^{(0)} \cdots Q_{1}^{(b-k-1)}\right| \cdots \mid Q_{\ell}^{(0)} \cdots Q_{\ell}^{(b-\ell k-1)}\right]
$$

- vanishing condition \Leftrightarrow solution to an under-determined linear system
[Guruswami - Sudan, 1999]
Structure "not used", $\operatorname{cost} \mathcal{O}\left(\left(m^{2} n\right)^{\omega}\right) \quad(\omega=$ exponent of mat. mult.)
[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011]
Mosaic-Hankel system, cost $\mathcal{O}\left(\ell m^{4} n^{2}\right)$ using [Feng - Tzeng, 1991]
[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]
Mosaic-Hankel system, cost $\mathcal{O}^{\sim}\left(\ell^{\omega-1} m^{2} n\right)$ using [Bostan - Jeannerod - Schost, 2007]

Algorithms based on reduced lattice bases

Based on polynomial lattice reduction
[Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010]
[Bernstein, 2011] [Cohn - Heninger, 2011]

- Compute a known basis of approximants
- Use lattice reduction to find a small-degree approximant

Cost $\mathcal{O}^{\sim}\left(\ell^{\omega} m n\right)$ using [Giorgi - Jeannerod - Villard, 2003] (probabilistic) or [Gupta - Sarkar - Storjohann - Valeriote, 2012]

Based on order basis computation

- Mirror all polynomials \longrightarrow simultaneous Hermite-Padé equations
- Compute an order basis of the resulting matrix of power series Cost $\mathcal{O}^{\sim}\left(\ell^{\omega-1} m^{2} n\right)$ using [Zhou - Labahn, 2012]

Outline

(1) Decoding of Reed-Solomon codes via polynomial approximations
(2) Re-encoding technique via polynomial approximations

(3) Wu reduction via polynomial approximations

When some y_{i} 's are zero (case $m=1$)
Recall $Q\left(x_{i}, y_{i}\right)=Q_{0}\left(x_{i}\right)+Q_{1}\left(x_{i}\right) y_{i}+\cdots+Q_{\ell} y_{i}^{\ell}$
Assume $y_{1}=y_{2}=\cdots=y_{i 0}=0$, then

$$
\text { for } i \leqslant i_{0}, \quad Q\left(x_{i}, y_{i}\right)=0 \Leftrightarrow Q_{0}\left(x_{i}\right)=0
$$

Thus

$$
\left(\text { for every } i \leqslant i_{0}, \quad Q\left(x_{i}, y_{i}\right)=0\right) \Leftrightarrow Q_{0}=G_{0} \widehat{Q}_{0}
$$

for some \widehat{Q}_{0} of degree $<b-i_{0}$, where $G_{0}=\prod_{1 \leqslant i \leqslant i_{0}}\left(X-x_{i}\right)$
\longrightarrow Equations for points $i=1, \ldots, i_{0}$ are pre-solved
Then remains an easier approximation problem

$$
\widehat{Q}_{0}+Q_{1} R / G_{0}+\cdots+Q_{\ell} R^{\ell} / G_{0}=0 \bmod \left(G / G_{0}\right)
$$

Smaller dimensions: $M-i_{0}$ equations, $N-i_{0}$ unknowns

Interpolation step with $y_{1}=\cdots=y_{i_{0}}=0$
Vanishing condition: $Q\left(x_{i}, y_{i}\right)=0$ with multiplicity m for $i=1, \ldots, n$

$Q\left(x_{i}, 0\right)=0$ with multiplicity m for $i=1, \ldots, i_{0}$

$$
\Leftrightarrow\left\{\begin{array}{rr}
Q_{m-1}=G_{0} \widehat{Q}_{m-1} & \text { with } \operatorname{deg} \widehat{Q}_{m-1}<b-(m-1) k-i_{0} \\
Q_{m-2}=G_{0}^{2} \widehat{Q}_{m-2} & \text { with } \operatorname{deg} \widehat{Q}_{m-2}<b-(m-2) k-2 i_{0} \\
\vdots & \\
Q_{0} & =G_{0}^{m} \widehat{Q}_{0}
\end{array}\right.
$$

