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Unique decoding via approximation Encoding and transmission

Error-correcting codes

Goal:
Enable reliable delivery of data over
unreliable communication channels

Strategy:
add redundancy to the message
add redundancy to the message
add redundancy to the message
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Unique decoding via approximation Encoding and transmission

Encoding: adding redundancy

All intended words −−−−−−−→ All code words
(w0, . . . ,wk) (c1, . . . , cn)

polynomials of degree 6 k −−→ their evaluation at x1, . . . , xn
w = w0 + w1X + · · ·+ wkX

k (w(x1), . . . ,w(xn))
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Unique decoding via approximation Encoding and transmission

Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

c = (c1, . . . , cn)
noise−−−→ y = (y1, . . . , yn)

with #{i | ci 6= yi} 6 e (metric called Hamming distance)

Reed-Solomon code:
(w(x1), . . . ,w(xn))

noise−−−→ (y1, . . . , yn)
with #{i | w(xi ) 6= yi} 6 e

(y1, . . . , yn) is the received word

All possible received words = words in
the balls of radius e centered on the
code words
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Unique decoding via approximation Unique decoding

Unique decoding

Received word (y1, . . . , yn)

Decoding
find a polynomial w of degree 6 k
such that #{i | w(xi ) 6= yi} 6 e

Well-defined?
Exactly one such polynomial w as long
as no overlap between the balls of ra-
dius e centered on the codewords

Unique decoding
when

2e < dmin
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Unique decoding via approximation Unique decoding

Minimum distance

For Reed-Solomon codes:

for w1 6= w2 polynomials of degree 6 k over the base field K,
(w1(x1), . . . ,w1(xn)) and (w2(x1), . . . ,w2(xn)) agree at 6 k positions
⇒ distance at least n − k between two code words

for w1 = 0 and w2 = (X − x1) · · · (X − xk), the code words are
(0, . . . , 0) and (0, . . . , 0,w2(xk+1), . . . ,w2(xn))
⇒ two code words at distance exactly n − k

=⇒ minimum distance dmin = n − k

Hence the unique decoding condition: e <
n − k

2
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Unique decoding via approximation Unique decoding

Unique decoding problem

Unique decoding of Reed-Solomon codes

Input:
x1, . . . , xn the n distinct evaluation points in K,
k the degree bound, e the error-correction radius,
(y1, . . . , yn) the received word in Kn

Unique decoding assumption: e < n−k
2

Output:
The polynomial w in K[X ] such that

degw 6 k and #{i | w(xi ) 6= yi} 6 e.

Vincent Neiger (ENS de Lyon) List-decoding Reed-Solomon codes using structured matrix computations SMD 2014 (Limoges) 9 / 42



Unique decoding via approximation Berlekamp-Welch(-like) algorithm

Key equations (unique decoding)

Define the interpolation polynomial

R(X ) such that R(xi ) = yi ,

and the error-locator polynomial

Λ(X ) =
∏

i | error(X − xi ).

Λ(X ) is an unknown polynomial with deg Λ 6 e

Key equations

for every i , Λ(xi )R(xi ) = Λ(xi )w(xi )

Quadratic equations in the unknown coefficients of w and Λ. . .
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Unique decoding via approximation Berlekamp-Welch(-like) algorithm

Modular key equation (unique decoding)

Recall the interpolation and error-locator polynomials

R(xi ) = yi , Λ(X ) =
∏

i | error(X − xi )

Key equations

for every i , Λ(xi )R(xi ) = Λ(xi )w(xi )

i.e. for every i , Λ(X )R(X ) = Λ(X )w(X ) mod (X − xi )

Define the master polynomial

G (X ) =
∏

16i6n(X − xi )

Modular key equation

Λ(X )R(X ) = Λ(X )w(X ) mod G (X )
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Unique decoding via approximation Berlekamp-Welch(-like) algorithm

Reduction to rational reconstruction

Modular key equation:

ΛR = Λw mod G

where R(xi ) = yi , G (X ) =
∏

16i6n(X − xi ), Λ(X ) =
∏

i | error(X − xi ).

