polynomial matrices:
kernel bases, quasi-linear GCD, and applications
introduction

shifted reduced forms

fast algorithms

applications
introduction

⇓ earlier in the course ⇓

⇓ in this lecture ⇓
addition $f + g$, multiplication $f \ast g$

division with remainder $f = qg + r$

truncated inverse $f^{-1} \mod X^d$

extended GCD $uf + vg = \gcd(f, g)$

multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$

interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$

Padé approximation $f = \frac{p}{q} \mod X^d$

minpoly of linearly recurrent sequence
introduction

⇓ earlier in the course ⇓

$O(M(d))$

- addition $f + g$, multiplication $f * g$
- division with remainder $f = qg + r$
- truncated inverse $f^{-1} \mod X^d$
- extended GCD $uf + vg = \gcd(f, g)$

$O(M(d) \log(d))$

- multipoint eval. $f \mapsto f(\alpha_1), \ldots, f(\alpha_d)$
- interpolation $f(\alpha_1), \ldots, f(\alpha_d) \mapsto f$
- Padé approximation $f = \frac{p}{q} \mod X^d$
- minpoly of linearly recurrent sequence

⇓ in this lecture ⇓
introduction

\[\Downarrow \text{earlier in the course} \Downarrow \]

\[\begin{align*}
O(M(d)) \\
\text{addition } f + g, \text{ multiplication } f \cdot g \\
\text{division with remainder } f = qg + r \\
\text{truncated inverse } f^{-1} \mod X^d \\
\text{extended GCD } uf + vg = \gcd(f, g)
\end{align*} \]

\[\begin{align*}
O(M(d) \log(d)) \\
\text{multipoint eval. } f \mapsto f(\alpha_1), \ldots, f(\alpha_d) \\
\text{interpolation } f(\alpha_1), \ldots, f(\alpha_d) \mapsto f \\
\text{Padé approximation } f = \frac{p}{q} \mod X^d \\
\text{minpoly of linearly recurrent sequence}
\end{align*} \]

\[\Downarrow \text{in this lecture} \Downarrow \]

Padé approximation, sequence minpoly, extended GCD

\[O(M(d) \log(d)) \text{ operations in } K \]

matrix versions of these problems

\[O(m^\omega M(d) \log(d)) \text{ operations in } K \]

or a tiny bit more for matrix-GCD
given power series \(p(X) \) and \(q(X) \) over \(\mathbb{K} \) at precision \(d \),
with \(q(X) \) invertible,
→ compute \(\frac{p(X)}{q(X)} \mod X^d \)
given power series $p(X)$ and $q(X)$ over \mathbb{K} at precision d, with $q(X)$ invertible, compute $\frac{p(X)}{q(X)} \mod X^d$.

algo?? $O(??)$
inv+mul: $O(M(d))$
given power series $p(X)$ and $q(X)$ over \mathbb{K} at precision d, with $q(X)$ invertible,
→ compute $\frac{p(X)}{q(X)} \mod X^d$

given $M(X) \in \mathbb{K}[X]$ of degree $d > 0$, given polynomials $p(X)$ and $q(X)$ over \mathbb{K} of degree $< d$, with $q(X)$ invertible modulo $M(X)$,
→ compute $\frac{p(X)}{q(X)} \mod M(X)$
given power series $p(X)$ and $q(X)$ over \mathbb{K} at precision d, with $q(X)$ invertible,
→ compute $\frac{p(X)}{q(X)} \mod X^d$

given $M(X) \in \mathbb{K}[X]$ of degree $d > 0$, given polynomials $p(X)$ and $q(X)$ over \mathbb{K} of degree $< d$, with $q(X)$ invertible modulo $M(X)$, what does that mean?
→ compute $\frac{p(X)}{q(X)} \mod M(X)$

$\text{algo?? } O(??) \quad \text{inv+mul: } O(M(d))$

$xgcd+mul+rem \quad O(M(d) \log(d))$
given power series $p(X)$ and $q(X)$ over \mathbb{K} at precision d, with $q(X)$ invertible,
→ compute $\frac{p(X)}{q(X)} \mod X^d$algo?? $O(??)$

inv+mul: $O(M(d))$

given $M(X) \in \mathbb{K}[X]$ of degree $d > 0$,
given polynomials $p(X)$ and $q(X)$ over \mathbb{K} of degree $< d$,
with $q(X)$ invertible modulo $M(X)$, what does that mean?
→ compute $\frac{p(X)}{q(X)} \mod M(X)$algo?? $O(??)$

xgcd+mul+rem $O(M(d) \log(d))$

given $M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X]$, for pairwise distinct $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$,
given polynomials $p(X)$ and $q(X)$ over \mathbb{K} of degree $< d$,
with $q(X)$ invertible modulo $M(X)$, what does that mean?
→ compute $\frac{p(X)}{q(X)} \mod M(X)$algo?? $O(??)$
given **power series** \(p(X) \) and \(q(X) \) over \(\mathbb{K} \) at precision \(d \),
with \(q(X) \) invertible,
\[\rightarrow \text{compute} \quad \frac{p(X)}{q(X)} \mod X^d \quad \text{algo?? } O(??) \]
\[\text{inv+mul: } O(M(d)) \]

given \(M(X) \in \mathbb{K}[X] \) of degree \(d > 0 \),
given **polynomials** \(p(X) \) and \(q(X) \) over \(\mathbb{K} \) of degree \(< d \),
with \(q(X) \) invertible modulo \(M(X) \),
\[\rightarrow \text{compute} \quad \frac{p(X)}{q(X)} \mod M(X) \quad \text{what does that mean?} \]
\[\text{xgcd+mul+rem } O(M(d) \log(d)) \]

given \(M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X] \),
for pairwise distinct \(\alpha_1, \ldots, \alpha_d \in \mathbb{K} \),
given **polynomials** \(p(X) \) and \(q(X) \) over \(\mathbb{K} \) of degree \(< d \),
with \(q(X) \) invertible modulo \(M(X) \),
\[\rightarrow \text{compute} \quad \frac{p(X)}{q(X)} \mod M(X) \quad \text{what does that mean?} \]
\[\text{eval+div+interp } O(M(d) \log(d)) \]
Generating series of LRS and rational functions

Theorem

Given a monic polynomial P of degree d, a sequence $(a_n)_{n \in \mathbb{N}}$, and the series $A = \sum_{n \in \mathbb{N}} a_n x^n$, both following assertions are equivalent:

1. $(a_n)_{n \in \mathbb{N}}$ is an LRS with characteristic polynomial P;
2. there exists $N \in \mathbb{K}[X]$ of degree $\leq d$ such that $A = N/\text{rec } P$ in $\mathbb{K}[X]$.

When these assertions hold, if moreover P is the minimal polynomial of $(a_n)_{n \in \mathbb{N}}$, then

$$d = \max\{1 + \deg N, \deg \text{rec } P\} := m \quad \text{and} \quad \gcd(N, \text{rec } P) = 1.$$
introduction

rational approximation and interpolation

linearily recurrent sequences – reminder from October 21

Generating series of LRS and rational functions

Theorem

Given a monic polynomial P of degree d, a sequence $(a_n)_{n \in \mathbb{N}}$, and the series $A = \sum_{n \in \mathbb{N}} a_n X^n$, both following assertions are equivalent:

1. $(a_n)_{n \in \mathbb{N}}$ is an LRS with characteristic polynomial P;
2. there exists $N \in \mathbb{K}[X]$ of degree $< d$ such that $A = N / \text{rec} \, P$ in $\mathbb{K}[[X]]$.

When these assertions hold, if moreover P is the minimal polynomial of $(a_n)_{n \in \mathbb{N}}$, then

$$d = \max\{1 + \deg N, \deg \text{rec} \, P\} := m \quad \text{and} \quad \gcd(N, \text{rec} \, P) = 1.$$

expand $\frac{\text{rev}(P)}{N} \mod X^\delta$

numerator N and charpoly P

first δ terms of the LRS $(a_n)_{n \in \mathbb{N}}$
introduction

rational approximation and interpolation

linearily recurrent sequences – reminder from October 21

Generating series of LRS and rational functions

Theorem
Given a monic polynomial P of degree d, a sequence $(a_n)_{n \in \mathbb{N}}$, and the series $A = \sum_{n \in \mathbb{N}} a_n X^n$, both following assertions are equivalent:
1. $(a_n)_{n \in \mathbb{N}}$ is an LRS with characteristic polynomial P;
2. there exists $N \in \mathbb{K}[X]$ of degree $< d$ such that $A = N / \text{rec } P$ in $\mathbb{K}[X]$.

When these assertions hold, if moreover P is the minimal polynomial of $(a_n)_{n \in \mathbb{N}}$, then
$$d = \max\{1 + \deg N, \deg \text{rec } P\} := m \quad \text{and} \quad \gcd(N, \text{rec } P) = 1.$$
Padé approximation:
given power series $f(X)$ at precision d,
→ compute $p(X), q(X)$ such that $f = \frac{p}{q} \mod X^d$
introduction

rational approximation and interpolation

Padé approximation:

given *power series* $f(X)$ at precision d,

→ compute $p(X)$, $q(X)$ such that $f = \frac{p}{q} \mod X^d$

opinions on this algorithmic problem?
Padé approximation:
given power series $f(X)$ at precision d,
given degree constraints $d_1, d_2 > 0$,
→ compute polynomials $(p(X), q(X))$ of degrees $< (d_1, d_2)$
and such that $f = \frac{p}{q} \text{ mod } X^d$
Padé approximation:
given power series \(f(X) \) at precision \(d \),
given degree constraints \(d_1, d_2 > 0 \),
→ compute polynomials \((p(X), q(X))\) of degrees < \((d_1, d_2)\)
and such that \(f = \frac{p}{q} \mod X^d \)

Cauchy interpolation:
given \(M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X] \),
for pairwise distinct \(\alpha_1, \ldots, \alpha_d \in \mathbb{K} \),
given degree constraints \(d_1, d_2 > 0 \),
→ compute polynomials \((p(X), q(X))\) of degrees < \((d_1, d_2)\)
and such that \(f = \frac{p}{q} \mod M(X) \)
Padé approximation:
given power series $f(X)$ at precision d,
given degree constraints $d_1, d_2 > 0$,
\rightarrow compute polynomials $(p(X), q(X))$ of degrees $< (d_1, d_2)$
and such that $f = \frac{p}{q} \mod X^d$

Cauchy interpolation:
given $M(X) = (X - \alpha_1) \cdots (X - \alpha_d) \in \mathbb{K}[X]$,
for pairwise distinct $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$,
given degree constraints $d_1, d_2 > 0$,
\rightarrow compute polynomials $(p(X), q(X))$ of degrees $< (d_1, d_2)$
and such that $f = \frac{p}{q} \mod M(X)$

- degree constraints specified by the context
- usual choices have $d_1 + d_2 \approx d$ and existence of a solution
\[K = \mathbb{F}_7 \]
\[f = 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \]
\[d = 8, d_1 = 3, d_2 = 6 \]
\[\rightarrow \text{look for } (p, q) \text{ of degree } < (3, 6) \text{ such that } f = \frac{p}{q} \mod X^8 \]

\[
\begin{bmatrix}
 q & p \\
 -1 & 1
\end{bmatrix}
\begin{bmatrix}
 f
\end{bmatrix}
= 0 \mod X^8
\]
\[\mathbb{K} = \mathbb{F}_7 \]
\[f = 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4 \]
\[d = 8, \ d_1 = 3, \ d_2 = 6 \]
\[\rightarrow \ \text{look for} \ (p, \ q) \ \text{of degree} \ < (3, 6) \ \text{such that} \ f = \frac{p}{q} \ \text{mod} \ X^8 \]

\[
\begin{bmatrix}
q & p \\
-1 & 0
\end{bmatrix}
\begin{bmatrix}
f
\end{bmatrix}
= 0 \ \text{mod} \ X^8
\]

\[
\begin{bmatrix}
4 & 0 & 2 & 0 & 5 & 0 & 2 & 2 \\
4 & 0 & 2 & 0 & 5 & 0 & 2 \\
4 & 0 & 2 & 0 & 5 & 0 \\
4 & 0 & 2 & 0 \\
4 & 0 & 2 \\
6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0 & 0 \\
6 & 0 & 0 & 0
\end{bmatrix}
= 0
\]
$K = \mathbb{F}_7$

$f = 2X^7 + 2X^6 + 5X^4 + 2X^2 + 4$

$d = 8, d_1 = 3, d_2 = 6$

→ look for (p, q) of degree $< (3, 6)$ such that $f = \frac{p}{q} \mod X^8$

\[
\begin{bmatrix}
q & p
\end{bmatrix}
\begin{bmatrix}
f
\end{bmatrix}
= 0 \mod X^8
\]

\[
\begin{bmatrix}
q_0 & q_1 & q_2 & q_3 & q_4 & 1 & p_0 & p_1 & p_2
\end{bmatrix}
= 0
\]
Sur la généralisation des fractions continues algébriques;

PAR M. H. PADÉ,

Docteur ès Sciences mathématiques,
Professeur au lycée de Lille.

[1894, Journal de mathématiques pures et appliquées]

INTRODUCTION.

M. Hermite s’est, dans un travail récemment paru (1), occupé de la généralisation des fractions continues algébriques. La question est de déterminer les polynomes X_1, X_2, \ldots, X_n, de degrés $\mu_1, \mu_2, \ldots, \mu_n$, qui satisfont à l’équation

$$S_1 X_1 + S_2 X_2 + \ldots + S_n X_n = S x^{\mu_1 + \mu_2 + \ldots + \mu_n + n - 1},$$

S_1, S_2, \ldots, S_n étant des séries entières données, et S une série égale-ment entière. Ou plutôt, il s’agit d’obtenir un algorithme qui permette le calcul de proche en proche de ces systèmes de n polynomes, et qui soit analogue à l’algorithme par lequel le numérateur et le dénomina-teur d’une réduite d’une fraction continue se déduisent des numéra-teurs et dénominateurs des réduites précédentes. D’élégantes consi-
Hermite-Padé approximation

[Hermite 1893, Padé 1894]

input:
- polynomials $f_1, \ldots, f_m \in K[X]$
- precision $d \in \mathbb{Z}_{>0}$
- degree bounds $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

output:
polynomials $p_1, \ldots, p_m \in K[X]$ such that
- $p_1 f_1 + \cdots + p_m f_m = 0 \mod X^d$
- $\text{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m)$

(Padé approximation: particular case $m = 2$ and $f_2 = -1$)
M-Padé approximation / vector rational interpolation
[Cauchy 1821, Mahler 1968]

input:
▶ polynomials $f_1, \ldots, f_m \in \mathbb{K}[X]$
▶ pairwise distinct points $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$
▶ degree bounds $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$

output:
polynomials $p_1, \ldots, p_m \in \mathbb{K}[X]$ such that
▶ $p_1(\alpha_i)f_1(\alpha_i) + \cdots + p_m(\alpha_i)f_m(\alpha_i) = 0$ for all $1 \leq i \leq d$
▶ $\text{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m)$

(rational interpolation: particular case $m = 2$ and $f_2 = -1$)
in this lecture: modular equation and fast algebraic algorithms

input:

- polynomials $f_1, \ldots, f_m \in \mathbb{K}[X]$
- field elements $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$ \hspace{1cm} \leadsto \text{not necessarily distinct}
- degree bounds $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$ \hspace{1cm} \leadsto \text{general “shift” } s \in \mathbb{Z}^m$

output:

polynomials $p_1, \ldots, p_m \in \mathbb{K}[X]$ such that

- $p_1 f_1 + \cdots + p_m f_m = 0 \mod \prod_{1 \leq i \leq d} (X - \alpha_i)$
- $\mathrm{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m)$ \hspace{1cm} \leadsto \text{minimal } s\text{-row degree}$

(Hermite-Padé: $\alpha_1 = \cdots = \alpha_d = 0$; interpolation: pairwise distinct points)
application of vector rational interpolation:
given pairwise distinct points \(\{(\alpha_i, \beta_i), 1 \leq i \leq 8\} \)
\(= \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\} \),
compute a **bivariate** polynomial \(p(X, Y) \in \mathbb{K}[X, Y] \)
such that \(p(\alpha_i, \beta_i) = 0 \) for \(1 \leq i \leq 8 \)

\[
M(X) = (X - 24) \cdots (X - 59) \\
L(X) = \text{Lagrange interpolant}
\]

\(\rightarrow \) solutions = ideal \(\langle M(X), Y - L(X) \rangle \)

solutions of smaller \(X \)-degree: \(p(X, Y) = p_0(X) + p_1(X)Y + p_2(X)Y^2 \)

\[
p(X, L(X)) = \begin{bmatrix} p_0 & p_1 & p_2 \end{bmatrix} \begin{bmatrix} 1 \\ L \\ L^2 \end{bmatrix} = 0 \text{ mod } M(X)
\]

