List-decoding Reed-Solomon codes: re-encoding techniques and Wu algorithm via simultaneous polynomial approximations

Vincent NEIGER^{§,†,‡}

Claude-Pierre JEANNEROD[§] Éric SCHOST[†] Gilles VILLARD[§] [§]AriC, LIP, École Normale Supérieure de Lyon, France

[†]ORCCA, Computer Science Department, Western University, London, ON, Canada

[‡]Supported by the international mobility grant *Explo'ra doc* from *Région Rhône-Alpes*

Journées nationales de calcul formel CIRM, Luminy, France, November 5, 2014

Re-encoding and Wu algorithm via polynomial approximation

Vincent NEIGER (ENS de Lyon)

Luminy, JNCF 2014 1 / 22

Decoding of Reed-Solomon codes via polynomial approximations

2 Re-encoding technique via polynomial approximations

3 Wu reduction via polynomial approximations

Outline

Decoding of Reed-Solomon codes via polynomial approximations

2 Re-encoding technique via polynomial approximations

Nu reduction via polynomial approximations

Reed-Solomon codes

At most e = n - t errors during transmission of a code word

$$w = w_0 + \cdots + w_k X^k \xrightarrow{\text{encoding}} (w(x_1), \ldots, w(x_n)) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

i.e. $\#\{i \mid w(x_i) \neq y_i\} \leq e$ or $\#\{i \mid w(x_i) = y_i\} \geq t$

Decoding of Reed-Solomon codes

Polynomial Reconstruction

Input: x_1, \ldots, x_n the *n* distinct evaluation points in \mathbb{K} *k* the degree bound, e = n - t the error-correction radius (y_1, \ldots, y_n) the received word in \mathbb{K}^n

Output: All polynomials w in $\mathbb{K}[X]$ such that

Key equations & Unique decoding

Master, Interpolation and error-locator polynomials

 $G(X) = \prod_{1 \leq i \leq n} (X - x_i), \qquad R(x_i) = y_i, \qquad \Lambda(X) = \prod_{i \mid error} (X - x_i)$

Key equations: for every i, $\Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i)$

Modular key equation

 $\Lambda R = \Lambda w \mod G$

where $\deg(\Lambda) \leq e$, $\deg(\Lambda w) \leq e + k$, Λ monic.

Unique decoding:

 $e + k < n - e \Leftrightarrow e < \frac{n-k}{2} \Rightarrow$ unique rational solution $\frac{\Lambda w}{\Lambda} = w$ computed in $\mathcal{O}(n)$ using e.g. the Extended Euclidean algorithm [Modern Computer Algebra, von zur Gathen - Gerhard, 2013]

List-decoding: Guruswami-Sudan algorithm

If $e < \frac{n-k}{2}$, unique decoding. If $e < n - \sqrt{kn}$, polynomial-time decoding. Recall:

deg $w \leq k$ and $\#\{i \mid w(x_i) = y_i\} \geq t$

[Guruswami - Sudan, 1999]

- Interpolation step compute a polynomial Q(X, Y) such that:
 - Q(X, w) has many roots
 - Q(X, w) has small degree
 - \longrightarrow w solution $\Rightarrow Q(X, w) = 0$
- Root-finding step find all Y-roots of Q(X, Y), keep those that are solutions

Here we focus on the Interpolation step.

The interpolation step

Interpolation With Multiplicities

Input:

number of points *n*, degree weight *k*, weighted-degree bound *b*=mt points $\{(x_i, y_i)\}_{1 \le i \le n}$ in \mathbb{K}^2 (*x_i*'s distinct) list-size ℓ , multiplicity *m* ($m \le \ell$)

Output:

a nonzero polynomial Q in $\mathbb{K}[X, Y]$ such that

 $\begin{array}{ll} (i) & \deg_Y Q \leqslant \ell, & (\text{list-size condition}) \\ (ii) & \deg_X Q(X, X^k Y) < b, & (\text{weighted-degree condition}) \\ (iii) & \forall i, \ Q(x_i, y_i) = 0 \text{ with multiplicity } m & (\text{vanishing condition}) \end{array}$

Guruswami-Sudan: $t^2 > kn \Rightarrow$ solution exists for some well-chosen $m, \ell \rightarrow$ linear system, compute a solution in polynomial time

Vincent NEIGER (ENS de Lyon) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 8 / 22