=⇒ λ = Λ, ω = Λw form a solution of the rational reconstruction problem{
λR = ω mod G ,
deg(λ) 6 e, deg(ω) < n − e, λ monic.

(since deg Λw 6 e + k < n − e by the unique decoding assumption)

[Modern Computer Algebra, von zur Gathen - Gerhard, 2003]
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Unique decoding via approximation Berlekamp-Welch(-like) algorithm

Berlekamp-Welch(-like) algorithm for unique decoding

λ = Λ, ω = Λw form a solution of the rational reconstruction problem{
λR = ω mod G ,
deg(λ) 6 e, deg(ω) < n − e, λ monic.

=⇒ unique rational solution ω/λ, which has to be Λw
Λ = w !

This solution is computed using the extended Euclidean algorithm
in O (̃n) operations in K

Conclusion:
unique decoding in quasi-linear time via an approximation problem
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List-decoding Reed-Solomon codes
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List-decoding Reed-Solomon codes List-decoding

Non-unique decoding

How to “decode” when more errors?

transmission with 6 e errors
where e > dmin/2

possibly two (or more) code words
at the same distance. . .

the closest code word is not nec-
essarily the one which was sent. . .

⇒ Return a list of all code words
at distance 6 e
(called list-decoding)
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List-decoding Reed-Solomon codes List-decoding

Problem

For convenience, we use the agreement parameter t = n − e

List-decoding Reed-Solomon codes

Input:
n points {(xi , yi )}16i6n in K2, with the xi ’s distinct
k the degree constraint, t the agreement

List-decoding assumption: t2 > kn [Guruswami - Sudan 1999]

Output:
all polynomials w in K[X ] such that

degw 6 k and #{i | w(xi ) = yi} > t.

Problem also called Polynomial Reconstruction
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List-decoding Reed-Solomon codes List-decoding

Polynomial Reconstruction (1/2)

Figure: Polynomial reconstruction (Lagrange interpolation)
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List-decoding Reed-Solomon codes List-decoding

Polynomial Reconstruction (1/2)

Figure: Polynomial reconstruction (all solutions)
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List-decoding Reed-Solomon codes The interpolation step (previous work)

Why the interpolation step (1/3)

Consider one solution w1; we still have the modular key equation

Λ1R = Λ1w1 mod G

where
R(xi ) = yi , G (X ) =

∏
16i6n(X − xi ), Λ1(X ) =

∏
i | error1

(X − xi ).

But possibly,
deg(Λ1) + deg(Λ1w1) > n = degG

=⇒ no uniqueness of a rational solution ω1/λ1 to the linearized problem
Λ1R = ω1 mod G with degω1 6 e + k
(more unknowns than equations)
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List-decoding Reed-Solomon codes The interpolation step (previous work)

Why the interpolation step (2/3)

Note that
Λ1(R − w1) = 0 mod G

Now consider two solutions w1,w2. We have the modular key equation

Λ(R − w1)(R − w2) = 0 mod G

where Λ =
∏

i | error1∧2
(X − xi ) = gcd(Λ1,Λ2).

=⇒ w1,w2 are Y -roots of the bivariate polynomial

Q(X ,Y ) = Λ(Y − w1)(Y − w2)
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List-decoding Reed-Solomon codes The interpolation step (previous work)

Why the interpolation step (3/3)

Consider two solutions w1,w2, then Λ(R − w1)(R − w2) = 0 mod G
and w1,w2 are Y -roots of

Q(X ,Y ) = Λ(Y − w1)(Y − w2)

= Λw1w2 − Λ(w1 + w2)Y + ΛY 2

Similar remark when considering all ` solutions w1, . . . ,w`

Properties of Q(X ,Y ):

the unknown degree in Y of Q(X ,Y ) is the number of solutions `

the unknown coefficients in X of Q(X ,Y ) have small degree

we have the modular identity Q(X ,R) = 0 mod G
or equivalently, for every i , Q(xi , yi ) = 0
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List-decoding Reed-Solomon codes The interpolation step (previous work)