- instance of **univariate** rational vector interpolation
- with a **structured** input equation (powers of \(L \text{ mod } M \))
application of vector rational interpolation:
given pairwise distinct points \(\{ (\alpha_i, \beta_i), 1 \leq i \leq 8 \} \)
\[= \{(24, 80), (31, 73), (15, 73), (32, 35), (83, 66), (27, 46), (20, 91), (59, 64)\}, \]
compute a \textbf{bivariate} polynomial \(p(X, Y) \in K[X, Y] \)
such that \(p(\alpha_i, \beta_i) = 0 \) for \(1 \leq i \leq 8 \)

add \textbf{degree constraints}: seek \(p(X, Y) \) of the form
\[
p_{00} + p_{01}X + p_{02}X^2 + p_{03}X^3 + p_{04}X^4 + (p_{10} + p_{11}X + p_{12}X^2)Y + p_{20}Y^2:
\]

\[
\begin{bmatrix}
p_{00} & p_{01} & p_{02} & p_{03} & p_{04} & p_{10} & p_{11} & p_{12} & p_{20}
\end{bmatrix}
\begin{bmatrix}
1 & 1 & \cdots & 1 \\
\alpha_1 & \alpha_2 & \cdots & \alpha_8 \\
\alpha_1^2 & \alpha_2^2 & \cdots & \alpha_8^2 \\
\alpha_1^3 & \alpha_2^3 & \cdots & \alpha_8^3 \\
\alpha_1^4 & \alpha_2^4 & \cdots & \alpha_8^4 \\
\beta_1 & \beta_2 & \cdots & \beta_8 \\
\alpha_1 \beta_1 & \alpha_2 \beta_2 & \cdots & \alpha_8 \beta_8 \\
\alpha_1^2 \beta_1 & \alpha_2^2 \beta_2 & \cdots & \alpha_8^2 \beta_8 \\
\beta_1^2 & \beta_2^2 & \cdots & \beta_8^2
\end{bmatrix} = 0
\]

\begin{itemize}
 \item \(K \)-linear system
 \item \textbf{two levels} of structure
\end{itemize}

\[p(X, Y) = (2X^4 + 56X^3 + 42X^2 + 48X + 15) + (72X^2 + 12X + 30)Y + Y^2\]
polynomial matrices: reminder and motivation

why polynomial matrices here?
omitting degree constraints, the set of solutions is
\[S = \{(p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M}\]

recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)
omitting degree constraints, the set of solutions is
\[S = \{ (p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M \} \]

\[M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \]

\(S \) is a “free \(K[X] \)-module of rank \(m \)”, meaning:
- stable under \(K[X] \)-linear combinations
- admits a basis consisting of \(m \) elements
- basis = \(K[X] \)-linear independence + generates all solutions
omitting degree constraints, the set of solutions is
\[S = \{(p_1, \ldots, p_m) \in \mathbb{K}[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M\} \]

recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

\(S \) is a “free \(\mathbb{K}[X] \)-module of rank \(m \)”, meaning:
- stable under \(\mathbb{K}[X] \)-linear combinations
- admits a basis consisting of \(m \) elements
- basis = \(\mathbb{K}[X] \)-linear independence + generates all solutions

\[\Rightarrow S \subset \mathbb{K}[X]^m \Rightarrow S \text{ has rank } \leq m \]
\[\Rightarrow M(X)\mathbb{K}[X]^m \subset S \Rightarrow S \text{ has rank } \geq m \]

remark: solutions are not considered modulo \(M \)
e.g. \((M, 0, \ldots, 0)\) is in \(S \) and may appear in a basis
omitting degree constraints, the set of solutions is
\[S = \{(p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \text{ mod } M\} \]

why polynomial matrices here?

<table>
<thead>
<tr>
<th>basis of solutions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ square nonsingular matrix (P) in (K[X]^{m \times m})</td>
</tr>
<tr>
<td>▶ each row of (P) is a solution</td>
</tr>
<tr>
<td>▶ any solution is a (K[X])-combination (uP, u \in K[X]^{1 \times m})</td>
</tr>
</tbody>
</table>

i.e. \(S \) is the \(K[X] \)-row space of \(P \)
omitting degree constraints, the set of solutions is
\[S = \{ (p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M \} \]
recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

\textbf{why polynomial matrices here?}

\textbf{basis of solutions:}
- square nonsingular matrix \(P \) in \(K[X]^{m \times m} \)
- each row of \(P \) is a solution
- any solution is a \(K[X] \)-combination \(uP, u \in K[X]^{1 \times m} \)

\(i.e. \ S \) is the \(K[X] \)-row space of \(P \)

\textbf{prove:} \(\det(P) \) is a divisor of \(M(X)^m \)
polynomial matrices: reminder and motivation

why polynomial matrices here?

omitting degree constraints, the set of solutions is
\[S = \left\{ (p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M \right\} \]

recall \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

basis of solutions:
- square nonsingular matrix \(P \) in \(K[X]^{m \times m} \)
- each row of \(P \) is a solution
- any solution is a \(K[X] \)-combination \(uP, u \in K[X]^{1 \times m} \)

i.e. \(S \) is the \(K[X] \)-row space of \(P \)

prove: \(\det(P) \) is a divisor of \(M(X)^m \)

prove: any other basis is \(UP \) for \(U \in K[X]^{m \times m} \) with \(\det(U) \in K \setminus \{0\} \)
omitting degree constraints, the set of solutions is
\[S = \{(p_1, \ldots, p_m) \in K[X]^m \mid p_1 f_1 + \cdots + p_m f_m = 0 \mod M\} \]

recalling \(M(X) = \prod_{1 \leq i \leq d} (X - \alpha_i) \)

basis of solutions:
- square nonsingular matrix \(P \) in \(K[X]^{m \times m} \)
- each row of \(P \) is a solution
- any solution is a \(K[X] \)-combination \(uP, u \in K[X]^{1 \times m} \)

i.e. \(S \) is the \(K[X] \)-row space of \(P \)

computing a basis of \(S \) with “minimal degrees”
- has many more applications than a single small-degree solution
- is in most cases the fastest known strategy anyway(!)

\(\rightsquigarrow \) degree minimality ensured via shifted reduced forms
introduction

polynomial matrices: reminder and motivation

\[
A = \begin{bmatrix}
3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\
5 & 5X^2 + 3X + 1 & 5X + 3 \\
3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1
\end{bmatrix} \in \mathbb{K}[X]^{3\times 3}
\]

3 × 3 matrix of degree 3 with entries in \(\mathbb{K}[X] = \mathbb{F}_7[X] \)

operations in \(\mathbb{K}[X]^{m\times m}_{<d} \):

- combination of matrix and polynomial computations
- addition in \(O(m^2d) \), naive multiplication in \(O(m^3d^2) \)
- some tools shared with \(\mathbb{K} \)-matrices, others specific to \(\mathbb{K}[X] \)-matrices

[Contor-Kaltofen'91]

multiplication in \(O(m^\omega d \log(d) + m^2d \log(d) \log \log(d)) \)

\(\in O(m^\omega M(d)) \subset O^*(m^\omega d) \)
introduction

polynomial matrices: reminder and motivation

\[
A = \begin{bmatrix}
3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\
5 & 5X^2 + 3X + 1 & 5X + 3 \\
3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1
\end{bmatrix} \in \mathbb{K}[X]^{3 \times 3}
\]

3 × 3 matrix of degree 3 with entries in \(\mathbb{K}[X] = \mathbb{F}_7[X] \)

operations in \(\mathbb{K}[X]_{<d}^{m \times m} \):

- combination of matrix and polynomial computations
- addition in \(O(m^2d) \), naive multiplication in \(O(m^3d^2) \)
- some tools shared with \(\mathbb{K} \)-matrices, others specific to \(\mathbb{K}[X] \)-matrices

[Cantor-Kaltofen'91]

multiplication in \(O(m^\omega d \log(d) + m^2d \log(d) \log \log(d)) \)

\(\in O(m^\omega M(d)) \subset O^\sim(m^\omega d) \)

- Newton truncated inversion, matrix-QuoRem \(\rightarrow \) fast \(O^\sim(m^\omega d) \)
- inversion and determinant via evaluation-interpolation \(\rightarrow \) medium \(O^\sim(m^{\omega+1}d) \)
- vector rational approximation & interpolation \(\rightarrow \) ???
reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d
of “average” degree D
$\rightarrow O(\omega d)$
$\frac{D}{m} \rightarrow O(\omega \frac{D}{m})$

classical matrix operations
- multiplication
- kernel, system solving
- rank, determinant
- inversion $O(3d)$

univariate specific operations
- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to normal forms
- triangularization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form
polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d
of “average” degree $\frac{D}{m} \rightarrow O(\omega^d m)$
$\rightarrow O(\omega^D m)$

classical matrix operations
▶ multiplication
▶ kernel, system solving
▶ rank, determinant
▶ inversion $O(\omega^3 m)$

univariate specific operations
▶ truncated inverse, QuoRem
▶ Hermite-Padé approximation
▶ vector rational interpolation
▶ syzygies / modular equations

transformation to normal forms
▶ triangularization: Hermite form
▶ row reduction: Popov form
▶ diagonalization: Smith form
polynomial matrices: reminder and motivation

Reductions of most problems to polynomial matrix multiplication

Matrix $m \times m$ of degree d of “average” degree $\frac{D}{m} \rightarrow O(\tilde{m}^\omega d)$

Classical matrix operations
- Multiplication
- Kernel, system solving
- Rank, determinant
- Inversion $O(\tilde{m}^3 d)$

Univariate specific operations
- Truncated inverse, QuoRem
- Hermite-Padé approximation
- Vector rational interpolation
- Syzygies / modular equations

Transformation to normal forms
- Triangularization: Hermite form
- Row reduction: Popov form
- Diagonalization: Smith form
introduction

polynomial matrices: reminder and motivation

reductions of most problems to polynomial matrix multiplication
matrix $m \times m$ of degree d of “average” degree $\frac{D}{m}$
$\rightarrow O(\tilde{m}^\omega d)$
$\rightarrow O(\tilde{m}^\omega \frac{D}{m})$

classical matrix operations
- multiplication
- kernel, system solving
- rank, determinant
- inversion $O(\tilde{m}^3 d)$

univariate specific operations
- truncated inverse, QuoRem
- Hermite-Padé approximation
- vector rational interpolation
- syzygies / modular equations

transformation to normal forms
- triangularization: Hermite form
- row reduction: Popov form
- diagonalization: Smith form
outline

introduction

- rational approximation and interpolation
- the vector case
- pol. matrices: reminders and motivation

shifted reduced forms

fast algorithms

applications
shifted reduced forms

reducedness: examples and properties

notation:

let $A \in \mathbb{K}[X]^{m \times n}$ with no zero row,
define $d = (d_1, \ldots, d_m) = \text{rdeg}(A)$

and $X^d = \begin{bmatrix} X^{d_1} \\ \vdots \\ X^{d_m} \end{bmatrix} \in \mathbb{K}[X]^{m \times m}$

definition: (row-wise) leading matrix

the leading matrix of A is the unique matrix $\text{lm}(A) \in \mathbb{K}^{m \times n}$
such that $A = X^d \text{lm}(A) + R$ with $\text{rdeg}(R) < d$ entry-wise

equivalently, $X^{-d}A = \text{lm}(A) + \text{terms of strictly negative degree}$
shifted reduced forms

reducedness: examples and properties

notation:

let \(A \in \mathbb{K}[X]^{m \times n} \) with no zero row,
define \(d = (d_1, \ldots, d_m) = \text{rdeg}(A) \)
and \(X^d = \begin{bmatrix} X^{d_1} & & \\ & \ddots & \\ & & X^{d_m} \end{bmatrix} \in \mathbb{K}[X]^{m \times m} \)

definition: (row-wise) leading matrix

the leading matrix of \(A \) is the unique matrix \(\text{lm}(A) \in \mathbb{K}^{m \times n} \) such that \(A = X^d \text{lm}(A) + R \) with \(\text{rdeg}(R) < d \) entry-wise

equivalently, \(X^{-d} A = \text{lm}(A) + \) terms of strictly negative degree

definition: (row-wise) reduced matrix

\(A \in \mathbb{K}[X]^{m \times n} \) is said to be reduced if \(\text{lm}(A) \) has full row rank
shifted reduced forms

reducedness: examples and properties

consider the following matrices, with $\mathbb{K} = \mathbb{F}_7$:

$$A_1 = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix}$$

$$A_2 = \begin{bmatrix} 3X + 1 & 4X + 3 & 5X + 5 \\ 0 & 4X^2 + 6X & 5 \\ 4X^2 + 5X + 2 & 5 & 6X^2 + 1 \end{bmatrix}$$

$A_3 = \text{transpose of } A_1$

$A_4 = \text{transpose of } A_2$

answer the following, for $i \in \{1, 2, 3, 4\}$:
1. what is $\text{rdeg}(A_i)$?
2. what is $\text{lm}(A_i)$?
3. is A_i reduced?
let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$, the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)
polynomial matrices in reduced form

reducedness: examples and properties

let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$,
the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)

(ii) for any vector $u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m}$ with 1 at index i,
$\text{rdeg}(uA) \geq \text{rdeg}(A_{i,*})$
polynomial matrices in reduced form

reducedness: examples and properties

let $A \in \mathbb{K}[X]^{m \times n}$ with $m \leq n$, the following are equivalent:

(i) A is reduced (i.e. $\text{Im}(A)$ has full rank)

(ii) for any vector $u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m}$ with 1 at index i, $rdeg(uA) \geq rdeg(A_{i,*})$

(iii) predictable degree: for any vector $u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$, $rdeg(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + rdeg(A_{i,*}))$
polynomial matrices in reduced form

reducedness: examples and properties

Let \(A \in \mathbb{K}[X]^{m \times n} \) with \(m \leq n \),

the following are equivalent:

(i) \(A \) is reduced (i.e. \(\text{Im}(A) \) has full rank)

(ii) for any vector \(u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m} \) with 1 at index \(i \),
\(\text{rdeg}(uA) \geq \text{rdeg}(A_{i,*}) \)

(iii) predictable degree: for any vector \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),
\(\text{rdeg}(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}(A_{i,*})) \)

(iv) degree minimality: \(\text{rdeg}(A) \precsim \text{rdeg}(UA) \) holds for any nonsingular matrix \(U \in \mathbb{K}[X]^{m \times m} \), where \(\precsim \) sorts the tuples in nondecreasing order and then uses lexicographic comparison.
polynomial matrices in reduced form

reducedness: examples and properties

let \(A \in \mathbb{K}[X]^{m \times n} \) with \(m \leq n \),
the following are equivalent:

(i) \(A \) is reduced (i.e. \(\text{Im}(A) \) has full rank)

(ii) for any vector \(u = [u_1 \ 1 \ u_2] \in \mathbb{K}[X]^{1 \times m} \) with 1 at index \(i \),
\(r\deg(uA) \geq r\deg(A_{i,*}) \)

(iii) predictable degree: for any vector \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),
\(r\deg(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + r\deg(A_{i,*})) \)

(iv) degree minimality: \(r\deg(A) \preceq r\deg(UA) \) holds for any nonsingular matrix \(U \in \mathbb{K}[X]^{m \times m} \), where \(\preceq \) sorts the tuples in nondecreasing order and then uses lexicographic comparison

(v) predictable determinantal degree: \(\deg \det(A) = |r\deg(A)| \)
(only when \(m = n \))
shifted reduced forms

reducedness: examples and properties

recall the matrix, with \(K = \mathbb{F}_7 \),

\[
A = \begin{bmatrix}
3X + 1 & 4X + 3 & 5X + 5 \\
0 & 4X^2 + 6X & 5 \\
4X^2 + 5X + 2 & 5 & 6X^2 + 1
\end{bmatrix}
\]

1. what is \(\text{deg det}(A) \)?

2. what is \(\text{rdeg}([4X^2 + 1 \ 2X \ 4X + 5]A) \)?

3. is it possible to find a matrix

\[
P = \begin{bmatrix}
p_{00} & p_{01} & p_{02} \\
p_{10} & p_{11} & p_{12}
\end{bmatrix}
\]

whose rank is 2, whose degree is 1, and which is a left-multiple of \(A \)?
shifted reduced forms

reducedness: examples and properties

recall the matrix, with $K = F_7$,
$$A = \begin{bmatrix} 3X + 1 & 4X + 3 & 5X + 5 \\ 0 & 4X^2 + 6X & 5 \\ 4X^2 + 5X + 2 & 5 & 6X^2 + 1 \end{bmatrix}$$

1. what is $\text{deg det}(A)$?

2. what is $\text{rdeg}([4X^2 + 1 \ 2X \ 4X + 5] A)$?