Simultaneous polynomial approximations

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011] vanishing condition ⇔ system of modular equations:

write
$$Q(X, Y) = Q_0(X) + Q_1(X)Y + \dots + Q_\ell(X)Y^\ell$$

for $i \in \{1, \dots, n\}$, $Q(x_i, y_i) = 0$ with multiplicity m
$$\iff \begin{cases} Q_0 + \dots + Q_{m-1}R^{m-1} + \dots + Q_\ell R^\ell &= 0 \mod G^m \\ Q_1 + \dots + Q_{m-1}mR^{m-2} + \dots + Q_\ell \ell R^{\ell-1} &= 0 \mod G^{m-1} \\ \vdots & \vdots &= 0 \mod G^m \\ Q_{m-1} + \dots + Q_\ell {\ell \choose m-1}R^{\ell-m+1} = 0 \mod G \end{cases}$$

where $G = \prod_{1 \leq i \leq n} (X - x_i)$ and $\forall i, R(x_i) = y_i$.

Dimensions of linearized problem:

 $M = \frac{1}{2}m(m+1)n$ equations, $N = \sum_{0 \le j \le \ell} (b - jk)$ unknowns

Algorithms based on linearization

Strategy:

• use degree bounds to linearize the problem

$$\left[Q_0^{(0)} \cdots Q_0^{(b-1)} ~|~ Q_1^{(0)} \cdots Q_1^{(b-k-1)} ~|~ \cdots ~|~ Q_\ell^{(0)} \cdots Q_\ell^{(b-\ell k-1)}
ight]$$

vanishing condition ⇔ solution to an under-determined linear system

[Guruswami - Sudan, 1999] Structure "not used", cost $\mathcal{O}((m^2n)^{\omega})$ ($\omega = \text{exponent of mat. mult.}$)

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011] Mosaic-Hankel system, cost $O(\ell m^4 n^2)$ using [Feng - Tzeng, 1991]

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014] Mosaic-Hankel system, cost $\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$ using [Bostan - Jeannerod - Schost, 2007]

Algorithms based on reduced lattice bases

Based on polynomial lattice reduction [Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010] [Bernstein, 2011] [Cohn - Heninger, 2011]

- Compute a known basis of approximants
- Use lattice reduction to find a small-degree approximant

Cost $O^{\sim}(\ell^{\omega} mn)$ using [Giorgi - Jeannerod - Villard, 2003] (probabilistic) or [Gupta - Sarkar - Storjohann - Valeriote, 2012]

Based on order basis computation

- Mirror all polynomials —> simultaneous Hermite-Padé equations
- Compute an order basis of the resulting matrix of power series

Cost $\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$ using [Zhou - Labahn, 2012]

Outline

Decoding of Reed-Solomon codes via polynomial approximations

2 Re-encoding technique via polynomial approximations

Vu reduction via polynomial approximations

When some y_i 's are zero (case m = 1)

$$\mathsf{Recall} \ Q(x_i,y_i) = Q_0(x_i) + Q_1(x_i)y_i + \dots + Q_\ell y_i^\ell$$

Assume $y_1 = y_2 = \cdots = y_{i_0} = 0$, then

for
$$i \leq i_0$$
, $Q(x_i, y_i) = 0 \iff Q_0(x_i) = 0$

Thus

(for every $i \leq i_0$, $Q(x_i, y_i) = 0$) $\Leftrightarrow Q_0 = G_0 \widehat{Q}_0$ for some \widehat{Q}_0 of degree $\langle b - i_0$, where $G_0 = \prod_{1 \leq i \leq i_0} (X - x_i)$ \longrightarrow Equations for points $i = 1, \dots, i_0$ are pre-solved

Then remains an easier approximation problem

$$\widehat{Q}_0 + Q_1 R/G_0 + \dots + Q_\ell R^\ell/G_0 = 0 \mod (G/G_0)$$

Smaller dimensions: $M - i_0$ equations, $N - i_0$ unknowns

Interpolation step with $y_1 = \cdots = y_{i_0} = 0$

Vanishing condition: $Q(x_i, y_i) = 0$ with multiplicity *m* for i = 1, ..., n

$$\Leftrightarrow \begin{cases} Q_0 + \dots + Q_{m-1}R^{m-1} + \dots + Q_{\ell}R^{\ell} &= 0 \mod G^m \\ Q_1 + \dots + Q_{m-1}mR^{m-2} + \dots + Q_{\ell}\ell R^{\ell-1} &= 0 \mod G^{m-1} \\ & \ddots & \vdots & & = 0 \mod G^m \\ & Q_{m-1} + \dots + Q_{\ell}\binom{\ell}{m-1}R^{\ell-m+1} = 0 \mod G \end{cases}$$