Guruswami-Sudan algorithm

It consists of two main steps,

Interpolation step
compute Q(X ,Y ) such that: w(X ) solution ⇒ Q(X ,w(X )) = 0

Root-finding step
find all Y -roots of Q(X ,Y ), keep those that are solutions

Here we are interested in the interpolation step
⇒ leads to a problem of Interpolation with Multiplicities.
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List-decoding Reed-Solomon codes The interpolation step (previous work)

A problem of Interpolation with multiplicities

Interpolation With Multiplicities

Input:
n points {(xi , yi )}16i6n in K2, with the xi ’s distinct
k the degree constraint, t the agreement
` the list-size, m the multiplicity (m 6 `)

Output:
a polynomial Q in K[X ,Y ] such that

(i) Q is nonzero,
(ii) degY Q(X ,Y ) 6 `, (list-size condition)
(iii) degX Q(X ,X kY ) < mt, (weighted-degree condition)
(iv) ∀i , Q(xi , yi ) = 0 with multiplicity m. (vanishing condition)

Vincent Neiger (ENS de Lyon) List-decoding Reed-Solomon codes using structured matrix computations SMD 2014 (Limoges) 22 / 42



List-decoding Reed-Solomon codes The interpolation step (previous work)

Algorithms based on structured linear systems

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011]

Write

Q(X ,Y ) =
∑

06j6`Qj(X )Y j (list-size condition)

where degQj(X ) < mt − jk. (weighted-degree condition)

Then, rewrite the vanishing condition so that a solution Q(X ,Y ) can be
retrieved as a nontrivial solution of a homogeneous mosaic-Hankel linear
system (the unknown being the coefficient vector of Q(X ,Y )).

Complexity bound for this method:

O(`m4n2)

using a modified Feng-Tzeng’s linear system solver [Feng - Tzeng, 1991].
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List-decoding Reed-Solomon codes The interpolation step (previous work)

Algorithms based on polynomial lattices

[Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010]
[Bernstein, 2011] [Cohn - Heninger, 2011]

Build a polynomial lattice L such that

Q(X ,Y ) ∈ L ⇔ (list-size condition) + (vanishing condition).

Then, a solution to Interpolation With Multiplicities can be retrieved as a
short vector in L (weighted-degree condition).

Complexity bound for this method:

O (̃`ωmn)

using an efficient polynomial lattice basis reduction algorithm:
[Giorgi - Jeannerod - Villard, 2003] (probabilistic)
or [Gupta - Sarkar - Storjohann - Valeriote, 2012]
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List-decoding Reed-Solomon codes The interpolation step (previous work)

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1 New approach for the interpolation step

Based on a approximation problem
Solved using structured linear systems
Improved complexity bound

O (̃`ω−1m2n)

2 Extension to the multivariate case (folded Reed-Solomon codes)

Based on the same approximation problem
Improved complexity bound

O˜

((
s + `

s

)ω−1

mn

(
s + m − 1

s

))
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List-decoding via approximation From interpolation to approximation

Reduction to an approximation problem (1/2)

Assume that Q satisfies the list-size condition:

Q =
∑
j6`

Qj(X )Y j

for some unknown polynomials Q0, . . . ,Q`

The vanishing condition can be rewritten as a set of modular equations

∀i ∈ {1, . . . , n}, Q(xi , yi ) = 0 with multiplicity m

⇐⇒ ∀i < m,
∑
i6j6`

Qj(X )

(
j

i

)
R(X )j−i = 0 mod G (X )m−i

where G (X ) =
∏

16i6n(X − xi ) and R(X ) such that ∀i ,R(xi ) = yi .