3. is it possible to find a matrix
$$P = \begin{bmatrix} p_{00} & p_{01} & p_{02} \\ p_{10} & p_{11} & p_{12} \end{bmatrix}$$
whose rank is 2, whose degree is 1, and which is a left-multiple of A?

find a row vector u of degree 1 such that uA has degree 2, where
$$A = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix}$$
shifted reduced forms

shifted forms and degree constraints

keeping our problem in mind:

- input: f_i's and α_i's and degree constraints $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$
- output: a solution p satisfying the constraints $c\deg(p) < (d_1, \ldots, d_m)$

obstacle:
computing a reduced basis of solutions ignores the constraints

exercice: suppose we have a reduced basis $P \in \mathbb{K}[X]^{m \times m}$ of solutions

- think of particular constraints (d_1, \ldots, d_m) that can be handled via P
- give constraints (d_1, \ldots, d_m) for which P is “typically” not satisfactory
shifted reduced forms

shifted forms and degree constraints

keeping our problem in mind:

► input: f_i's and α_i's and degree constraints $d_1, \ldots, d_m \in \mathbb{Z}_{>0}$
► output: a solution p satisfying the constraints $\text{cdeg}(p) < (d_1, \ldots, d_m)$

obstacle:
computing a reduced basis of solutions ignores the constraints

exercice: suppose we have a reduced basis $P \in K[X]^{m \times m}$ of solutions

► think of particular constraints (d_1, \ldots, d_m) that can be handled via P
► give constraints (d_1, \ldots, d_m) for which P is “typically” not satisfactory

solution: compute P in shifted reduced form
shifted reduced forms

shifted forms and degree constraints

\[
A = \begin{bmatrix}
3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\
5 & 5X^2 + 3X + 1 & 5X + 3 \\
3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1
\end{bmatrix}
\]

using elementary row operations, transform \(A \) into...

Hermite form

\[
H = \begin{bmatrix}
X^6 + 6X^4 + X^3 + X + 4 & 0 & 0 \\
5X^5 + 5X^4 + 6X^3 + 2X^2 + 6X + 3 & X & 0 \\
3X^4 + 5X^3 + 4X^2 + 6X + 1 & 5 & 1
\end{bmatrix}
\]

Popov form

\[
P = \begin{bmatrix}
X^3 + 5X^2 + 4X + 1 & 2X + 4 & 3X + 5 \\
1 & X^2 + 2X + 3 & X + 2 \\
3X + 2 & 4X & X^2
\end{bmatrix}
\]
shifted reduced forms

shifted forms and degree constraints

nonsingular $A \in K[X]^{m \times m}$

elementary row transformations

Hermite form [Hermite, 1851]
- triangular
- column normalized

$\begin{bmatrix}
16 & 0 \\
15 & 0 \\
15 & 0 \\
15 & 0 \\
\end{bmatrix}$

$\begin{bmatrix}
4 & 7 \\
3 & 7 \\
1 & 5 & 3 \\
3 & 6 & 1 & 2 \\
\end{bmatrix}$

Hermite form

Popov form [Popov, 1972]
- row reduced/distinct pivots
- column normalized

Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003
shifted reduced forms

shifted forms and degree constraints

nonsingular $A \in K[X]^{m \times m}$

elementary row transformations

Hermite form \cite{Hermite, 1851}
- triangular
- column normalized

\[
\begin{bmatrix}
16 & 0 \\
15 & 0 \\
15 & 0
\end{bmatrix}
\quad
\begin{bmatrix}
4 & 7 \\
3 & 1 \\
3 & 6
\end{bmatrix}
\]

Popov form \cite{Popov, 1972}
- row reduced/distinct pivots
- column normalized

\[
\begin{bmatrix}
4 & 3 & 3 & 3 \\
3 & 4 & 3 & 3 \\
3 & 3 & 4 & 3 \\
3 & 3 & 3 & 4
\end{bmatrix}
\quad
\begin{bmatrix}
7 & 0 & 1 & 5 \\
0 & 1 & 0 \\
2 \\
6 & 0 & 1 & 6
\end{bmatrix}
\]
shifted reduced forms

shifted forms and degree constraints

nonsingular $A \in \mathbb{K}[X]^{m \times m}$

elementary row transformations

Hermite form [Hermite, 1851]
- triangular
- column normalized

Popov form [Popov, 1972]
- row reduced/distinct pivots
- column normalized

$\mathbb{K}[X]$-module $S \subset \mathbb{K}[X]^{1 \times m}$ of rank m
shifted reduced forms

shifted forms and degree constraints

nonsingular $A \in \mathbb{K}[X]^{m \times m}$

elementary row transformations

Hermite form [Hermite, 1851]
- triangular
- column normalized

<table>
<thead>
<tr>
<th>16</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

4	7
3	3
1	1
3	2

Popov form [Popov, 1972]
- row reduced/distinct pivots
- column normalized

4	3	3	3
4	3	3	3
3	3	4	3
3	3	3	4

| 7 | 0 | 1 | 5 |
| 0 | 1 | 0 |
| 2 |
| 6 | 0 | 1 | 6 |

invariant: $D = \deg(\det(A)) = 4 + 7 + 3 + 2 = 7 + 1 + 2 + 6$

- average column degree is $\frac{D}{m}$
- size of object is $mD + m^2 = m^2\left(\frac{D}{m} + 1\right)$
shifted reduced forms

shifted forms and degree constraints

nonsingular \(A \in K[X]^{m \times m} \)

elementary row transformations

Hermite form [Hermite, 1851]
- triangular
- column normalized

Popov form [Popov, 1972]
- row reduced/distinct pivots
- column normalized

\[
\begin{bmatrix}
16 & 0 \\
15 & 0 \\
15 & 0 \\
\end{bmatrix}
\quad \begin{bmatrix}
4 & 3 & 7 \\
3 & 1 & 5 & 3 \\
3 & 6 & 1 & 2 \\
\end{bmatrix}
\quad \begin{bmatrix}
4 & 3 & 3 & 3 \\
3 & 4 & 3 & 3 \\
3 & 3 & 4 & 3 \\
3 & 3 & 3 & 4 \\
\end{bmatrix}
\quad \begin{bmatrix}
7 & 0 & 1 & 5 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 6 \\
\end{bmatrix}
\]

[Beckermann-Labahn-Villard, 1999; Mulders-Storjohann, 2003]

shifted reduced form:
arbitrary degree constraints + *no* column column normalization

\(\approx \) minimal, non-reduced, \(\prec\)-Gröbner basis
shifted reduced forms

shift: integer tuple $s = (s_1, \ldots, s_m)$ acting as column weights
→ connects Popov and Hermite forms

$\begin{align*}
\text{Popov} & : s = (0, 0, 0, 0) \\
\begin{bmatrix} 4 & 3 & 3 \end{bmatrix} & \begin{bmatrix} 7 & 0 & 1 \end{bmatrix} \\
\begin{bmatrix} 3 & 4 & 3 \\ 3 & 3 & 4 \\ 3 & 3 & 3 \end{bmatrix} & \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \\
\end{align*}$

$\begin{align*}
\text{s-Popov} & : s = (0, 2, 4, 6) \\
\begin{bmatrix} 7 & 4 & 2 \end{bmatrix} & \begin{bmatrix} 8 & 5 \end{bmatrix} \\
\begin{bmatrix} 6 & 5 & 2 \\ 6 & 4 & 3 \\ 6 & 4 & 2 \end{bmatrix} & \begin{bmatrix} 7 & 6 \\ 2 & 0 \end{bmatrix} \\
\end{align*}$

$\begin{align*}
\text{Hermite} & : s = (0, D, 2D, 3D) \\
\begin{bmatrix} 16 & 0 \end{bmatrix} & \begin{bmatrix} 4 \\ 3 \end{bmatrix} \\
\begin{bmatrix} 15 & 0 \\ 15 & 0 \end{bmatrix} & \begin{bmatrix} 4 & 7 \\ 1 & 5 \end{bmatrix} \\
\end{align*}$

- normal form, average column degree D/m
- shifted reduced form: same without normalization
- shifts arise naturally in algorithms (approximants, kernel, \ldots)
shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for \(A = (a_{i,j}) \in \mathbb{K}[X]^{m \times n} \), and \(s = (s_1, \ldots, s_n) \in \mathbb{Z}^n \),

\[
\text{rdeg}_s(A) = (\text{rdeg}_s(A_{1,*}), \ldots, \text{rdeg}_s(A_{m,*}))
\]

\[
= \left(\max_{1 \leq j \leq n} (\deg(A_{1,j}) + s_j), \ldots, \max_{1 \leq j \leq n} (\deg(A_{m,j}) + s_j) \right) \in \mathbb{Z}^m
\]

example: for the matrix \(A = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix} \),

describe \(\text{rdeg}_{(0,0,0)}(A) \), \(\text{rdeg}_{(0,1,2)}(A) \), and \(\text{rdeg}_{(-1,-3,-2)}(A) \)
shifted row degree of a polynomial matrix
= the list of the maximum shifted degree in each of its rows

for $A = (a_{i,j}) \in \mathbb{K}[X]^{m \times n}$, and $s = (s_1, \ldots, s_n) \in \mathbb{Z}^n$,

$$rdeg_s(A) = (rdeg_s(A_{1,*}), \ldots, rdeg_s(A_{m,*}))$$

$$= \left(\max_{1 \leq j \leq n} (\deg(A_{1,j}) + s_j), \ldots, \max_{1 \leq j \leq n} (\deg(A_{m,j}) + s_j) \right) \in \mathbb{Z}^m$$

example: for the matrix $A = \begin{bmatrix} 3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\ 5 & 5X^2 + 3X + 1 & 5X + 3 \end{bmatrix}$,

describe $rdeg_{(0,0,0)}(A)$, $rdeg_{(0,1,2)}(A)$, and $rdeg_{(-1,-3,-2)}(A)$

- $rdeg_s(A) = rdeg(AX^s)$
- $rdeg_s(A)$ only depends on the degrees in A
- $rdeg_{s+(c,\ldots,c)}(A) = rdeg_s(A) + c$
shifted reduced forms

shifted forms and degree constraints

notation:

let $A \in \mathbb{K}[X]^{m \times n}$ with no zero row, and $s \in \mathbb{Z}^n$, define $d = (d_1, \ldots, d_m) = \text{rdeg}_s(A)$

and $X^d = \begin{bmatrix} X^{d_1} & \cdots & \cdots & X^{d_m} \end{bmatrix} \in \mathbb{K}[X, X^{-1}]^{m \times m}$

definition: s-leading matrix / s-reduced matrix

assuming $s \geq 0$,

- the s-leading matrix of A is $\text{lm}_s(A) = \text{lm}(AX^s) \in \mathbb{K}^{m \times n}$
- $A \in \mathbb{K}[X]^{m \times n}$ is reduced if $\text{lm}_s(A)$ has full row rank
shifted forms and degree constraints

notation:

Let \(A \in \mathbb{K}[X]^{m \times n} \) with no zero row, and \(s \in \mathbb{Z}^n \), define

\[
d = (d_1, \ldots, d_m) = \text{rdeg}_s(A)
\]

and

\[
X^d = \begin{bmatrix}
X^{d_1} \\
\vdots \\
X^{d_m}
\end{bmatrix} \in \mathbb{K}[X, X^{-1}]^{m \times m}
\]

definition: s-leading matrix / s-reduced matrix

Assuming \(s \geq 0 \),

- The **s-leading matrix** of \(A \) is \(\text{Im}_s(A) = \text{Im}(AX^s) \in \mathbb{K}^{m \times n} \)
- \(A \in \mathbb{K}[X]^{m \times n} \) is **reduced** if \(\text{Im}_s(A) \) has full row rank

- These notions are invariant under \(s \to s + (c, \ldots, c) \)
- They coincide with the non-shifted case when \(s = (0, \ldots, 0) \)
- \(X^{-d}AX^s = \text{Im}_s(A) + \text{terms of strictly negative degree} \)
shifted reduced forms

shifted forms and degree constraints

exercise: for each of the matrices below, and each shift \(\mathbf{s} \),
1. give the \(\mathbf{s} \)-leading matrix
2. deduce whether the matrix is \(\mathbf{s} \)-reduced

\[
\mathbf{A} = \begin{bmatrix}
3X + 4 & X^3 + 4X + 1 & 4X^2 + 3 \\
5 & 5X^2 + 3X + 1 & 5X + 3 \\
3X^3 + X^2 + 5X + 3 & 6X + 5 & 2X + 1
\end{bmatrix}
\]

\[
\mathbf{H} = \begin{bmatrix}
X^6 + 6X^4 + X^3 + X + 4 & 0 & 0 \\
5X^5 + 5X^4 + 6X^3 + 2X^2 + 6X + 3 & X & 0 \\
3X^4 + 5X^3 + 4X^2 + 6X + 1 & 5 & 1
\end{bmatrix}
\]

\[
\mathbf{P} = \begin{bmatrix}
X^3 + 5X^2 + 4X + 1 & 2X + 4 & 3X + 5 \\
1 & X^2 + 2X + 3 & X + 2 \\
3X + 2 & 4X & X^2
\end{bmatrix}
\]

\(\mathbf{s} = (0, 0, 0), \quad \mathbf{s} = (0, 5, 6), \quad \mathbf{s} = (-3, -2, -2) \)
shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the \(s \)-shifted case, using \(s \)-row degrees and \(s \)-leading matrices where appropriate

(proofs: direct reductions, with: \(A \) is \(s \)-reduced \(\iff \) \(AX^s \) is reduced)

for example recall the predictable degree property:

\(A \) is reduced if and only if for any \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),

\[
\text{rdeg}(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + \text{rdeg}(A_{i,*}))
\]
shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the \(s \)-shifted case, using \(s \)-row degrees and \(s \)-leading matrices where appropriate

(proofs: direct reductions, with: \(A \) is \(s \)-reduced \(\iff \) \(AX^s \) is reduced)

for example recall the predictable degree property:

\(A \) is reduced if and only if for any \(u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m} \),

\[
\text{rdeg}(uA) = \max_{1 \leq i \leq m} (\text{deg}(u_i) + \text{rdeg}(A_{i,*}))
\]

\(\implies \)

- this means \(\text{rdeg}(uA) = \text{rdeg}_t(u) \) where \(t = \text{rdeg}(A) \)

- i.e. \(\text{rdeg}(uA) = \text{rdeg}(uX^{\text{rdeg}(A)}) \), “no surprising cancellation”

- proof: let \(\delta = \text{rdeg}_t(u) \), our goal is to show \(\text{rdeg}(uA) = \delta \) terms of \(X^{-\delta}uA \) have degree \(\leq 0 \), and \(X^{-\delta}uA = (X^{-\delta}uX^t)(X^{-t}A) \);

the term of degree 0 is \(\text{Im}_t(u)\text{Im}(A) \), it is nonzero since \(\text{Im}(A) \) has full rank and \(\text{Im}_t(u) \neq 0 \) (the case \(u = 0 \) is trivial)
shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the s-shifted case, using s-row degrees and s-leading matrices where appropriate

(proofs: direct reductions, with: A is s-reduced $\iff AX^s$ is reduced)

for example recall the predictable degree property:

A is reduced if and only if for any $u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$,

$$rdeg(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + rdeg(A_{i,*}))$$

A is s-reduced if and only if for any $u = [u_1 \cdots u_m] \in \mathbb{K}[X]^{1 \times m}$,

$$rdeg_s(uA) = \max_{1 \leq i \leq m} (\deg(u_i) + rdeg_s(A_{i,*}))$$

this means $rdeg_s(uA) = rdeg_t(u)$, where $t = rdeg_s(A)$
shifted reduced forms

shifted forms and degree constraints

the characterizations generalize to the \(s \)-shifted case, using \(s \)-row degrees and \(s \)-leading matrices where appropriate

(proofs: direct reductions, with: \(A \) is \(s \)-reduced \(\iff \) \(AX^s \) is reduced)

for example recall the predictable degree property:

\[A \text{ is reduced if and only if for any } u = [u_1 \cdots u_m] \in K[X]^{1 \times m}, \]
\[\text{rdeg}(uA) = \max_{1 \leq i \leq m}(\deg(u_i) + \text{rdeg}(A_{i,*})) \]

\[A \text{ is } s\text{-reduced if and only if for any } u = [u_1 \cdots u_m] \in K[X]^{1 \times m}, \]
\[\text{rdeg}_s(uA) = \max_{1 \leq i \leq m}(\deg(u_i) + \text{rdeg}_s(A_{i,*})) \]

this means \(\text{rdeg}_s(uA) = \text{rdeg}_t(u) \), where \(t = \text{rdeg}_s(A) \)

- \(s \)-reduced forms provide vectors of minimal \(s \)-degree in the module
- satisfying degree constraints \((d_1, \ldots, d_m) \Rightarrow \) taking \(s = (-d_1, \ldots, -d_m) \)
- indeed \(\text{cdeg}([p_1 \cdots p_m]) < (d_1, \ldots, d_m) \)
 if and only if \(\text{rdeg}(-d_1, \ldots, -d_m)([p_1 \cdots p_m]) < 0 \)
shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

▷ compute a first basis P_1 for a subproblem
▷ update the input instance to get the second subproblem
▷ compute a second basis P_2 for this second subproblem
▷ the output basis of solutions is P_2P_1

we want P_2P_1 to be reduced:
1. is it implied by “P_1 reduced and P_2 reduced”?
2. any idea of how to fix this?
algorithms based on polynomial matrix multiplication

▶ compute a first basis P_1 for a subproblem
▶ update the input instance to get the second subproblem
▶ compute a second basis P_2 for this second subproblem
▶ the output basis of solutions is P_2P_1

we want P_2P_1 to be reduced:
1. is it implied by “P_1 reduced and P_2 reduced”?
2. any idea of how to fix this?