 $Q(x_i, 0) = 0 \text{ with multiplicity } m \text{ for } i = 1, \dots, i_0$ $\begin{cases}
Q_{m-1} = G_0 \widehat{Q}_{m-1} & \text{with } \deg \widehat{Q}_{m-1} < b - (m-1)k - i_0 \\
Q_{m-2} = G_0^2 \widehat{Q}_{m-2} & \text{with } \deg \widehat{Q}_{m-2} < b - (m-2)k - 2i_0 \\
\vdots \\
Q_0 = G_0^m \widehat{Q}_0 & \text{with } \deg \widehat{Q}_0 < b - mi_0
\end{cases}$

Cost bounds when $y_1 = \cdots = y_{i_0} = 0$

$$\begin{aligned} Q(x_i, y_i) &= 0 \text{ with multiplicity } m \quad \text{for every } i \in \{1, \dots, n\} \\ \Leftrightarrow \begin{cases} Q_{m-1} &= G_0 \widehat{Q}_{m-1}, \ Q_{m-2} &= G_0^2 \widehat{Q}_{m-2}, \ \dots, \ Q_0 &= G_0^m \widehat{Q}_0 \\ \forall r < m, \sum_{r \leqslant j < m} \widehat{Q}_j \binom{j}{r} R^{j-r} / G_0^{j-r} \\ &+ \sum_{m \leqslant j \leqslant \ell} Q_j \binom{j}{r} R^{j-r} / G_0^{m-r} &= 0 \mod (G/G_0)^{m-r} \end{aligned}$$

Smaller dimensions: $\widehat{M} = M - \frac{1}{2}m(m+1)i_0$ and $\widehat{N} = N - \frac{1}{2}m(m+1)i_0$

$$\widehat{M} = \frac{1}{2}m(m+1)(n-i_0)$$

Cost bounds:

- Lattice reduction: $\mathcal{O}^{\sim}(\ell^{\omega} m(n-i_0))$
- Order basis / structured system: $\mathcal{O}(\ell^{\omega-1}m^2(n-i_0))$

Re-encoding technique

[Koetter - Ma - Vardy, 2011]

Decoding: search for all w such that

$$\deg w \leqslant k \qquad \text{and} \qquad \#\{i \mid w(x_i) = y_i\} \geqslant t$$

Re-encoding technique: shift the received word by a code word

$$(y_1,\ldots,y_n) \xrightarrow{\text{shift}} (0,\ldots,0,y_{k+2}-w_0(x_{k+2}),\ldots,y_n-w_0(x_n))$$

where deg $w_0 \leq k$ and $w_0(x_i) = y_i$ for $1 \leq i \leq k+1$

- $\widehat{Q}(X, Y) \leftarrow$ Interpolation step with $\hat{y}_i = y_i w_0(x_i)$ taking advantage of $\hat{y}_1 = \cdots = \hat{y}_{k+1} = 0$ $(i_0 = k+1)$
- Root-finding + filtering step on \widehat{Q} , obtaining $\{w^{(1)}, \ldots, w^{(\overline{\ell})}\}$
- Return $\{w^{(1)} + w_0, \dots, w^{(\bar{\ell})} + w_0\}$

Cost bound: $\mathcal{O}^{\sim}(\ell^{\omega-1}m^2(n-k))$

Outline

3 Wu reduction via polynomial approximations

Central idea

[Wu, 2008] [Trifonov - Lee, 2012] [Beelen - Høholdt - Nielsen - Wu, 2013]

Focus changes from correct locations to erroneous locations

In terms of Key Equations,
$$R = w \mod (G/\Lambda)$$
$$\downarrow$$
$$aB = bA \mod \Lambda$$

Problem changes from polynomial reconstruction to rational reconstruction $\deg w \leq k \quad \text{and} \quad \#\{i \mid w(x_i) = y_i\} \geq t$ \downarrow $\deg a \leq \theta_1, \deg b \leq \theta_2, \gcd(a, b) = 1 \quad \text{and} \quad \#\{i \mid a(x_i)z'_i = b(x_i)z_i\} \geq e$