Vincent Neiger (ENS de Lyon) List-decoding Reed-Solomon codes using structured matrix computations SMD 2014 (Limoges) 28 / 42



List-decoding via approximation From interpolation to approximation

Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition

+ weighted-degree condition

∀i < m,
∑
i6j6`

Qj(X )

(
j

i

)
R(X )j−i︸ ︷︷ ︸
Fi,j (X )

= 0 (mod G (X )m−i︸ ︷︷ ︸
Pi (X )

)

with the degree constraints degQj(X ) < mt − jk for j 6 `

Cost for computing Fi ,j and Pi :

computing n(m − i) coefficients of Fi ,j for every i , j
≈ computing nm coefficients of R(X )j for 0 6 j 6 `
   O (̃`m2n) operations ∈ O(`ω−1m2n)

computing Pi for every i
= computing the m polynomials G (X ),G (X )2, . . . ,G (X )m

   O (̃m2n) operations ∈ O(`ω−1m2n)
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List-decoding via approximation From interpolation to approximation

The approximation problem

∀i < m,
∑
i6j6`

Qj(X )

(
j

i

)
R(X )j−i︸ ︷︷ ︸
Fi,j (X )

= 0 (mod G (X )m−i︸ ︷︷ ︸
Pi (X )

)

with the degree constraints degQj(X ) < mt − jk for j 6 `

Simultaneous Polynomial Approximations

Input:
Parameters: ` the list-size, m the number of equations
Moduli: Pi ∈ K[X ] monic of degree Mi , for every i < m
Polynomials: Fi ,j ∈ K[X ] of degree less than Mi , for i < m and j 6 `
Degree bounds: Nj a positive integer, for every j 6 `

Output: Q0, . . . ,Q` ∈ K[X ] satisfying
(i ′) Qj(X ) are not all zero,
(ii ′) ∀j 6 `, degQj(X ) < Nj ,
(iii ′) ∀i < m,

∑
j6`Qj(X )Fi ,j(X ) = 0 (mod Pi (X )).
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List-decoding via approximation Solving the approximation problem using structured matrices

Simultaneous approximations via a structured system (1/3)

Write Qj(X ) =
∑

r<Nj
Q

(r)
j X r , then the equations are

∀i < m,
∑
i6j6`

∑
r<Nj

Q
(r)
j X rFi ,j(X ) = 0 (mod Pi (X ))

Define the companion matrix

C(Pi ) =


0 0 · · · 0 −P(0)

i

1 0 · · · 0 −P(1)
i

0 1 · · · 0 −P(2)
i

...
...

. . .
...

...

0 0 · · · 1 −P(Mi−1)
i

 ∈ KMi×Mi

Key property:
multiplication by C(Pi ) on the left is multiplication by X modulo Pi (X )
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List-decoding via approximation Solving the approximation problem using structured matrices

Simultaneous approximations via a structured system (2/3)

Solution ⇐⇒ nonzero vector in the nullspace of the matrix A

where the block Ai ,j ∈ KMi×Nj is defined by its first column

c(0) =


F

(0)
i ,j
...

F
(Mi−1)
i ,j

 and the subsequent columns c(r+1) = C(Pi )·c(r)
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List-decoding via approximation Solving the approximation problem using structured matrices

Simultaneous approximations via a structured system (3/3)

Let M = M0 + · · ·+ Mm−1 (number of linear equations),
and N = N0 + · · ·+ N` (number of linear unknowns)
Define

ZM =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 0

 ∈ KM×M

Fact: A−ZMAZT
N has rank 6 m + `+ 1

the displacement operator A 7→ A−ZMAZT
N corresponds to a Toeplitz

structure

Conclusion:
the matrix of the system is Toeplitz-like with displacement rank 6 2`
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List-decoding via approximation Solving the approximation problem using structured matrices

Complexity bound for this approach

Solving the structured linear system [Bitmead - Anderson, 1980] [Morf,
1980] [Kaltofen, 1994] [Pan, 2001] [Bostan - Jeannerod - Schost, 2007]