we want P_2P_1 to be reduced
Theorem: implied by “P_1 is reduced and P_2 is t-reduced”
where $t = rdeg(P_1)$
shifted reduced forms

stability under multiplication

algorithms based on polynomial matrix multiplication

▶ compute a first basis P_1 for a subproblem
▶ update the input instance to get the second subproblem
▶ compute a second basis P_2 for this second subproblem
▶ the output basis of solutions is P_2P_1

we want P_2P_1 to be reduced:
1. is it implied by “P_1 reduced and P_2 reduced”?
2. any idea of how to fix this?

we want P_2P_1 to be s-reduced

Theorem: implied by “P_1 is s-reduced and P_2 is t-reduced”
where $t = \text{rdeg}_s(P_1)$
shifted reduced forms

stability under multiplication

Let $\mathcal{M} \subseteq \mathcal{M}_1$ be two $K[X]$-submodules of $K[X]^m$ of rank m, let $P_1 \in K[X]^{m \times m}$ be a basis of \mathcal{M}_1, let $s \in \mathbb{Z}^m$ and $t = \text{rdeg}_s(P_1)$,

- the rank of the module $\mathcal{M}_2 = \{ \lambda \in K[X]^{1 \times m} | \lambda P_1 \in \mathcal{M} \}$ is m
- and for any basis $P_2 \in K[X]^{m \times m}$ of \mathcal{M}_2,
- the product $P_2 P_1$ is a basis of \mathcal{M}
- if P_1 is s-reduced and P_2 is t-reduced,
then $P_2 P_1$ is s-reduced
shifted reduced forms

stability under multiplication

Let $\mathcal{M} \subseteq \mathcal{M}_1$ be two $\mathbb{K}[X]$-submodules of $\mathbb{K}[X]^m$ of rank m, let $P_1 \in \mathbb{K}[X]^{m \times m}$ be a basis of \mathcal{M}_1, let $s \in \mathbb{Z}^m$ and $t = \text{rdeg}_s(P_1)$,

- the rank of the module $\mathcal{M}_2 = \{\lambda \in \mathbb{K}[X]^{1 \times m} \mid \lambda P_1 \in \mathcal{M}\}$ is m and for any basis $P_2 \in \mathbb{K}[X]^{m \times m}$ of \mathcal{M}_2, the product $P_2 P_1$ is a basis of \mathcal{M}
- if P_1 is s-reduced and P_2 is t-reduced, then $P_2 P_1$ is s-reduced

Let $A \in \mathbb{K}[X]^{m \times m}$ denote the adjugate of P_1. Then, we have $AP_1 = \det(P_1)I_m$. Thus, $pAP_1 = \det(P_1)p \in \mathcal{M}$ for all $p \in \mathcal{M}$, and therefore $\mathcal{M}A \subseteq \mathcal{M}_2$. Now, the nonsingularity of A ensures that $\mathcal{M}A$ has rank m; this implies that \mathcal{M}_2 has rank m as well (see e.g. [Dummit-Foote 2004, Sec. 12.1, Thm. 4]). The matrix $P_2 P_1$ is nonsingular since $\det(P_2 P_1) \neq 0$. Now let $p \in \mathcal{M}$; we want to prove that p is a $\mathbb{K}[X]$-linear combination of the rows of $P_2 P_1$. First, $p \in \mathcal{M}_1$, so there exists $\lambda \in \mathbb{K}[X]^{1 \times m}$ such that $p = \lambda P_1$. But then $\lambda \in \mathcal{M}_2$, and thus there exists $\mu \in \mathbb{K}[X]^{1 \times m}$ such that $\lambda = \mu P_2$. This yields the combination $p = \mu P_2 P_1$.
Let $M \subseteq M_1$ be two $K[X]$-submodules of $K[X]^m$ of rank m, let $P_1 \in K[X]^{m \times m}$ be a basis of M_1, let $s \in \mathbb{Z}^m$ and $t = \text{rdeg}_s(P_1)$,

- the rank of the module $M_2 = \{ \lambda \in K[X]^{1 \times m} \mid \lambda P_1 \in M \}$ is m and for any basis $P_2 \in K[X]^{m \times m}$ of M_2,
 - the product $P_2 P_1$ is a basis of M, if P_1 is s-reduced and P_2 is t-reduced,
 - then $P_2 P_1$ is s-reduced.

Let $d = \text{rdeg}_t(P_2)$; we have $d = \text{rdeg}_s(P_2 P_1)$ by the predictable degree property. Using $X^{-d} P_2 P_1 X^s = X^{-d} P_2 X^t X^{-t} P_1 X^s$, we obtain that $\text{lm}_s(P_2 P_1) = \text{lm}_t(P_2) \text{lm}_s(P_1)$. By assumption, $\text{lm}_t(P_2)$ and $\text{lm}_s(P_1)$ are invertible, and therefore $\text{lm}_s(P_2 P_1)$ is invertible as well; thus $P_2 P_1$ is s-reduced.
<table>
<thead>
<tr>
<th>outline</th>
<th>introduction</th>
<th>shifted reduced forms</th>
<th>fast algorithms</th>
<th>applications</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>▶ rational approximation and interpolation</td>
<td>▶ reducedness: examples and properties</td>
<td>▶ iterative algorithm and output size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▶ the vector case</td>
<td>▶ shifted forms and degree constraints</td>
<td>▶ base case: modulus of degree 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▶ pol. matrices: reminders and motivation</td>
<td>▶ stability under multiplication</td>
<td>▶ recursion: residual and basis multiplication</td>
<td></td>
</tr>
</tbody>
</table>
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

input: vector $F = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix}$, points $\alpha_1, \ldots, \alpha_d \in \mathbb{K}$, shift $s = (s_1, \ldots, s_m) \in \mathbb{Z}^m$

1. $P = \begin{bmatrix} -p_1 \\ \vdots \\ -p_m \end{bmatrix}$ = identity matrix in $\mathbb{K}[X]^{m \times m}$

2. for i from 1 to d:
 a. evaluate updated vector $\begin{bmatrix} (p_1 \cdot F)(\alpha_i) \\ \vdots \\ (p_m \cdot F)(\alpha_i) \end{bmatrix} = (P \cdot F)(\alpha_i)$
 b. choose pivot π with smallest s_π such that $(p_\pi \cdot F)(\alpha_i) \neq 0$
 update pivot shift $s_\pi = s_\pi + 1$
 c. eliminate:
 /* after this, $\forall j \neq \pi$, $(p_j \cdot F)(\alpha_i) = 0$ */
 for $j \neq \pi$ do $p_j \leftarrow p_j - \frac{(p_j \cdot F)(\alpha_i)}{(p_\pi \cdot F)(\alpha_i)} p_\pi$; $p_\pi \leftarrow (X - \alpha_i)p_\pi$

after i iterations: P is an s-reduced basis of solutions for $(\alpha_1, \ldots, \alpha_i)$
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 1 \) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift \([0 \ 2 \ 4 \ 6] \)

basis

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 & 36 \\
95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 & 50 \\
34 & 47 & 47 & 1 & 85 & 45 & 75 & 50 & \end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \) \(m = 4 \) \(s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 1 \) point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
80 & 73 & 73 & 35 & 66 & 46 & 91 & 64 & \\
95 & 91 & 91 & 61 & 88 & 79 & 36 & 22 & \\
34 & 47 & 47 & 1 & 85 & 45 & 75 & 50 & \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \quad \text{base field } \mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \quad 1 \quad L^2 \quad L^3]^T\)

iteration: \(i = 1\) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59\)

shift \([0 \quad 2 \quad 4 \quad 6]\)

basis

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
17 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
63 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 & 0 \\
0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 & 0 \\
0 & 13 & 13 & 64 & 51 & 11 & 41 & 16 & 0
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: $d = 8$, $m = 4$, $s = (0, 2, 4, 6)$, base field \mathbb{F}_{97}

input: $(24, 31, 15, 32, 83, 27, 20, 59)$ and $\mathbf{F} = [1 \ L \ L^2 \ L^3]^T$

iteration: $i = 1$
point: $24, 31, 15, 32, 83, 27, 20, 59$

shift

$$\begin{bmatrix}
X + 73 \\
17 \\
2 \\
63
\end{bmatrix}$$

basis

$$\begin{bmatrix}
0 & 2 & 4 & 6 \\
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}$$

values

$$\begin{bmatrix}
0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\
0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\
0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\
0 & 13 & 13 & 64 & 51 & 11 & 41 & 16
\end{bmatrix}$$
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: $d = 8$ $m = 4$ $s = (0, 2, 4, 6)$, base field \mathbb{F}_{97}

input: $(24, 31, 15, 32, 83, 27, 20, 59)$ and $F = [1 \ L \ L^2 \ L^3]^{T}$

iteration: $i = 2$ point: $24, 31, 15, 32, 83, 27, 20, 59$

shift

$$\begin{bmatrix} X + 73 & 0 & 0 & 0 \\ 17 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 63 & 0 & 0 & 1 \end{bmatrix}$$

basis

$$\begin{bmatrix} 0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\ 0 & 90 & 90 & 52 & 83 & 63 & 11 & 81 \\ 0 & 93 & 93 & 63 & 90 & 81 & 38 & 24 \\ 0 & 13 & 13 & 64 & 51 & 11 & 41 & 16 \end{bmatrix}$$
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \quad L \quad L^2 \quad L^3]^T \)

iteration: \(i = 2 \)
point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift: \([1 \quad 2 \quad 4 \quad 6] \)

basis:
\[
\begin{bmatrix}
X + 73 & 0 & 0 & 0 \\
X + 90 & 1 & 0 & 0 \\
56X + 16 & 0 & 1 & 0 \\
12X + 66 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values:
\[
\begin{bmatrix}
0 & 7 & 88 & 8 & 59 & 3 & 93 & 35 \\
0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\
0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\
0 & 0 & 2 & 63 & 80 & 47 & 90 & 48 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59) \) and \(F = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 2 \) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift \([2 \ 2 \ 4 \ 6] \)

basis
\[
\begin{bmatrix}
X^2 + 42X + 65 & 0 & 0 & 0 \\
X + 90 & 1 & 0 & 0 \\
56X + 16 & 0 & 1 & 0 \\
12X + 66 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values
\[
\begin{bmatrix}
0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\
0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\
0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\
0 & 0 & 2 & 63 & 80 & 47 & 90 & 48 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \ L \ L^2 \ L^3]^T \)

iteration: \(i = 3 \) \quad point: 24, 31, 15, 32, 83, 27, 20, 59

shift

\[
\begin{bmatrix}
X^2 + 42X + 65 & 0 & 0 & 0 \\
X + 90 & 1 & 0 & 0 \\
56X + 16 & 0 & 1 & 0 \\
12X + 66 & 0 & 0 & 1 \\
\end{bmatrix}
\]

basis

\[
\begin{bmatrix}
0 & 0 & 47 & 8 & 61 & 85 & 44 & 10 \\
0 & 0 & 81 & 60 & 45 & 66 & 7 & 19 \\
0 & 0 & 74 & 26 & 96 & 55 & 8 & 44 \\
0 & 0 & 2 & 63 & 80 & 47 & 90 & 48 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8\), \(m = 4\), \(s = (0, 2, 4, 6)\), base field \(\mathbb{F}_{97}\)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \quad \mathbf{L} \quad \mathbf{L}^2 \quad \mathbf{L}^3]^T\)

iteration: \(i = 3\)
point: 24, 31, 15, 32, 83, 27, 20, 59

shift \([3 \quad 2 \quad 4 \quad 6]\)

\[
\begin{align*}
\begin{bmatrix}
X^3 + 27X^2 + 17X + 92 & 0 & 0 & 0 \\
54X^2 + 38X + 11 & 1 & 0 & 0 \\
17X^2 + 91X + 54 & 0 & 1 & 0 \\
66X^2 + 68X + 88 & 0 & 0 & 1
\end{bmatrix}
\end{align*}
\]

basis

\[
\begin{bmatrix}
0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\
0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\
0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\
0 & 0 & 0 & 9 & 32 & 31 & 84 & 29
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: $d = 8$, $m = 4$, $s = (0, 2, 4, 6)$, base field \mathbb{F}_{97}

input: $(24, 31, 15, 32, 83, 27, 20, 59)$ and $F = [1 \ L \ L^2 \ L^3]^T$

iteration: $i = 4$
point: $24, 31, 15, 32, 83, 27, 20, 59$

shift

$[3 \ 2 \ 4 \ 6]$

basis

\[
\begin{bmatrix}
X^3 + 27X^2 + 17X + 92 & 0 & 0 & 0 \\
54X^2 + 38X + 11 & 1 & 0 & 0 \\
17X^2 + 91X + 54 & 0 & 1 & 0 \\
66X^2 + 68X + 88 & 0 & 0 & 1 \\
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
0 & 0 & 0 & 39 & 74 & 50 & 26 & 52 \\
0 & 0 & 0 & 7 & 41 & 0 & 55 & 74 \\
0 & 0 & 0 & 65 & 66 & 45 & 77 & 20 \\
0 & 0 & 0 & 9 & 32 & 31 & 84 & 29 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \), \(m = 4 \), \(s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(F = [1 \quad L \quad L^2 \quad L^3]^T \)

iteration: \(i = 4 \) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

\[
\begin{align*}
\text{shift} & \quad \begin{bmatrix} 3 & 3 & 4 & 6 \end{bmatrix} \\
\text{basis} & \begin{bmatrix}
X^3 + 31X^2 + 27X + 3 & 36 & 0 & 0 \\
54X^3 + 56X^2 + 56X + 36 & X + 65 & 0 & 0 \\
56X^2 + 43X + 35 & 60 & 1 & 0 \\
52X^2 + 33X + 60 & 68 & 0 & 1 \\
\end{bmatrix} \\
\text{values} & \begin{bmatrix}
0 & 0 & 0 & 0 & 95 & 50 & 66 & 0 \\
0 & 0 & 0 & 0 & 54 & 0 & 19 & 58 \\
0 & 0 & 0 & 0 & 4 & 45 & 79 & 95 \\
0 & 0 & 0 & 0 & 7 & 31 & 41 & 17 \\
\end{bmatrix}
\end{align*}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \ L \ L^2 \ L^3]^T\)

iteration: \(i = 5\) \quad point: 24, 31, 15, 32, 83, 27, 20, 59

\[
\begin{bmatrix}
X^4 + 45X^3 + 73X^2 + 90X + 42 & 36X + 19 & 0 & 0 \\
81X^3 + 20X^2 + 9X + 20 & X + 67 & 0 & 0 \\
2X^3 + 21X^2 + 41 & 35 & 1 & 0 \\
52X^3 + 15X^2 + 79X + 22 & 0 & 0 & 1
\end{bmatrix}
\]

shift \([4 \ 3 \ 4 \ 6]\)

basis

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 13 & 13 & 0 \\
0 & 0 & 0 & 0 & 0 & 89 & 55 & 58 \\
0 & 0 & 0 & 0 & 0 & 48 & 17 & 95 \\
0 & 0 & 0 & 0 & 0 & 12 & 78 & 17
\end{bmatrix}
\]

values
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = \begin{bmatrix} 1 & L & L^2 & L^3 \end{bmatrix}^T \)

iteration: \(i = 6 \)
point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift \([4 \quad 4 \quad 4 \quad 6] \)

\[
\begin{bmatrix}
X^4 + 19X^3 + 57X^2 + 44X + 26 & \quad \quad 74X + 43 & \quad \quad 0 & \quad \quad 0 \\
81X^4 + 64X^3 + 51X^2 + 68X + 42 & \quad \quad X^2 + 40X + 34 & \quad \quad 0 & \quad \quad 0 \\
3X^3 + 44X^2 + 54X + 64 & \quad \quad 6X + 49 & \quad \quad 1 & \quad \quad 0 \\
28X^3 + 45X^2 + 44X + 52 & \quad \quad 50X + 52 & \quad \quad 0 & \quad \quad 1 \\
\end{bmatrix}
\]

basis

values

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 66 & 70 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 13 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 56 & 55 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 15 & 7 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) \), base field \(\mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = \begin{bmatrix} 1 & L & L^2 & L^3 \end{bmatrix}^T \)

iteration: \(i = 7 \)
point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift \[\begin{bmatrix} 5 & 4 & 4 & 6 \end{bmatrix} \]

basis
\[
\begin{bmatrix}
X^5 + 96X^4 + 65X^3 + 68X^2 + 19X + 62 & 74X^2 + 18X + 13 & 0 & 0 \\
6X^4 + 94X^3 + 44X^2 + 66X + 32 & X^2 + 19X + 10 & 0 & 0 \\
55X^4 + 78X^3 + 75X^2 + 49X + 39 & 2X + 86 & 1 & 0 \\
13X^4 + 81X^3 + 10X^2 + 34X + 2 & 42X + 29 & 0 & 1 \\
\end{bmatrix}
\]

values
\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 14 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 44 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm [van Barel-Bultheel / Beckermann-Labahn]