Cost bounds when $y_{1}=\cdots=y_{i_{0}}=0$

$$
Q\left(x_{i}, y_{i}\right)=0 \text { with multiplicity } m \quad \text { for every } i \in\{1, \ldots, n\}
$$

$$
\Leftrightarrow\left\{\begin{array}{l}
Q_{m-1}=G_{0} \widehat{Q}_{m-1}, Q_{m-2}=G_{0}^{2} \widehat{Q}_{m-2}, \ldots, Q_{0}=G_{0}^{m} \widehat{Q}_{0} \\
\forall r<m, \sum_{r \leqslant j<m} \widehat{Q}_{j}\binom{j}{r} R^{j-r} / G_{0}^{j-r} \\
\quad+\sum_{m \leqslant j \leqslant \ell} Q_{j}\binom{j}{r} R^{j-r} / G_{0}^{m-r}=0 \bmod \left(G / G_{0}\right)^{m-r}
\end{array}\right.
$$

Smaller dimensions: $\widehat{M}=M-\frac{1}{2} m(m+1) i_{0}$ and $\widehat{N}=N-\frac{1}{2} m(m+1) i_{0}$

$$
\widehat{M}=\frac{1}{2} m(m+1)\left(n-i_{0}\right)
$$

Cost bounds:

- Lattice reduction: $\mathcal{O}^{\sim}\left(\ell^{\omega} m\left(n-i_{0}\right)\right)$
- Order basis / structured system: $\mathcal{O}^{\sim}\left(\ell^{\omega-1} m^{2}\left(n-i_{0}\right)\right)$

Re-encoding technique

[Koetter - Ma - Vardy, 2011]
Decoding: search for all w such that

$$
\operatorname{deg} w \leqslant k \quad \text { and } \quad \#\left\{i \mid w\left(x_{i}\right)=y_{i}\right\} \geqslant t
$$

Re-encoding technique: shift the received word by a code word

$$
\left(y_{1}, \ldots, y_{n}\right) \xrightarrow{\text { shift }}\left(0, \ldots, 0, y_{k+2}-w_{0}\left(x_{k+2}\right), \ldots, y_{n}-w_{0}\left(x_{n}\right)\right)
$$

where deg $w_{0} \leqslant k$ and $w_{0}\left(x_{i}\right)=y_{i}$ for $1 \leqslant i \leqslant k+1$

- $\widehat{Q}(X, Y) \longleftarrow$ Interpolation step with $\hat{y}_{i}=y_{i}-w_{0}\left(x_{i}\right)$ taking advantage of $\hat{y}_{1}=\cdots=\hat{y}_{k+1}=0$
($i_{0}=k+1$)
- Root-finding + filtering step on \widehat{Q}, obtaining $\left\{w^{(1)}, \ldots, w^{(\bar{\ell}}\right\}$
- Return $\left\{w^{(1)}+w_{0}, \ldots, w^{(\bar{l})}+w_{0}\right\}$

Cost bound: $\mathcal{O}^{\sim}\left(\ell^{\omega-1} m^{2}(n-k)\right)$

Outline

(1) Decoding of Reed-Solomon codes via polynomial approximations
(2) Re-encoding technique via polynomial approximations
(3) Wu reduction via polynomial approximations

Central idea

[Wu, 2008] [Trifonov - Lee, 2012] [Beelen - Høholdt - Nielsen - Wu, 2013]
Focus changes from correct locations to erroneous locations

In terms of Key Equations,

$$
R=w \bmod (G / \Lambda)
$$

$$
a B=b A \bmod \wedge
$$

Problem changes from polynomial reconstruction to rational reconstruction $\operatorname{deg} w \leqslant k \quad$ and $\quad \#\left\{i \mid w\left(x_{i}\right)=y_{i}\right\} \geqslant t$ $\operatorname{deg} a \leqslant \theta_{1}, \operatorname{deg} b \leqslant \theta_{2}, \operatorname{gcd}(a, b)=1 \quad$ and $\quad \#\left\{i \mid a\left(x_{i}\right) z_{i}^{\prime}=b\left(x_{i}\right) z_{i}\right\} \geqslant e$
(technical details are omitted, they would explain how to find θ_{1}, θ_{2} and why $\operatorname{deg} \Lambda \leqslant e$ in the key equation has become $\#\{\cdots\} \geqslant e$)

The Interpolation step, revisited

Algo: Guruswami-Sudan via a minor modification of the interpolation step Interpolation With Multiplicities allowing points at infinity Input:
number of points n, degree weight θ_{0}, weighted-degree bound b points $\left\{\left(x_{i}, z_{i}: z_{i}^{\prime}\right)\right\}_{1 \leqslant i \leqslant n}$ in $\mathbb{K} \times(\mathbb{K} \cup\{\infty\})\left(x_{i}^{\prime}\right.$'s distinct) list-size ℓ, multiplicity $m \quad(m \leqslant \ell)$