(technical details are omitted, they would explain how to find θ_1, θ_2 and why deg $\Lambda \leq e$ in the key equation has become $\#\{\cdots\} \geq e$)

The Interpolation step, revisited

Algo: Guruswami-Sudan via a minor modification of the interpolation step Interpolation With Multiplicities allowing points at infinity Input:

number of points *n*, degree weight θ_0 , weighted-degree bound *b* points $\{(x_i, z_i : z'_i)\}_{1 \le i \le n}$ in $\mathbb{K} \times (\mathbb{K} \cup \{\infty\})$ (*x_i*'s distinct) list-size ℓ , multiplicity *m* ($m \le \ell$)

Output: a nonzero polynomial Q in $\mathbb{K}[X, Y]$ such that

 $\begin{array}{ll} (i) & \deg_Y Q \leqslant \ell, & (\text{list-size condition}) \\ (ii) & \deg_X Q(X, X^{\theta_0}Y) < b, & (\text{weighted-deg. condition}) \\ (iii) & \forall i, \ Q(x_i, z_i : z'_i) = 0 \text{ with multiplicity } m & (\text{vanishing condition}) \end{array}$

Where we have defined when $z_i : z'_i = \infty$,

 $Q(x_i, \infty) = 0$ with multiplicity $m \Leftrightarrow \overline{Q}(x_i, 0) = 0$ with multiplicity mand $\overline{Q} = Y^{\ell}Q(X, Y^{-1}) = Q_{\ell} + Q_{\ell-1}Y + \dots + Q_1Y^{\ell-1} + Q_0Y^{\ell}$ Vincent NEIGER (ENS de Lyon) Re-encoding and Wu algorithm via polynomial approximation Luminy, JNCF 2014 19 / 22

Simultaneous polynomial approximations

Assume $z_i : z'_i = \infty$ for $i = 1, ..., n_\infty$ (with possibly $n_\infty = 0$)

Like in re-encoding technique,

 $Q(x_i,\infty) = 0$ with multiplicity *m* for $i = 1, ..., n_{\infty}$

 $\Leftrightarrow \quad Q_{\ell-m+1} = G_{\infty} \widehat{Q}_{\ell-m+1}, \ Q_{\ell-m+2} = G_{\infty}^2 \widehat{Q}_{\ell-m+2}, \ \dots, \ Q_{\ell} = G_{\infty}^m \widehat{Q}_{\ell}$

where $G_{\infty} = \prod_{1 \leq i \leq n_{\infty}} (X - x_i)$, with updated degree constraints for $Q_{\ell-m+1}, \ldots, Q_{\ell}$.

Equations for points $i = 1, ..., n_{\infty}$ are pre-solved, remains an easier approximation problem without points at infinity

Points at infinity are not a complication but an advantage!

Note: can be combined with re-encoding on $|\theta_0| = |\theta_1 - \theta_2|$ points. But we expect $\theta_1 \approx \theta_2...$

Cost bounds

Solving this problem of simultaneous approximations

- Lattice reduction: $\mathcal{O}(\ell^{\omega} m(n n_{\infty} |\theta_0|))$
- Order basis / structured system: $\mathcal{O}(\ell^{\omega-1}m^2(n-n_{\infty}-|\theta_0|))$

Recall we expect $n_{\infty} \approx 0$ and $\theta_0 \approx 0...$ \longrightarrow what advantage over original Guruswami-Sudan approach?

Smaller parameter m!

More precisely, $\ell_{\rm Wu} = \ell_{\rm GS} =: \ell$, but $m_{\rm Wu} = \ell - m_{\rm GS}$

For "well-chosen" parameters, $\ell pprox m_{
m GS} t/k \ \Rightarrow \ m_{
m Wu} pprox m_{
m GS} (t/k-1)$

Cost bounds:

- Lattice reduction: $\mathcal{O}(\ell^{\omega} m_{\text{GS}}(t/k-1)(n-n_{\infty}-|\theta_0|))$
- Order basis / struct. system: $\mathcal{O}(\ell^{\omega-1}m_{GS}^2(t/k-1)^2(n-n_{\infty}-|\theta_0|))$

Conclusion

Fast algorithms:

- lattice basis reduction
- solution of structured system
- order basis computation
- Can benefit from cost-reducing techniques:
 - Re-encoding
 - Wu reduction to rational reconstruction

Other applications:

• Interpolation step of soft-decoding [Koetter - Vardy, 2003]