parameters: \(d = 8 \quad m = 4 \quad s = (0, 2, 4, 6) , \quad \text{base field } \mathbb{F}_{97} \)

input: \((24, 31, 15, 32, 83, 27, 20, 59)\) and \(\mathbf{F} = [1 \quad L \quad L^2 \quad L^3]^T \)

iteration: \(i = 8 \) \quad point: \(24, 31, 15, 32, 83, 27, 20, 59 \)

shift

\[
\begin{bmatrix}
5 & 5 & 4 & 6
\end{bmatrix}
\]

basis

\[
\begin{bmatrix}
x^5 + 12x^4 + 10x^3 + 34x^2 + 65x + 2 & 60x^2 + 43x + 67 & 0 & 0 \\
6x^5 + 31x^4 + 27x^3 + 89x^2 + 18x + 52 & x^3 + 57x^2 + 53x + 89 & 0 & 0 \\
2x^4 + 56x^3 + 42x^2 + 48x + 15 & 72x^2 + 12x + 30 & 1 & 0 \\
40x^4 + 19x^3 + 14x^2 + 40x + 49 & 53x^2 + 79x + 74 & 0 & 1
\end{bmatrix}
\]

values

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]
fast algorithms

base case: modulus of degree 1

modular vector equation

input:
- vector $\mathbf{F} = [f_1 \cdots f_m]^T \in K[X]^{m \times 1}$ of degree $< d$
- field elements $(\alpha_1, \ldots, \alpha_d) \in K^d$
- shift $s = (s_1, \ldots, s_m) \in \mathbb{Z}^m$

output:
matrix $\mathbf{P} \in K[X]^{m \times m}$ such that
- $\mathbf{PF} = 0 \mod \prod_{1 \leq i \leq d}(X - \alpha_i)$
- \mathbf{P} generates all vectors \mathbf{p} such that $\mathbf{pF} = 0 \mod \prod_{1 \leq i \leq d}(X - \alpha_i)$
- \mathbf{P} is s-reduced

notation: $I(\alpha, \mathbf{F}) = \{ \mathbf{p} \in K[X]^{1 \times m} | \mathbf{pF} = 0 \mod \prod_{1 \leq i \leq d}(X - \alpha_i) \}$
fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

input:
- vector $\mathbf{F} = [f_1 \cdots f_m]^T \in K[X]^{m \times 1}$ of degree < 1
- field element $\alpha \in K$
- shift $\mathbf{s} = (s_1, \ldots, s_m) \in \mathbb{Z}^m$

output:
matrix $\mathbf{P} \in K[X]^{m \times m}$ such that
- $\mathbf{PF} = 0 \mod (X - \alpha)$
- \mathbf{P} generates all vectors \mathbf{p} such that $\mathbf{pF} = 0 \mod (X - \alpha)$
- \mathbf{P} is s-reduced
modular vector reconstruction: base case

input:
- vector \(\mathbf{F} = [f_1 \cdots f_m]^\top \in \mathbb{K}[X]^{m \times 1} \) of degree < 1
- field element \(\alpha \in \mathbb{K} \)
- shift \(\mathbf{s} = (s_1, \ldots, s_m) \in \mathbb{Z}^m \)

output:
- matrix \(\mathbf{P} \in \mathbb{K}[X]^{m \times m} \) such that
 - \(\mathbf{PF} = 0 \) mod \((X - \alpha) \)
 - \(\mathbf{P} \) generates all vectors \(\mathbf{p} \) such that \(\mathbf{pF} = 0 \) mod \((X - \alpha) \)
 - \(\mathbf{P} \) is \(s \)-reduced

\(\mathbf{F} \in \mathbb{K}^{m \times 1} \)
modular vector reconstruction: base case

iterative algorithm: \[P = \begin{bmatrix} I_{\pi - 1} & \lambda_1 & 0 \\ 0 & X - \alpha & 0 \\ 0 & \lambda_2 & I_{m - \pi} \end{bmatrix} \]

where
- \(\pi \) minimizes \(s_\pi \) among indices such that \((p_\pi F)(\alpha_i) \neq 0 \)
- the vectors \(\lambda_1 \in \mathbb{K}^{(\pi - 1) \times 1} \) and \(\lambda_2 \in \mathbb{K}^{(m - \pi) \times 1} \) are constant
fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

iterative algorithm: \(P = \begin{bmatrix} I_{\pi-1} & \lambda_1 & 0 \\ 0 & X - \alpha & 0 \\ 0 & \lambda_2 & I_{m-\pi} \end{bmatrix} \)

where

- \(\pi \) minimizes \(s_\pi \) among indices such that \((p_{\pi}F)(\alpha_i) \neq 0 \)
- the vectors \(\lambda_1 \in \mathbb{K}^{(\pi-1) \times 1} \) and \(\lambda_2 \in \mathbb{K}^{(m-\pi) \times 1} \) are constant

iterative algorithm:

- \(P = \) identity matrix in \(\mathbb{K}[X]^{m \times m} \)
- for \(i \) from 1 to \(d \):
 a. from the evaluation \(F(\alpha_i) \), find \(P_i \) as above
 b. update shift \(s_\pi \leftarrow s_\pi + 1 \)
 c. update \(P \leftarrow P_iP \) as well as \(F \leftarrow P_iF \mod \prod_{i+1 \leq j \leq d} (X - \alpha_j) \)

called residual vector
fast algorithms

base case: modulus of degree 1

modular vector reconstruction: base case

iterative algorithm:

\[
P = \begin{bmatrix}
I_{\pi-1} & \lambda_1 & 0 \\
0 & X - \alpha & 0 \\
0 & \lambda_2 & I_{m-\pi}
\end{bmatrix}
\]

where

- \(\pi\) minimizes \(s_{\pi}\) among indices such that \((p_\pi F)(\alpha_i) \neq 0\)
- the vectors \(\lambda_1 \in K^{(\pi-1) \times 1}\) and \(\lambda_2 \in K^{(m-\pi) \times 1}\) are constant

complexity \(O(m^2d^2)\):

- iteration with \(d\) steps
- each step: evaluation of \(F\) + multiplications \(P_i F\) and \(P_i P\)
- at any stage \(F\) has degree \(<d\) and size \(m \times 1\)
- at any stage \(P\) has degree \(\leq d\) and size \(m \times m\)

normalizing at each step + refined analysis yields \(O(md^2)\)
modular vector reconstruction: base case

iterative algorithm:

\[
P = \begin{bmatrix}
I_{\pi-1} & \lambda_1 & 0 \\
0 & X - \alpha & 0 \\
0 & \lambda_2 & I_{m-\pi}
\end{bmatrix}
\]

where

- \(\pi \) minimizes \(s_\pi \) among indices such that \((p_\pi F)(\alpha_i) \neq 0\)
- the vectors \(\lambda_1 \in \mathbb{K}^{(\pi-1) \times 1} \) and \(\lambda_2 \in \mathbb{K}^{(m-\pi) \times 1} \) are constant

correctness:

- the main task is to prove the base case with \(P_i \)
- then, direct consequence of the “basis multiplication theorem”
fast algorithms

iterative algorithm – complexity aspects

▶ input size: \(md + d \) elements from \(K \)
 . \(md \) coefficients of \(F \), assumed reduced modulo \(M(X) \)
 . \(d \) points \(\alpha_1, \ldots, \alpha_d \)

▶ output size: \(\leq m^2(d + 1) \) elements from \(K \)
 . \(m \times m \) matrix \(P \) of degree at most \(i \) at step \(i \)

is this output size bound tight?
fast algorithms

iterative algorithm – complexity aspects

- **input size:** \(md + d \) elements from \(K \)
 . \(md \) coefficients of \(F \), assumed reduced modulo \(M(X) \)
 . \(d \) points \(\alpha_1, \ldots, \alpha_d \)

- **output size:** \(\leq m^2(d + 1) \) elements from \(K \)
 . \(m \times m \) matrix \(P \) of degree at most \(i \) at step \(i \)

is this output size bound tight?

- one can prove \(\deg(\det(P)) \leq d \)
 . \(P \) is a basis of \(J(\alpha, F) \), which is the kernel of \(K[X]^m \rightarrow K[X]/\langle M(X) \rangle, p \mapsto pF \)
 . \(K[X]^m/J(\alpha, F) \) has \(K \)-dimension at most \(\dim_K(K[X]/\langle M(X) \rangle) = d \)

- **normalized bases** have average column degree \(\leq d \), and size \(\leq m(d + 1) \)

- yet the bound \(\Theta(m^2(d + 1)) \) is tight for this algorithm
 . normalizing at each step is feasible for the iterative version
 . but is much harder to incorporate in fast divide and conquer versions
parameters: $K = F_{97}$, $m = 4$, $\alpha = 0$, $d = 128$, $s = (0, \ldots, 0)$

choose random polynomial $R(X)$ of degree < 128

$$F = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} = \begin{bmatrix} R \\ R + XR \\ XR + X^2R \\ X^2R + X^3R \end{bmatrix}$$

- approximants are p such that $pF = 0 \mod X^{128}$
- F has small vectors in its left kernel
 \Rightarrow reduced approximant basis has unbalanced row degrees $(1, 1, 1, 125)$
- will help to build an example with output size $\Omega(m^2d)$
running the iterative algorithm:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>((0, 0, 0, 0))</td>
</tr>
<tr>
<td>(f_1)</td>
<td>(R)</td>
</tr>
<tr>
<td>(f_2)</td>
<td>(R + XR)</td>
</tr>
<tr>
<td>(f_3)</td>
<td>(XR + X^2R)</td>
</tr>
<tr>
<td>(f_4)</td>
<td>(X^2R + X^3R)</td>
</tr>
</tbody>
</table>

\[P \]
Running the iterative algorithm:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>(0, 0, 0, 0)</td>
<td>(1, 0, 0, 0)</td>
</tr>
<tr>
<td>f₁</td>
<td>R</td>
<td>XR</td>
</tr>
<tr>
<td>f₂</td>
<td>R + XR</td>
<td>XR</td>
</tr>
<tr>
<td>f₃</td>
<td>XR + X²R</td>
<td>XR + X²R</td>
</tr>
<tr>
<td>f₄</td>
<td>X²R + X³R</td>
<td>X²R + X³R</td>
</tr>
</tbody>
</table>

P = \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]
fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>(0, 0, 0, 0)</td>
<td>(1, 0, 0, 0)</td>
<td>(1, 1, 0, 0)</td>
</tr>
<tr>
<td>f₁</td>
<td>R</td>
<td>XR</td>
<td>0</td>
</tr>
<tr>
<td>f₂</td>
<td>R + XR</td>
<td>XR</td>
<td>X²R</td>
</tr>
<tr>
<td>f₃</td>
<td>XR + X²R</td>
<td>XR + X²R</td>
<td>X²R</td>
</tr>
<tr>
<td>f₄</td>
<td>X²R + X³R</td>
<td>X²R + X³R</td>
<td>X²R + X³R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

degrees and "pivots" in final basis

P:

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]
fast algorithms

iterative algorithm – complexity aspects

running the iterative algorithm:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>((0, 0, 0, 0))</td>
<td>((1, 0, 0, 0))</td>
<td>((1, 1, 0, 0))</td>
<td>((1, 1, 1, 0))</td>
</tr>
<tr>
<td>f_1</td>
<td>R</td>
<td>XR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f_2</td>
<td>R + XR</td>
<td>XR + X^2R</td>
<td>X^2R</td>
<td>X^3R</td>
</tr>
<tr>
<td>f_3</td>
<td>XR + X^2R</td>
<td>XR + X^2R</td>
<td>X^2R</td>
<td>X^3R</td>
</tr>
<tr>
<td>f_4</td>
<td>X^2R + X^3R</td>
<td>X^2R + X^3R</td>
<td>X^2R + X^3R</td>
<td>X^3R</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>1 0 0 (0)</th>
<th>1 0 0 (0)</th>
<th>1 0 0 (1)</th>
<th>0 0 0 0 (0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0 (0)</td>
<td>0 0 0 (0)</td>
<td>0 0 0 0 (0)</td>
<td>0 0 0 0 0 (0)</td>
</tr>
</tbody>
</table>
Fast Algorithms

Iterative Algorithm – Complexity Aspects

Running the Iterative Algorithm:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>((0, 0, 0, 0))</td>
<td>((1, 0, 0, 0))</td>
<td>((1, 1, 0, 0))</td>
<td>((1, 1, 1, 0))</td>
<td>...</td>
</tr>
<tr>
<td>f_1</td>
<td>R</td>
<td>XR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f_2</td>
<td>R + XR</td>
<td>XR</td>
<td>(X^2R)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f_3</td>
<td>XR + (X^2R)</td>
<td>XR + (X^2R)</td>
<td>(X^2R)</td>
<td>(X^3R)</td>
<td>0</td>
</tr>
<tr>
<td>f_4</td>
<td>(X^2R + X^3R)</td>
<td>(X^2R + X^3R)</td>
<td>(X^2R + X^3R)</td>
<td>(X^3R)</td>
<td>(X^4R)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 0 \\
1 & 1
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 0
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix}
\] |
| ... |

Degrees and "Pivots" in Final Basis:

<table>
<thead>
<tr>
<th>P</th>
</tr>
</thead>
</table>
| \[
\begin{bmatrix}
1 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix}
\] |
| \[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}
\] |
| ... |
Fast Algorithms

Iterative Algorithm – Complexity Aspects

Running the Iterative Algorithm:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>…</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>$$(0, 0, 0, 0)$$</td>
<td>$$(1, 0, 0, 0)$$</td>
<td>$$(1, 1, 0, 0)$$</td>
<td>$$(1, 1, 1, 0)$$</td>
<td>…</td>
</tr>
<tr>
<td>f_1</td>
<td>R</td>
<td>XR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f_2</td>
<td>$R + XR$</td>
<td>XR</td>
<td>X^2R</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f_3</td>
<td>$XR + X^2R$</td>
<td>$XR + X^2R$</td>
<td>X^2R</td>
<td>X^3R</td>
<td>0</td>
</tr>
<tr>
<td>f_4</td>
<td>$X^2R + X^3R$</td>
<td>$X^2R + X^3R$</td>
<td>$X^2R + X^3R$</td>
<td>X^3R</td>
<td>X^4R</td>
</tr>
<tr>
<td>\mathbf{P}</td>
<td>$\begin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \ 0 & 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 & 1 \ 1 & 1 \ 0 & 1 \ 0 & 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 & 0 \ 1 & 1 \ 0 & 1 \ 0 & 0 \end{bmatrix}$</td>
<td>$\begin{bmatrix} 1 & 0 \ 1 & 1 \ 1 & 1 \ 0 & 1 \end{bmatrix}$</td>
<td>…</td>
</tr>
</tbody>
</table>

Degrees and “pivots” in final basis \mathbf{P}:

$$\begin{bmatrix} 1 & 0 & 125 \\ 1 & 1 & 125 \\ 1 & 1 & 125 \\ 1 & 1 & 125 \end{bmatrix}$$
fast algorithms

iterative algorithm – complexity aspects

parameters: $m = 8$, $d = 128$, $s = (0, 0, 0, 0, d, d, d, d)$

input F: same f_1, f_2, f_3, f_4 / random f_5, f_6, f_7, f_8

$i = 4$

$$
\begin{bmatrix}
1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
$$
fast algorithms

iterative algorithm – complexity aspects

parameters: \(m = 8, \ d = 128, \ s = (0, 0, 0, 0, d, d, d, d) \)

input \(F \): same \(f_1, f_2, f_3, f_4 \) / random \(f_5, f_6, f_7, f_8 \)

\[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
125 & 125 & 125 & 125 \\
124 & 124 & 124 & 124 & 0 \\
124 & 124 & 124 & 124 & 0 \\
124 & 124 & 124 & 124 & 0 \\
124 & 124 & 124 & 124 & 0 \\
124 & 124 & 124 & 124 & 0 \\
124 & 124 & 124 & 124 & 0
\end{bmatrix}
\]

▶ 1/4 of the entries have degree \(\approx d \): size \(\Theta(m^2 d) \)

▶ remark: complexity of iterative algorithm is \(O(m^2 d^2) \)

→ improved to \(O(md^2) \) via normalization

opinions on a “reasonable” target cost for fast algorithms?
fast algorithms

iterative algorithm – complexity aspects

parameters: \(m = 8, \ d = 128, \ s = (0, 0, 0, 0, d, d, d, d) \)

input \(F \): same \(f_1, f_2, f_3, f_4 \) / random \(f_5, f_6, f_7, f_8 \)

\[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
125 & 125 & 125 & 125 \\
124 & 124 & 124 & 124 & 0 \\
124 & 124 & 124 & 124 & 0 \\
124 & 124 & 124 & 124 & 0 \\
\end{bmatrix}
\]

▶ 1/4 of the entries have degree \(\approx d \): size \(\Theta(m^2d) \)

▶ remark: complexity of iterative algorithm is \(O(m^2d^2) \)
 → improved to \(O(md^2) \) via normalization