Two main operations:
computing generators
≈ computing the first and last column of each block  O (̃`m2n)

+ computing the first row of each block  O (̃`m2n)
   O (̃`m2n) operations

solving the system
at most `+ 1 blocks on each row or column,
the number of equations is

∑
i n(m − i) = O(m2n)

   O (̃`ω−1m2n) operations

Complexity bound:
O (̃`ω−1m2n)
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List-decoding via approximation Solving the approximation problem using structured matrices

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

1 New approach for the interpolation step

Based on a approximation problem
Solved using structured linear systems
Improved complexity bound

O (̃`ω−1m2n)

2 Extension to the multivariate case (folded Reed-Solomon codes)

Based on the same approximation problem
Improved complexity bound

O˜

((
s + `

s

)ω−1

mn

(
s + m − 1

s

))
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List-decoding via approximation Extension to the multivariate case (folded Reed-Solomon codes)

Multivariate Interpolation with Multiplicities

Multivariate Interpolation With Multiplicities

Input:
s the number of variables
n points {(xi , yi1, . . . , yis)}16i6n in Ks+1, with the xi ’s distinct
k the degree constraint, t the agreement
` the list-size, m the multiplicity

Output: a polynomial Q in K[X ,Y1, . . . ,Ys ] such that

(i) Q is nonzero,
(ii) degY Q(X ,Y1, . . . ,Ys) 6 `, (list-size condition)
(iii) degX Q(X ,X kY1, . . . ,X

kYs) < mt, (weighted-degree condition)
(iv) ∀i , Q(xi , yi1, . . . , yis) = 0 with multiplicity m. (vanishing condition)

Application: list-decoding of folded Reed-Solomon codes
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List-decoding via approximation Extension to the multivariate case (folded Reed-Solomon codes)

Reduction to an approximation problem (1/2)

Assume that Q satisfies the list-size condition:

Q =
∑
|j|6`

Qj(X )Y j

for some unknown polynomials {Qj , |j| 6 `}
The vanishing condition can be rewritten as a set of modular equations.

for i ∈ {1, . . . , n} : Q(xi , yi1, . . . , yis) = 0 with multiplicity m

⇐⇒ for i = (i1, . . . , is), |i| < m :∑
i4j,|j|6`

Qj(X )

(
j1
i1

)
R1(X )j1−i1 · · ·

(
js
is

)
Rs(X )js−is = 0 mod G (X )m−|i|

where G (X ) =
∏

16i6n(X − xi ) and

R1(X ), . . . ,Rs(X ) such that R1(xi ) = yi1, . . . ,Rs(xi ) = yis
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List-decoding via approximation Extension to the multivariate case (folded Reed-Solomon codes)

Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition

+ weighted-degree condition

∑
i4j,|j|6`

Qj(X )

(
j1
i1

)
R1(X )j1−i1 · · ·

(
js
is

)
Rs(X )js−is︸ ︷︷ ︸

Fi,j(X )

= 0 mod G (X )m−|i|︸ ︷︷ ︸
Pi(X )

for i = (i1, . . . , im) such that |i| < m,

with the degree constraints degQj(X ) < mt − |j|k for |j| 6 `

Instance of Simultaneous Polynomial Approximations

list-size
(s+`

s

)
number of linear equations mn

(s+m−1
s

)
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List-decoding via approximation Extension to the multivariate case (folded Reed-Solomon codes)

Complexity bound in the multivariate case

 Complexity bound in the multivariate case

O˜

((
s + `

s

)ω−1

mn

(
s + m − 1

s

))

Improves on [Busse, 2008], [Brander, 2010] and [Nielsen, 2014]

Further extends to

weight specific to each variable
degX Q(X ,X k1Y1, . . . ,X

ksYs) < mt

multiplicity specific to each point
Q(xi , yi1, . . . , yis) = 0 with multiplicity mi
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List-decoding via approximation Extension to the multivariate case (folded Reed-Solomon codes)

Contributions
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