Output: a nonzero polynomial Q in $\mathbb{K}[X, Y]$ such that
(i) $\operatorname{deg}_{Y} Q \leqslant \ell$,
(ii) $\operatorname{deg}_{X} Q\left(X, X^{\theta_{0}} Y\right)<b$,
(iii) $\forall i, Q\left(x_{i}, z_{i}: z_{i}^{\prime}\right)=0$ with multiplicity m (vanishing condition)

Where we have defined when $z_{i}: z_{i}^{\prime}=\infty$, $Q\left(x_{i}, \infty\right)=0$ with multiplicity $m \quad \Leftrightarrow \quad \bar{Q}\left(x_{i}, 0\right)=0$ with multiplicity m and $\bar{Q}=Y^{\ell} Q\left(X, Y^{-1}\right)=Q_{\ell}+Q_{\ell-1} Y+\cdots+Q_{1} Y^{\ell-1}+Q_{0} Y^{\ell}$

Simultaneous polynomial approximations

Assume $z_{i}: z_{i}^{\prime}=\infty$ for $i=1, \ldots, n_{\infty} \quad$ (with possibly $n_{\infty}=0$)
Like in re-encoding technique,

$$
\begin{aligned}
& Q\left(x_{i}, \infty\right)=0 \text { with multiplicity } m \text { for } i=1, \ldots, n_{\infty} \\
\Leftrightarrow & Q_{\ell-m+1}=G_{\infty} \widehat{Q}_{\ell-m+1}, Q_{\ell-m+2}=G_{\infty}^{2} \widehat{Q}_{\ell-m+2}, \ldots, Q_{\ell}=G_{\infty}^{m} \widehat{Q}_{\ell}
\end{aligned}
$$

where $G_{\infty}=\prod_{1 \leqslant i \leqslant n_{\infty}}\left(X-x_{i}\right)$,
with updated degree constraints for $Q_{\ell-m+1}, \ldots, Q_{\ell}$.
Equations for points $i=1, \ldots, n_{\infty}$ are pre-solved, remains an easier approximation problem without points at infinity

Points at infinity are not a complication but an advantage!
Note: can be combined with re-encoding on $\left|\theta_{0}\right|=\left|\theta_{1}-\theta_{2}\right|$ points. But we expect $\theta_{1} \approx \theta_{2} \ldots$

Cost bounds

Solving this problem of simultaneous approximations

- Lattice reduction: $\mathcal{O}^{\sim}\left(\ell^{\omega} m\left(n-n_{\infty}-\left|\theta_{0}\right|\right)\right)$
- Order basis / structured system: $\mathcal{O}^{\sim}\left(\ell^{\omega-1} m^{2}\left(n-n_{\infty}-\left|\theta_{0}\right|\right)\right)$

Recall we expect $n_{\infty} \approx 0$ and $\theta_{0} \approx 0 \ldots$
\longrightarrow what advantage over original Guruswami-Sudan approach?

Smaller parameter m !

More precisely, $\ell_{\mathrm{Wu}}=\ell_{\mathrm{GS}}=: \ell$, but $m_{\mathrm{Wu}}=\ell-m_{\mathrm{GS}}$
For "well-chosen" parameters, $\ell \approx m_{\mathrm{GS}} t / k \Rightarrow m_{\mathrm{Wu}} \approx m_{\mathrm{GS}}(t / k-1)$
Cost bounds:

- Lattice reduction: $\mathcal{O}^{\sim}\left(\ell^{\omega} m_{\mathrm{GS}}(t / k-1)\left(n-n_{\infty}-\left|\theta_{0}\right|\right)\right)$
- Order basis / struct. system: $\mathcal{O}^{\sim}\left(\ell^{\omega-1} m_{\mathrm{GS}}^{2}(t / k-1)^{2}\left(n-n_{\infty}-\left|\theta_{0}\right|\right)\right)$

Conclusion

List-decoding Reed-Solomon codes

Simultaneous polynomial approximations
Fast algorithms:

- lattice basis reduction
- solution of structured system
- order basis computation

Can benefit from cost-reducing techniques:

- Re-encoding
- Wu reduction to rational reconstruction

Other applications:

- Interpolation step of soft-decoding [Koetter - Vardy, 2003]