▶ opinions on a “reasonable” target cost for fast algorithms?
divide and conquer algorithm:

input: $F, (\alpha_1, \ldots, \alpha_d), s$ | output: P

- if $d = 1$, use the base case algorithm to find P and return
- otherwise:
 a. $M_1 \leftarrow (X - \alpha_1) \cdots (X - \alpha_{\lfloor d/2 \rfloor})$; $M_2 \leftarrow (X - \alpha_{\lceil d/2 \rceil}) \cdots (X - \alpha_d)$
 b. $P_1 \leftarrow$ call the algorithm on $F \text{ rem } M_1, (\alpha_1, \ldots, \alpha_{\lfloor d/2 \rfloor}), s$
 c. updated shift: $t \leftarrow \text{rdeg}_s(P_1)$
 d. residual: $G \leftarrow \frac{1}{M_1} P_1 F$
 e. $P_2 \leftarrow$ call the algorithm on $G \text{ rem } M_2, (\alpha_{\lceil d/2 \rceil}, \ldots, \alpha_d), t$
 f. return the product P_2P_1
fast algorithms

recursion: residual and basis multiplication

divide and conquer algorithm:

input: $F, (\alpha_1, \ldots, \alpha_d), s$
output: P

- if $d = 1$, use the base case algorithm to find P and return
- otherwise:
 a. $M_1 \leftarrow (X - \alpha_1) \cdots (X - \alpha_{\lfloor d/2 \rfloor})$; $M_2 \leftarrow (X - \alpha_{\lceil d/2 \rceil}) \cdots (X - \alpha_d)$
 b. $P_1 \leftarrow$ call the algorithm on $F \text{ rem } M_1, (\alpha_1, \ldots, \alpha_{\lfloor d/2 \rfloor}), s$
 c. updated shift: $t \leftarrow \text{rdeg}_s(P_1)$
 d. residual: $G \leftarrow \frac{1}{M_1} P_1 F$
 e. $P_2 \leftarrow$ call the algorithm on $G \text{ rem } M_2, (\alpha_{\lceil d/2 \rceil}, \ldots, \alpha_d), t$
 f. return the product $P_2 P_1$

correctness:

- correctness of base case
- then, direct consequence of the “basis multiplication theorem”
- about the residual: $\{p \mid pP_1 F = 0 \text{ mod } M\} = \{p \mid pG = 0 \text{ mod } M_2\}$
divide and conquer algorithm:

input: \(F, (\alpha_1, \ldots, \alpha_d), s \)
output: \(P \)

- if \(d = 1 \), use the base case algorithm to find \(P \) and return
- otherwise:
 a. \(M_1 \leftarrow (X - \alpha_1) \cdots (X - \alpha_{\lfloor d/2 \rfloor}) \);
 \(M_2 \leftarrow (X - \alpha_{\lceil d/2 \rceil}) \cdots (X - \alpha_d) \)
 b. \(P_1 \leftarrow \) call the algorithm on \(F \) rem \(M_1, (\alpha_1, \ldots, \alpha_{\lfloor d/2 \rfloor}) \), \(s \)
 c. updated shift: \(t \leftarrow \text{rdeg}_s(P_1) \)
 d. residual: \(G \leftarrow \frac{1}{M_1} P_1 F \)
 e. \(P_2 \leftarrow \) call the algorithm on \(G \) rem \(M_2, (\alpha_{\lceil d/2 \rceil}, \ldots, \alpha_d) \), \(t \)
 f. return the product \(P_2 P_1 \)

complexity \(O(m^\omega M(d) \log(d)) \):
- if \(\omega = 2 \), quasi-linear in worst-case output size
- most expensive step in the recursion is the product \(P_2 P_1 \)
- equation \(C(m, d) = C(m, \lfloor d/2 \rfloor) + C(m, \lceil d/2 \rceil) + O(m^\omega M(d)) \)
fast algorithms

recursion: residual and basis multiplication

complexity of each step:

- residual $G \leftarrow \frac{1}{M_1} P_1 F$ \quad $O(m^2 M(d))$
- F rem M_1 and G rem M_2 \quad $O(m M(d))$
- product $P_2 P_1$ \quad $O(m^\omega M(d))$
- two recursive calls \quad $2C(m, \lfloor d/2 \rfloor)$

input: $\text{deg}(F) < d$ \quad output: $\text{deg}(P) \leq d$
fast algorithms

recursion: residual and basis multiplication

input: \(\deg(F) < d \)
output: \(\deg(P) \leq d \)

complexity of each step:

- residual \(G \leftarrow \frac{1}{M_1} P_1 F \)
 \(O(m^2 M(d)) \)
- \(F \) rem \(M_1 \) and \(G \) rem \(M_2 \)
 \(O(mM(d)) \)
- product \(P_2 P_1 \)
 \(O(m^\omega M(d)) \)
- two recursive calls
 \(2C(m, \lceil d/2 \rceil) \)

\[
C(m, d) = C(m, \lceil d/2 \rceil) + C(m, \lceil d/2 \rceil) + O(m^\omega M(d))
\]

d base cases, each one costs . . . ???
fast algorithms

recursion: residual and basis multiplication

input: $\deg(F) < d$

output: $\deg(P) \leq d$

complexity of each step:

- residual $G \leftarrow \frac{1}{M_1}P_1F$ \hspace{1cm} $O(m^2M(d))$
- $F \text{ rem } M_1$ and $G \text{ rem } M_2$ \hspace{1cm} $O(mM(d))$
- product P_2P_1 \hspace{1cm} $O(m^\omega M(d))$
- two recursive calls \hspace{1cm} $2C(m, \lceil d/2 \rceil)$

\[
C(m, d) = C(m, \lfloor d/2 \rfloor) + C(m, \lceil d/2 \rceil) + O(m^\omega M(d))
\]

d base cases, each one costs $O(m)$

\[
\Rightarrow \quad O(m^\omega M(d) \log(d))
\]

unrolling: $m^\omega (M(d) + 2M(\frac{d}{2}) + 4M(\frac{d}{4}) + \cdots + \frac{d}{2}M(2)) + dm$
Fast Algorithms

Recursion: Residual and Basis Multiplication

<table>
<thead>
<tr>
<th>Complexity of Each Step</th>
<th>Output: (\text{deg}(P) \leq d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ Residual: (G \leftarrow \frac{1}{M_1}P_1F)</td>
<td>(O(m^2M(d)))</td>
</tr>
<tr>
<td>▶ (F) rem (M_1) and (G) rem (M_2)</td>
<td>(O(mM(d)))</td>
</tr>
<tr>
<td>▶ Product: (P_2P_1)</td>
<td>(O(m^\omega M(d)))</td>
</tr>
<tr>
<td>▶ Two Recursive Calls</td>
<td>(2\mathbb{C}(m, \lfloor d/2 \rfloor))</td>
</tr>
</tbody>
</table>

Input: \(\text{deg}(F') < d\)

Output: \(\text{deg}(P) \approx \left\lceil \frac{d}{m} \right\rceil\)

- \(s = 0\) and generic \(F\):
 - \(O(m^\omega M(\left\lceil \frac{d}{m} \right\rceil))\) unchanged

Unrolling: \(m^\omega (M(d) + 2M(\frac{d}{2}) + 4M(\frac{d}{4}) + \cdots + \frac{d}{2}M(2)) + dm\)
fast algorithms

recursion: residual and basis multiplication

input: $\deg(F) < d$

output: $\deg(P) \leq d$

output: $\deg(P) \approx \lceil \frac{d}{m} \rceil$

complexity of each step:

- residual $G \leftarrow \frac{1}{M_1} P_1 F$

 $O(m^2 M(d))$

- $F \text{ rem } M_1$ and $G \text{ rem } M_2$

 $O(mM(d))$

- product $P_2 P_1$

 $O(m^\omega M(d))$

- two recursive calls

 $2C(m, \lceil d/2 \rceil)$

\[
\begin{align*}
C(m, d) &= C(m, \lfloor d/2 \rfloor) + C(m, \lceil d/2 \rceil) + O(m^\omega M(d)) \\
\text{d base cases, each one costs } O(m) \\
\Rightarrow O(m^\omega M(d) \log(d)) & \quad O(m^\omega M(\lceil \frac{d}{m} \rceil) \log(\lceil \frac{d}{m} \rceil))
\end{align*}
\]

unrolling: $m^\omega M(d) + 2M(\frac{d}{2}) + 4M(\frac{d}{4}) + \cdots + \frac{d}{2} M(2) + d m$

\[s = 0 \text{ and generic } F:
\]

$O(m^\omega M(\lceil \frac{d}{m} \rceil))$
unchanged

$O(m^\omega M(\lceil \frac{d}{m} \rceil))$
unchanged

- partial linearization
- base case for $d \approx m$, costs $O(m^\omega)$
fast algorithms

recursion: residual and basis multiplication

state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
 it also works for $F \in \mathbb{K}[X]^{m \times n}$ with $n > 1$

- [Giorgi-Jeannerod-Villard 2003] achieved $O(m^\omega M(d) \log(d))$
 for $F \mod X^d$, with $n \geq 1$ and $n \in O(m)$

- for $s = 0$ and generic F: $O^\sim(m^\omega \lceil \frac{nd}{m} \rceil)$ is [folklore]
fast algorithms

recursion: residual and basis multiplication

state of the art:

- **recursive** algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
 it also works for $F \in \mathbb{K}[X]^{m \times n}$ with $n > 1$

- [Giorgi-Jeannerod-Villard 2003] achieved $O(m^\omega M(d) \log(d))$
 for $F \mod X^d$, with $n \geq 1$ and $n \in O(m)$

- for $s = 0$ and generic F: $O^\sim(m^\omega \lceil \frac{nd}{m} \rceil)$ is [folklore]

- more recently: $O^\sim(m^{\omega-1}nd)$ for $F \mod X^d$
 [Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]

\Rightarrow any s, no genericity assumption, returns the canonical basis “s-Popov”
fast algorithms

recursion: residual and basis multiplication

state of the art:

- recursive algorithm: from [Beckermann-Labahn 1994] (for Hermite-Padé)
 it also works for $F \in \mathbb{K}[X]^{m \times n}$ with $n > 1$

- [Giorgi-Jeannerod-Villard 2003] achieved $O(m^\omega M(d) \log(d))$
 for $F \mod X^d$, with $n \geq 1$ and $n \in O(m)$

- for $s = 0$ and generic F: $O^\sim(m^\omega \left\lceil \frac{nd}{m} \right\rceil)$ is [folklore]

- more recently: $O^\sim(m^{\omega - 1}nd)$ for $F \mod X^d$
 [Storjohann 2006] [Zhou-Labahn 2012] [Jeannerod-Neiger-Villard 2020]
 \leadsto any s, no genericity assumption, returns the canonical basis “s-Popov”

- $F \mod M$ and general modular matrix equations in similar complexity
 [Beckermann-Labahn 1997] [Jeannerod-Neiger-Schost-Villard 2017] [Neiger-Vu 2017]
 \leadsto any s, no genericity assumption, returns the canonical “s-Popov” basis
for $F \in \mathbb{K}[X]^{m \times n}$, its left kernel is

$$\mathcal{K}(F) = \{ p \in \mathbb{K}[X]^{1 \times m} \mid pF = 0 \}$$

- $\mathcal{K}(F)$ is a $\mathbb{K}[X]$-module
- it has rank $m - r$, where r is the rank of F

\Rightarrow basis $K \in \mathbb{K}[X]^{(m-r) \times m}$
for $F \in K[X]^{m \times n}$, its left kernel is

$$\mathcal{K}(F) = \{ p \in K[X]^{1 \times m} \mid pF = 0 \}$$

- $\mathcal{K}(F)$ is a $K[X]$-module
- It has rank $m - r$, where r is the rank of F

\Rightarrow basis $K \in K[X]^{(m-r) \times m}$

Kernel basis for a constant matrix?

Input matrix F

$$\begin{bmatrix}
5 & 6 \\
6 & 1 \\
2 & 6 \\
5 & 2 \\
5 & 6
\end{bmatrix}$$
for $F \in \mathbb{K}[X]^{m\times n}$, its left kernel is

$$\mathcal{K}(F) = \{p \in \mathbb{K}[X]^{1\times m} \mid pF = 0\}$$

- $\mathcal{K}(F)$ is a $\mathbb{K}[X]$-module
- it has rank $m - r$, where r is the rank of F

⇒ basis $K \in \mathbb{K}[X]^{(m-r)\times m}$

kernel basis for a constant matrix? → usual nullspace

input matrix F

$$\begin{bmatrix} 5 & 6 \\ 6 & 1 \end{bmatrix}$$

kernel basis K

$$\begin{bmatrix} 5 & 6 & 1 & 0 & 0 \\ 0 & 5 & 0 & 1 & 0 \\ 0 & 0 & 3 & 2 & 1 \end{bmatrix}$$
for $F \in K[X]^{m \times n}$, its **left kernel** is

$$\mathcal{K}(F) = \{ p \in K[X]^{1 \times m} \mid pF = 0 \}$$

- $\mathcal{K}(F)$ is a $K[X]$-module
- it has rank $m - r$, where r is the rank of F

\Rightarrow basis $K \in K[X]^{(m-r) \times m}$

kernel basis of the following matrix over F_2?

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
x^2 & x^2 + x + 1 & x^2 + x \\
x^2 + 1 & x^2 & x^2 + x + 1 \\
x^2 & x^2 + x & x^2
\end{bmatrix}$$
for $F \in \mathbb{K}[X]^{m \times n}$, its **left kernel** is

$$\mathcal{K}(F) = \{ p \in \mathbb{K}[X]^{1 \times m} \mid pF = 0 \}$$

- $\mathcal{K}(F)$ is a $\mathbb{K}[X]$-module
- it has rank $m - r$, where r is the rank of F

\Rightarrow basis $K \in \mathbb{K}[X]^{(m-r) \times m}$

Kernel basis of the following matrix over \mathbb{F}_2?

input matrix F

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}$$

Kernel basis K

$$\begin{bmatrix}
x^2 + 1 & x^2 + x + 1 & x^2 + x & 1 & 0 & 0 \\
x^2 & x^2 + x + 1 & x^2 + x & 0 & 1 & 0 \\
x^2 & x^2 + x & x^2 & 0 & 0 & 1 \\
\end{bmatrix}$$
for $F \in K[X]^{m \times n}$, its **left kernel** is

$$\mathcal{K}(F) = \{ p \in K[X]^{1 \times m} \mid pF = 0 \}$$

- $\mathcal{K}(F)$ is a $K[X]$-module
- it has rank $m - r$, where r is the rank of F

⇒ **basis** $K \in K[X]^{(m - r) \times m}$

kernel basis of the following block matrix with G nonsingular?

$$\begin{bmatrix} G \\ H \end{bmatrix} \in K[X]^{(n + m) \times n}$$
For $F \in \mathbb{K}[X]^{m \times n}$, its left kernel is

$$\mathcal{K}(F) = \{ p \in \mathbb{K}[X]^{1 \times m} \mid pF = 0 \}$$

- $\mathcal{K}(F)$ is a $\mathbb{K}[X]$-module
- It has rank $m - r$, where r is the rank of F

⇒ Basis $K \in \mathbb{K}[X]^{(m-r) \times m}$

Kernel basis of the following block matrix with G nonsingular?

Kernel basis K

... is left multiple of $[-HG^{-1} \ I_m]$

... $\det(G) [-HG^{-1} \ I_m]$ is left multiple of it

Input matrix F

$$\begin{bmatrix} G \\ H \end{bmatrix} \in \mathbb{K}[X]^{(n+m) \times n}$$
for $F \in \mathbb{K}[X]^{m \times n}$, its left kernel is

$$\mathcal{K}(F) = \{ p \in \mathbb{K}[X]^{1 \times m} \mid pF = 0 \}$$

- $\mathcal{K}(F)$ is a $\mathbb{K}[X]$-module
- it has rank $m - r$, where r is the rank of F

⇒ basis $K \in \mathbb{K}[X]^{(m-r) \times m}$

kernel basis of the following 4×1 vector with $R \in \mathbb{K}[X] \setminus \{0\}$?

input matrix F

$$
\begin{bmatrix}
R \\
R + XR \\
XR + X^2R \\
X^2R + X^3R
\end{bmatrix}
$$
for $F \in \mathbb{K}[X]^{m \times n}$, its left kernel is

$$\mathcal{K}(F) = \{ p \in \mathbb{K}[X]^{1 \times m} | pF = 0 \}$$

- $\mathcal{K}(F)$ is a $\mathbb{K}[X]$-module
- it has rank $m - r$, where r is the rank of F

\Rightarrow basis $K \in \mathbb{K}[X]^{(m-r) \times m}$

Kernel basis of the following 4×1 vector with $R \in \mathbb{K}[X] \setminus \{0\}$?

Kernel basis K

$$\begin{bmatrix} 1 + X & -1 & \vdots & \vdots \\ 0 & 1 + X & -1 & \vdots \\ 0 & 0 & 1 + X & -1 \end{bmatrix}$$

Input matrix F

$$\begin{bmatrix} R \\ R + XR \\ XR + X^2R \\ X^2R + X^3R \end{bmatrix}$$
for $F \in \mathbb{K}[X]^{m \times n}$, its left kernel is

$$\mathcal{K}(F) = \{ p \in \mathbb{K}[X]^{1 \times m} | pF = 0 \}$$

- $\mathcal{K}(F)$ is a $\mathbb{K}[X]$-module
- it has rank $m - r$, where r is the rank of F

⇒ basis $K \in \mathbb{K}[X]^{(m-r) \times m}$

inclusion $\mathcal{K}(F) \subset \mathcal{I}(M, F) = \{ p \in \mathbb{K}[X]^{1 \times m} | pF = 0 \mod M \}$

⇒ recover kernel via interpolation with suitable choices of M
input:
▶ matrix $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$
▶ $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(\mathbf{F})$ of degree $\leq \delta$

algorithm via interpolation at sufficiently many points

▶ $d \leftarrow \delta + \deg(\mathbf{F}) + 1$
▶ $\alpha \leftarrow$ choose some $(\alpha_1, \ldots, \alpha_d)$ in \mathbb{K}^d (not necessarily distinct)
▶ $\mathbf{P} \in \mathbb{K}[X]^{m \times m} \leftarrow$ reduced basis of $\mathcal{I}(\alpha, \mathbf{F})$
▶ $\mathbf{K} \in \mathbb{K}[X]^{k \times m} \leftarrow$ rows of \mathbf{P} which have degree $\leq \delta$
applications

minimal kernel bases and linear systems

input:
- matrix $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$
- $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(\mathbf{F})$ of degree $\leq \delta$

algorithm via interpolation at sufficiently many points

- $d \leftarrow \delta + \deg(\mathbf{F}) + 1$
- $\alpha \leftarrow$ choose some $(\alpha_1, \ldots, \alpha_d)$ in \mathbb{K}^d (not necessarily distinct)
- $\mathbf{P} \in \mathbb{K}[X]^{m \times m} \leftarrow$ reduced basis of $I(\alpha, \mathbf{F})$
- $\mathbf{K} \in \mathbb{K}[X]^{k \times m} \leftarrow$ rows of \mathbf{P} which have degree $\leq \delta$

$\Rightarrow \mathbf{K}$ is a reduced basis of $\mathcal{K}(\mathbf{F})$
\Rightarrow complexity $O(m^\omega M(\lceil \frac{nd}{m} \rceil) \log(\lceil \frac{nd}{m} \rceil))$
input:
- matrix $\mathbf{F} \in \mathbb{K}[X]^{m \times n}$
- $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(\mathbf{F})$ of degree $\leq \delta$

algorithm via interpolation at sufficiently many points

- $d \leftarrow \delta + \deg(\mathbf{F}) + 1$
- $\alpha \leftarrow$ choose some $(\alpha_1, \ldots, \alpha_d)$ in \mathbb{K}^d (not necessarily distinct)
- $\mathbf{P} \in \mathbb{K}[X]^{m \times m} \leftarrow$ reduced basis of $I(\alpha, \mathbf{F})$
- $\mathbf{K} \in \mathbb{K}[X]^{k \times m} \leftarrow$ rows of \mathbf{P} which have degree $\leq \delta$

$\Rightarrow \mathbf{K}$ is a reduced basis of $\mathcal{K}(\mathbf{F})$
\Rightarrow complexity $O(m^\omega M(\lceil \frac{nd}{m} \rceil) \log(\lceil \frac{nd}{m} \rceil))$

how to find the degree bound δ?
Knowing $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(F)$ of degree $\leq \delta$

- take $d \leftarrow \delta + \deg(F) + 1$ and some $\alpha \leftarrow (\alpha_1, \ldots, \alpha_d)$ in \mathbb{K}^d
- $P \in \mathbb{K}[X]^{m \times m}$ reduced basis of $J(\alpha, F)$
- $K \in \mathbb{K}[X]^{k \times m}$ rows of P which have degree $\leq \delta$

$\Rightarrow K$ is a reduced basis of $\mathcal{K}(F)$
applications

minimal kernel bases and linear systems

knowing $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(F)$ of degree $\leq \delta$

- take $d \leftarrow \delta + \deg(F) + 1$ and some $\alpha \leftarrow (\alpha_1, \ldots, \alpha_d)$ in K^d
- $P \in K[X]^{m \times m}$ reduced basis of $I(\alpha, F)$
- $K \in K[X]^{k \times m}$ rows of P which have degree $\leq \delta$

$\Rightarrow K$ is a reduced basis of $\mathcal{K}(F)$

proof:
$\Rightarrow K$ is reduced by construction

. K satisfies $KF = 0 \mod (X - \alpha_1) \cdots (X - \alpha_d)$
. and $\deg(K) \leq \delta$, hence $\deg(KF) \leq \delta + \deg(F) < d$
$\Rightarrow KF = 0$, i.e. the rows of K are in $\mathcal{K}(F)$

. let $B \in K[X]^{(m-r) \times m}$ be a basis of $\mathcal{K}(F)$ of degree $\leq \delta$
. then $B = UP$ for some U
. by the predictable degree property, in fact $B = VK$
\Rightarrow any vector in $\mathcal{K}(F)$ is generated by K
knowing $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(\mathbf{F})$ of degree $\leq \delta$

how to find the degree bound δ?

- A specific bound may be known from the context e.g. gcd, “row bases”

- A general bound is $\delta = n \deg(\mathbf{F})$

- Yields complexity $O^\sim(m^\omega \lceil \frac{n^2 \deg(\mathbf{F})}{m} \rceil)$

proof:

up to row and column permutation, $\mathbf{F} = [\mathbf{G} \ast \mathbf{H}]$ with $\mathbf{G} \in \mathbb{K}[\mathbf{X}]_{r \times r}$ nonsingular

then, $\mathbb{K}(\mathbf{F}) = \mathbb{K}([\mathbf{G} \mathbf{H}])$

the matrix $[\mathbf{G} \mathbf{H} - \mathbf{G}^{-1} \frac{\det(\mathbf{G})}{\det(\mathbf{G})} \mathbf{I}_m - r]$ has polynomial entries, it has rank $m - r$ and its rows are in $\mathbb{K}(\mathbf{F})$, it has degree $\leq \max(\deg \det(\mathbf{G}), \deg(\mathbf{H}) + (r - 1) \deg(\mathbf{G})) \leq r \deg(\mathbf{F})$

by degree minimality of reduced matrices, any reduced basis of $\mathbb{K}(\mathbf{F})$ must have degree $\leq r \deg(\mathbf{F})$

rules of thumb, generically:

"quantity of information is preserved" + "degrees in reduced basis are uniform" $\Rightarrow (m - r) m \deg(\mathbb{K}) \approx mn \deg(\mathbb{F})$ $\Leftrightarrow \deg(\mathbb{K}) \approx n m - r \deg(\mathbb{F})$, which is $\leq n m - n \deg(\mathbb{F})$
Knowing $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(F)$ of degree $\leq \delta$,

how to find the degree bound δ?

- A specific bound may be known from the context, e.g., gcd, “row bases”
- A general bound is $\delta = n \deg(F)$
- Yields complexity $O^\sim(m^\omega \left\lceil \frac{n^2 \deg(F)}{m} \right\rceil)$

Proof:

Complexity $O^\sim(m^\omega \left\lceil \frac{nd}{m} \right\rceil)$

With $d = \delta + \deg(F) + 1 = (n + 1) \deg(F) + 1$
Knowing $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(\mathbf{F})$ of degree $\leq \delta$

how to find the degree bound δ?

A specific bound may be known from the context e.g. gcd, “row bases”

- A general bound is $\delta = n \deg(\mathbf{F})$
- Yields complexity $O^\sim(m^\omega \left\lfloor \frac{n^2 \deg(\mathbf{F})}{m} \right\rfloor)$

proof:

Up to row and column permutation, $\mathbf{F} = [\mathbf{G} \ast \mathbf{H}]$

With $\mathbf{G} \in \mathbb{K}[X]^{r \times r}$ nonsingular

Then, $\mathcal{K}(\mathbf{F}) = \mathcal{K}([\mathbf{G} \ast \mathbf{H}])$

The matrix $[-\mathbf{H}(\det(\mathbf{G})\mathbf{G}^{-1}) \quad \det(\mathbf{G})\mathbf{I}_{m-r}]$ has polynomial entries,

It has rank $m-r$ and its rows are in $\mathcal{K}(\mathbf{F})$,

It has degree $\leq \max(\deg \det(\mathbf{G}), \deg(\mathbf{H}) + (r-1)\deg(\mathbf{G})) \leq r\deg(\mathbf{F})$

By degree minimality of reduced matrices,

Any reduced basis of $\mathcal{K}(\mathbf{F})$ must have degree $\leq r\deg(\mathbf{F})$
knowing $\delta \in \mathbb{Z}_{>0}$ such that there exists a basis of $\mathcal{K}(F)$ of degree $\leq \delta$

how to find the degree bound δ?

A specific bound may be known from the context, e.g. gcd, “row bases”

- A general bound is $\delta = n \deg(F)$
- Yields complexity $O(\sim m^\omega \left\lfloor \frac{n^2 \deg(F)}{m} \right\rfloor)$

- Rules of thumb, generically:
 - “Quantity of information is preserved”
 - “Degrees in reduced basis are uniform”

$$\leadsto (m-r)m \deg(K) \approx mn \deg(F)$$

$$\Leftrightarrow \deg(K) \approx \frac{n}{m-r} \deg(F), \text{ which is } \leq \frac{n}{m-n} \deg(F)$$

Example: if F is $m \times \frac{m}{2}$, generically $\deg(K) = \deg(F)$

$\Rightarrow d = 2 \deg(F) + 1$ and complexity $O(\sim m^\omega \deg(F))$
applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

- complexity $O^\sim(m^\omega \lceil \frac{n \deg(F)}{m} \rceil)$ without assumption
- computes s-reduced basis of $\mathcal{K}(F)$ for $s = r\deg(F)$

- n large: divide and conquer on n, via residual + basis multiplication
 \leadsto partial linearization for multiplying matrices with weakly unbalanced degrees
- n small: use fast approximation/interpolation algorithms
 \leadsto well-chosen d yields at least half the kernel efficiently
applications

minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

- complexity $O^\sim(m^\omega \lceil \frac{n \deg(F)}{m} \rceil)$ without assumption
- computes s-reduced basis of $\mathcal{K}(F)$ for $s = \text{rdeg}(F)$

- n large: divide and conquer on n, via residual + basis multiplication
- \rightsquigarrow partial linearization for multiplying matrices with weakly unbalanced degrees
- n small: use fast approximation/interpolation algorithms
- \rightsquigarrow well-chosen d yields at least half the kernel efficiently

if $n > \frac{m}{2}$:

$K_1 \leftarrow$ recursive call on first $\frac{n}{2}$ columns of F, and shift s

$G \leftarrow$ multiply $K_1 \cdot F^*, \frac{n}{2}..n$ (last $\frac{n}{2}$ columns of F)

$K_2 \leftarrow$ recursive call on G, and shift $t = \text{rdeg}_s(K_1)$

return K_2K_1
minimal kernel bases and linear systems

breakthrough [Zhou-Labahn-Storjohann 2012]

- complexity $O^\sim(m^\omega \left\lceil \frac{n \deg(F)}{m} \right\rceil)$ without assumption
- computes s-reduced basis of $\mathcal{K}(F)$ for $s = r\deg(F)$

n large: divide and conquer on n, via residual + basis multiplication
\rightsquigarrow partial linearization for multiplying matrices with weakly unbalanced degrees

n small: use fast approximation/interpolation algorithms
\rightsquigarrow well-chosen d yields at least half the kernel efficiently

if $n \leq \frac{m}{2}$:

$\delta \leftarrow$ degree of kernel basis expected generically

$d \leftarrow \delta + \deg(F) + 1$ and take some $\alpha \leftarrow (\alpha_1, \ldots, \alpha_d)$ in \mathbb{K}^d

$P \in \mathbb{K}[X]^{m \times m} \leftarrow$ s-reduced basis of $J(\alpha, F)$

$K_1, Q \leftarrow$ rows of P which are in $\mathcal{K}(F)$ / which are not in $\mathcal{K}(F)$

$K_2 \leftarrow$ recursive call on $\frac{1}{(X-\alpha_1)\cdots(X-\alpha_d)}QF$, return $[K_1 \ K_2]$
linear system solving:
given $A \in \mathbb{K}[X]^{m \times m}$ nonsingular and $v \in \mathbb{K}[X]^{1 \times m}$
find $u \in \mathbb{K}[X]^{1 \times m}$ and $g \in \mathbb{K}[X]$ such that

$$uA = gv$$

and g has minimal degree.

- the equation has a solution: $u = gvA^{-1}$ with $g = \det(A)$
- but there is often no polynomial solution with $g = 1$
- target complexity? (recall that $\det(A)A^{-1}$ can have degree $\approx m \deg(A)$)
- propose an algorithm based on a kernel computation
linear system solving:
given $A \in K[X]^{m \times m}$ nonsingular and $v \in K[X]^{1 \times m}$
find $u \in K[X]^{1 \times m}$ and $g \in K[X]$ such that
\[uA = gv \quad \text{and} \quad g \text{ has minimal degree.} \]

- the equation has a solution: $u = g v A^{-1}$ with $g = \det(A)$
- but there is often no polynomial solution with $g = 1$
- target complexity? (recall that $\det(A) A^{-1}$ can have degree $\approx m \deg(A)$)
- propose an algorithm based on a kernel computation

compute $[u \ g] \in K[X]^{1 \times (m+1)}$ kernel basis of $F = \begin{bmatrix} A \\ -v \end{bmatrix} \in K[X]^{(m+1) \times m}$

- using the shift $s = (r\deg(A), \deg(v))$
- complexity $O^\sim(m^\omega \max(\deg(A), \deg(v)))$
- u, g is a solution to the equation $uA = gv$
- minimality of $\deg(g)$ follows from basis of $\mathcal{K}(F)$
applications

fast gcd and extended gcd

gcd
input: f and g univariate polynomials in $\mathbb{K}[X]$
output: $h = \gcd(f, g)$

xgcd
input: f and g univariate polynomials in $\mathbb{K}[X]$
output: (u, v, h) where $h = \gcd(f, g) = uf + vg$
applications

fast gcd and extended gcd

gcd

input: \(f \) and \(g \) univariate polynomials in \(\mathbb{K}[X] \)

output: \(h = \gcd(f, g) \)

xgcd

input: \(f \) and \(g \) univariate polynomials in \(\mathbb{K}[X] \)

output: \((u, v, h)\) where \(h = \gcd(f, g) = uf + vg \)

some notation:

. polynomials \(\bar{f} = f/h \) and \(\bar{g} = g/h \)
. \(m = \deg(f) \) and \(n = \deg(g) \)
. \(\ell = \deg(h) \)

\(\leadsto \) then \(\deg(\bar{f}) = m - \ell \) and \(\deg(\bar{g}) = n - \ell \)

\(\bar{f} \) and \(\bar{g} \) are coprime
we assume \(m, n > 0 \)
hence \(\ell \leq \min(m, n) \)

earlier in the course:

claim: gcd and xgcd are solved in \(O(M(d) \log(d)) \)

where \(d = \max(m, n) \)
applications

fast gcd and extended gcd

input: f and g univariate polynomials in \(K[X] \)
output: \(h = \gcd(f, g) \)

some notation:
 . polynomials \(\bar{f} = f/h \) and \(\bar{g} = g/h \) \(\bar{f} \) and \(\bar{g} \) are coprime
 . \(m = \deg(f) \) and \(n = \deg(g) \) we assume \(m, n > 0 \)

result: gcd is solved in \(O(M(\max(m, n)) \log(\max(m, n))) \)
Applications

Fast GCD and Extended GCD

Input: \(f \) and \(g \) univariate polynomials in \(K[X] \).
Output: \(h = \gcd(f, g) \).

Some notation:
- Polynomials \(\bar{f} = f/h \) and \(\bar{g} = g/h \). \(\bar{f} \) and \(\bar{g} \) are coprime.
- \(m = \deg(f) \) and \(n = \deg(g) \). We assume \(m, n > 0 \).

Result: GCD is solved in \(O(M(\max(m, n))) \log(\max(m, n))) \).

Lemma: \([\bar{g} \bar{f}]\) is a basis of the left kernel of \([f \ g]\).

Proof:
This kernel has rank 1 (\(f \) and \(g \) are nonzero).

Let \([a \ b]\) be a basis of it; all other bases are \([ca \ cb]\) for some \(c \in K \setminus \{0\}\).

Since \([\bar{g} \bar{f}]\)\([f \ g]\) = \(-\frac{g}{h}f + \frac{f}{h}g = 0\), we get \([\bar{g} \bar{f}]\) = \([\lambda a \ \lambda b]\) for some \(\lambda \in K[X] \setminus \{0\}\).

Then \(\lambda \) divides \(\bar{f} \) and \(\bar{g} \), so \(\lambda \) is a nonzero constant.
fast gcd and extended gcd

input: \(f \) and \(g \) univariate polynomials in \(\mathbb{K}[X] \)

output: \(h = \gcd(f, g) \)

some notation:

- polynomials \(\bar{f} = f/h \) and \(\bar{g} = g/h \) \(\bar{f} \) and \(\bar{g} \) are coprime
- \(m = \deg(f) \) and \(n = \deg(g) \) we assume \(m, n > 0 \)

result: gcd is solved in \(O(M(\max(m, n)) \log(\max(m, n))) \)

lemma: \([-\bar{g} \quad \bar{f}] \) is a basis of the left kernel of \([f]_g \)

algorithm: kernel basis via interpolation at sufficiently many points

- the input matrix \(F = [f]_g \) has degree \(\max(m, n) \)
- the sought kernel basis has degree at most \(\delta = \max(m, n) \)

\[
\begin{align*}
1. & \text{pick } \delta + \deg(F) + 1 = 2\delta + 1 \text{ points } \alpha \in \mathbb{K}^{2\delta + 1} & \text{O}(1) \\
\Rightarrow & \text{find } [-\bar{g} \quad \bar{f}] \text{ via a reduced basis of } J(\alpha, [f]_g) & O(M(\delta) \log(\delta)) \\
2. & \text{deduce } h = g/\bar{g} & O(M(\delta))
\end{align*}
\]
applications

fast gcd and extended gcd

\textbf{xgcd} input: \(f \) and \(g \) univariate polynomials in \(K[X] \)
output: \((u, v, h)\) where \(h = \gcd(f, g) = uf + vg \)

\textbf{some notation:}
\begin{itemize}
 \item polynomials \(\bar{f} = f/h \) and \(\bar{g} = g/h \) \(\bar{f} \) and \(\bar{g} \) are coprime
 \item \(m = \deg(f) \), \(n = \deg(g) \), \(\ell = \deg(h) \)
 \item \(\deg(\bar{f}) = m - \ell \) and \(\deg(\bar{g}) = n - \ell \)
\end{itemize}
\(m, n > 0, \ell \leq \min(m, n) \)
some notation:

. polynomials $\bar{f} = f/h$ and $\bar{g} = g/h$
. $m = \deg(f)$, $n = \deg(g)$, $\ell = \deg(h)$

\Rightarrow $\deg(\bar{f}) = m - \ell$ and $\deg(\bar{g}) = n - \ell$

lemma:

. there exists a unique (u, v) in $\mathbb{K}[X]^2$ such that

\[
\begin{cases}
uf + vg = h, \\
\deg(u) < n - \ell \quad \text{and} \quad \deg(v) < m - \ell.
\end{cases}
\]

. for this $(u, v) \in \mathbb{K}[X]^2$ one has

\[
\begin{bmatrix}
u & v \\
-\bar{g} & \bar{f}
\end{bmatrix}
\begin{bmatrix}
f \\
g
\end{bmatrix} =
\begin{bmatrix}
h \\
0
\end{bmatrix},
\]

and the leftmost matrix in this identity is unimodular.
applications

fast gcd and extended gcd

input: f and g univariate polynomials in $\mathbb{K}[X]$ output: (u, v, h) where $h = \gcd(f, g) = uf + vg$

some notation:
- polynomials $\bar{f} = f/h$ and $\bar{g} = g/h$ \bar{f} and \bar{g} are coprime
- $m = \deg(f)$, $n = \deg(g)$, $\ell = \deg(h)$ $m, n > 0$, $\ell \leq \min(m, n)$
- $\Rightarrow \deg(\bar{f}) = m - \ell$ and $\deg(\bar{g}) = n - \ell$

theorem:
- defining $R = \begin{bmatrix} \rev(u, n - \ell - 1) & \rev(v, m - \ell - 1) \\ -\rev(\bar{g}, n - \ell) & \rev(f, m - \ell) \end{bmatrix} \in \mathbb{K}[X]^{2 \times 2}$,
- one has: $R \begin{bmatrix} \rev(f, m) \\ \rev(g, n) \end{bmatrix} = \begin{bmatrix} x^{m+n-2\ell-1} \rev(h, \ell) \\ 0 \end{bmatrix}$
- the matrix R is a $(-n, -m)$-reduced basis of $J(0, \begin{bmatrix} \rev(f, m) \\ \rev(g, n) \end{bmatrix})$

$$= \left\{ [p, q] \in \mathbb{K}[X]^{1 \times 2} \mid [p, q] \begin{bmatrix} \rev(f, m) \\ \rev(g, n) \end{bmatrix} = 0 \mod x^{m+n-2\ell-1} \right\}$$
Applications

Fast GCD and Extended GCD

xgcd

Input: \(f \) and \(g \) univariate polynomials in \(\mathbb{K}[X] \)

Output: \((u, v, h)\) where \(h = \text{gcd}(f, g) = uf + vg\)

Some notation:

- Polynomials \(\tilde{f} = f/h \) and \(\tilde{g} = g/h \) \(\tilde{f} \) and \(\tilde{g} \) are coprime
- \(m = \deg(f) \), \(n = \deg(g) \), \(\ell = \deg(h) \)
- \(\deg(\tilde{f}) = m - \ell \) and \(\deg(\tilde{g}) = n - \ell \)

Theorem:

- Defining \(R = \begin{bmatrix} \text{rev}(u, n - \ell - 1) & \text{rev}(v, m - \ell - 1) \\ -\text{rev}(\tilde{g}, n - \ell) & \text{rev}(\tilde{f}, m - \ell) \end{bmatrix} \in \mathbb{K}[X]^{2\times 2}, \)
- One has: \(R \begin{bmatrix} \text{rev}(f, m) \\ \text{rev}(g, n) \end{bmatrix} = \begin{bmatrix} x^{m+n-2\ell-1} \text{rev}(h, \ell) \\ 0 \end{bmatrix} \)

\(\ell \) is unknown!

- The matrix \(R \) is a \((-n, -m)\)-reduced basis of \(J(0, [\text{rev}(f, m) \text{rev}(g, n)]) \)

\[\begin{cases} [p \ q] \in \mathbb{K}[X]^{1\times 2} & [p \ q] \begin{bmatrix} \text{rev}(f, m) \\ \text{rev}(g, n) \end{bmatrix} = 0 \mod x^{m+n-2\ell-1} \end{cases} \]
applications

fast gcd and extended gcd

xgcd

input: \(f \) and \(g \) univariate polynomials in \(\mathbb{K}[X] \)

output: \((u, v, h)\) where \(h = \gcd(f, g) = uf + vg \)

some notation:
- polynomials \(\tilde{f} = f/h \) and \(\tilde{g} = g/h \) \(\tilde{f} \) and \(\tilde{g} \) are coprime
- \(m = \deg(f), \ n = \deg(g), \ \ell = \deg(h) \) \(m, n > 0, \ \ell \leq \min(m, n) \)
- \(\nabla \) \(\deg(f) = m - \ell \) and \(\deg(\tilde{g}) = n - \ell \)

corollary: \(\text{xgcd in } O(M(d) \log(d)) \)

for any \(d \geq n + m - 2\ell - 1 \)

let \(e = d - (n + m - 2\ell - 1) \)

e.g. \(d = n + m + 1 \)

hence \(e = 2\ell \)

then \(\begin{bmatrix} x^e & 0 \\ 0 & 1 \end{bmatrix} R = \begin{bmatrix} x^e \ \text{rev}(u, n - \ell - 1) & x^e \ \text{rev}(v, m - \ell - 1) \\ - \text{rev}(\tilde{g}, n - \ell) & \text{rev}(\tilde{f}, m - \ell) \end{bmatrix} \)

is a \((-n, -m)\)-reduced basis of

\[
\begin{bmatrix} p & q \end{bmatrix} \in \mathbb{K}[X]^{1 \times 2} \quad \begin{bmatrix} p & q \end{bmatrix} \begin{bmatrix} \text{rev}(f, m) \\ \text{rev}(g, n) \end{bmatrix} = 0 \mod x^d
\]

a row basis of a matrix \(F \in \mathbb{K}[X]^{m \times n} \) is a basis of its \(\mathbb{K}[X] \)-row space \(\{ pF \mid p \in \mathbb{K}[X]^{1 \times m} \} \) represented as \(R \in \mathbb{K}[X]^{r \times n} \), where \(r \) is the rank of \(F \) \(\implies F = UR \) for some \(U \in \mathbb{K}[X]^{m \times r} \)
a row basis of a matrix \(F \in K[X]^{m \times n} \) is a basis of its \(K[X] \)-row space

\[\{ pF \mid p \in K[X]^{1 \times m} \} \]

\(\rightsquigarrow \) represented as \(R \in K[X]^{r \times n} \), where \(r \) is the rank of \(F \)

\(\rightsquigarrow F = UR \) for some \(U \in K[X]^{m \times r} \)

examples:

- row basis for \(F \in K[X]^{m \times m} \) nonsingular?
- row basis of \(\begin{bmatrix} f \\ g \end{bmatrix} \) for \(f, g \) coprime polynomials?
- \(K \in K[X]^{(m-r) \times m} \) a left kernel basis of \(F \in K[X]^{m \times n} \)
- row basis of \(K \)? column basis of \(K \)?
a row basis of a matrix \(F \in \mathbb{K}[X]^{m \times n} \) is a basis of its \(\mathbb{K}[X] \)-row space

\[\Rightarrow \text{represented as } R \in \mathbb{K}[X]^{r \times n}, \text{ where } r \text{ is the rank of } F \]

\(\Rightarrow F = UR \) for some \(U \in \mathbb{K}[X]^{m \times r} \)

equations:

- row basis for \(F \in \mathbb{K}[X]^{m \times m} \) nonsingular? \(R = F \)
- row basis of \(\begin{bmatrix} f \\ g \end{bmatrix} \) for \(f, g \) coprime polynomials?
- \(K \in \mathbb{K}[X]^{(m-r) \times m} \) a left kernel basis of \(F \in \mathbb{K}[X]^{m \times n} \)
- row basis of \(K \)? column basis of \(K \)?
a row basis of a matrix $F \in \mathbb{K}[X]^{m \times n}$ is a basis of its $\mathbb{K}[X]$-row space represented as $R \in \mathbb{K}[X]^{r \times n}$, where r is the rank of F.

$F = UR$ for some $U \in \mathbb{K}[X]^{m \times r}$.

Examples:
- row basis for $F \in \mathbb{K}[X]^{m \times m}$ nonsingular? $R = F$
- row basis of $\begin{bmatrix} f \\ g \end{bmatrix}$ for f, g coprime polynomials? $R = [1]$
- $K \in \mathbb{K}[X]^{(m-r) \times m}$ a left kernel basis of $F \in \mathbb{K}[X]^{m \times n}$ row basis of K? column basis of K?
a row basis of a matrix $F \in \mathbb{K}[X]^{m \times n}$ is a basis of its $\mathbb{K}[X]$-row space

\leadsto represented as $R \in \mathbb{K}[X]^{r \times n}$, where r is the rank of F

$\leadsto F = UR$ for some $U \in \mathbb{K}[X]^{m \times r}$

examples:

- row basis for $F \in \mathbb{K}[X]^{m \times m}$ nonsingular? $R = F$

- row basis of $\begin{bmatrix} f \\ g \end{bmatrix}$ for f, g coprime polynomials? $R = [1]$

- $K \in \mathbb{K}[X]^{(m-r) \times m}$ a left kernel basis of $F \in \mathbb{K}[X]^{m \times n}$
 row basis of K? column basis of K? $R = K$ and $C = I_{m-r}$

K has full rank so C is $(m-r) \times (m-r)$ nonsingular
and by definition $K = CK$ for some \bar{K}
so $KF = 0 \Rightarrow \bar{K}F = 0$, hence $\bar{K} = VK$
from $K = CVK$, with K having full row rank, we deduce $CV = I_{m-r}$
a row basis of a matrix $F \in \mathbb{K}[X]^{m \times n}$ is a basis of its $\mathbb{K}[X]$-row space

\mapsto represented as $R \in \mathbb{K}[X]^{r \times n}$, where r is the rank of F

$\mapsto F = UR$ for some $U \in \mathbb{K}[X]^{m \times r}$

applications:
- compute an s-reduced basis of the row space
- verify that a matrix is a kernel basis
- triangularization: Hermite normal form and determinant
a row basis of a matrix $F \in \mathbb{K}[X]^{m \times n}$ is a basis of its $\mathbb{K}[X]$-row space

\[\{ pF \mid p \in \mathbb{K}[X]^{1 \times m} \} \]

\(\leadsto \) represented as $R \in \mathbb{K}[X]^{r \times n}$, where r is the rank of F

\(\leadsto F = UR \) for some $U \in \mathbb{K}[X]^{m \times r}$

applications:
- compute an s-reduced basis of the row space
- verify that a matrix is a kernel basis
- triangularization: Hermite normal form and determinant

algorithm:
- $K \leftarrow$ left kernel basis for F
- $G \leftarrow$ right kernel basis for K
- $R \leftarrow$ matrix such that $F = GR$

complexity $O^\sim(mn^{\omega - 1} \deg(F))$, assuming $m \geq n$ [Zhou-Labahn, 2013]
triangularization of $m \times m$ matrix A using $\frac{m}{2} \times \frac{m}{2}$ blocks

\[
\begin{bmatrix}
K_1 & K_2 \\
A_3 & A_4
\end{bmatrix}
\begin{bmatrix}
A_1 \\
A_2
\end{bmatrix}
=
\begin{bmatrix}
R & * \\
0 & B
\end{bmatrix}
\]

kernel basis of $\begin{bmatrix} A_1 \\ A_3 \end{bmatrix}$

$K_1 A_2 + K_2 A_4$

row basis of $\begin{bmatrix} A_1 \\ A_3 \end{bmatrix}$

applications

perspectives — triangularization

Triangularization of $m \times m$ matrix A using $\frac{m}{2} \times \frac{m}{2}$ blocks

\[
\begin{bmatrix}
K_1 & K_2
\end{bmatrix}
\begin{bmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{bmatrix} =
\begin{bmatrix}
R & * \\
0 & B
\end{bmatrix}
\]

Main property: $\begin{bmatrix}
* & * \\
K_1 & K_2
\end{bmatrix}$ is unimodular

- Hermite form of $A = \text{Hermite form of } \begin{bmatrix}
R & * \\
0 & B
\end{bmatrix}$
- $\det(A) = \det(R) \det(B)$

Hermite normal form and determinant in $O^\sim(m^\omega \deg(A))$

given a **sparse** matrix $A \in \mathbb{K}^{n \times n}$:

- solve a linear system $Au = v$
- compute the **minimal polynomial** of A

. sparse means that A has a large proportion of zero entries
. goal: exploit sparsity to do better than exponent ω

block Wiedemann approach, for block dimension m:
1. choose random blocking matrices $U, V \in \mathbb{K}^{n \times m}$
2. compute **linearly recurrent sequence of matrices** in $\mathbb{K}^{m \times m}$

 $U^T V, U^T AV, \ldots, U^T A^k V, \ldots$
3. find polynomial matrix generator $P \in \mathbb{K}[X]^{m \times m}$ of this sequence
given a **sparse** matrix $A \in \mathbb{K}^{n \times n}$:

- solve a linear system $Au = v$
- compute the **minimal polynomial** of A

+ sparse means that A has a large proportion of zero entries
+ goal: exploit sparsity to do better than exponent ω

block Wiedemann approach, for block dimension m:

1. choose random blocking matrices $U, V \in \mathbb{K}^{n \times m}$
2. compute **linearly recurrent sequence of matrices** in $\mathbb{K}^{m \times m}$

 $U^T V, U^T AV, \ldots, U^T A^k V, \ldots$
3. find polynomial matrix generator $P \in \mathbb{K}[X]^{m \times m}$ of this sequence

+ generically, $d = 2 \frac{n}{m} - 1$ terms of the sequence are sufficient
+ step 3 is **matrix-Padé approx.**, in $O^\sim(m^\omega d) = O^\sim(m^\omega - 1 n)$
+ often, m is taken as the **number of threads** available for parallel computation of the matrix sequence
<table>
<thead>
<tr>
<th>Section</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>introduction</td>
<td>• rational approximation and interpolation</td>
</tr>
<tr>
<td></td>
<td>• the vector case</td>
</tr>
<tr>
<td></td>
<td>• pol. matrices: reminders and motivation</td>
</tr>
<tr>
<td>shifted reduced forms</td>
<td>• reducedness: examples and properties</td>
</tr>
<tr>
<td></td>
<td>• shifted forms and degree constraints</td>
</tr>
<tr>
<td></td>
<td>• stability under multiplication</td>
</tr>
<tr>
<td>fast algorithms</td>
<td>• iterative algorithm and output size</td>
</tr>
<tr>
<td></td>
<td>• base case: modulus of degree 1</td>
</tr>
<tr>
<td></td>
<td>• recursion: residual and basis multiplication</td>
</tr>
<tr>
<td>applications</td>
<td>• minimal kernel bases and linear systems</td>
</tr>
<tr>
<td></td>
<td>• fast gcd and extended gcd</td>
</tr>
<tr>
<td></td>
<td>• perspectives</td>
</tr>
</tbody>
</table>