Faster Algorithms for List-Decoding Reed-Solomon Codes Using Structured Matrix Computations

Vincent NEIGER^{§,†}

Structured Matrix Days 2014, Université de Limoges

Joint work with Claude-Pierre JEANNEROD[§], Éric SCHOST[†] and Gilles VILLARD[§].

[§]AriC, LIP, École Normale Supérieure de Lyon, France

[†]ORCCA, Computer Science Department, Western University, London, ON, Canada

May 26, 2014

Outline

- Encoding and transmission
- Unique decoding
- Berlekamp-Welch(-like) algorithm
- List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)
- List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)

Outline

Unique decoding via approximation

- Encoding and transmission
- Unique decoding
- Berlekamp-Welch(-like) algorithm

List-decoding Reed-Solomon codes

- List-decoding
- The interpolation step (previous work)

List-decoding via approximation

- From interpolation to approximation
- Solving the approximation problem using structured matrices
- Extension to the multivariate case (folded Reed-Solomon codes)

Encoding and transmission

Error-correcting codes

Goal:

Enable reliable delivery of data over unreliable communication channels

Strategy:

add redundancy to the message add redundancy to the message add redundancy to the message

(courtesy of J.S.R. Nielsen)

Encoding: adding redundancy

Vincent NEIGER (ENS de Lyon) List-decoding Reed-Solomon codes using structured matrix computations SMD 2014 (Limoges) 5 / 42

Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (c_1, \ldots, c_n) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

with $\#\{i \mid c_i \neq y_i\} \leq e$ (metric called Hamming distance) • = code word • = received word

Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (c_1, \ldots, c_n) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

with $\#\{i \mid c_i \neq y_i\} \leqslant e$ (metric called Hamming distance) • = code word

Reed-Solomon code: $(w(x_1), \dots, w(x_n)) \xrightarrow{\text{noise}} (y_1, \dots, y_n)$ with $\#\{i \mid w(x_i) \neq y_i\} \leq e$

 (y_1, \ldots, y_n) is the received word

All possible received words = words in the balls of radius *e* centered on the code words

Transmission over an unreliable channel

Assumption: there are at most e errors during transmission of a code word

$$c = (w(x_1), \ldots, w(x_n)) \xrightarrow{\text{noise}} y = (y_1, \ldots, y_n)$$

with $\#\{i \mid w(x_i) \neq y_i\} \leqslant e$ (metric called Hamming distance)

Unique decoding

Unique decoding

Received word (y_1, \ldots, y_n)

Decoding

find a polynomial w of degree $\leq k$ such that $\#\{i \mid w(x_i) \neq y_i\} \leq e$

Well-defined?

Exactly one such polynomial *w* as long as no overlap between the balls of radius *e* centered on the codewords

Unique decoding

Unique decoding

Received word (y_1, \ldots, y_n)

Decoding

find a polynomial w of degree $\leq k$ such that $\#\{i \mid w(x_i) \neq y_i\} \leq e$

Well-defined?

Exactly one such polynomial *w* as long as no overlap between the balls of radius *e* centered on the codewords

Unique decoding

when

$$2e < d_{\min}$$

Unique decoding

Unique decoding

Received word (y_1, \ldots, y_n)

Decoding

find a polynomial w of degree $\leq k$ such that $\#\{i \mid w(x_i) \neq y_i\} \leq e$

Well-defined?

Exactly one such polynomial *w* as long as no overlap between the balls of radius *e* centered on the codewords

Unique decoding

when

$$2e < d_{\min}$$

Minimum distance

For Reed-Solomon codes:

- for $w_1 \neq w_2$ polynomials of degree $\leq k$ over the base field \mathbb{K} , $(w_1(x_1), \ldots, w_1(x_n))$ and $(w_2(x_1), \ldots, w_2(x_n))$ agree at $\leq k$ positions \Rightarrow distance at least n - k between two code words
- for $w_1 = 0$ and $w_2 = (X x_1) \cdots (X x_k)$, the code words are $(0, \ldots, 0)$ and $(0, \ldots, 0, w_2(x_{k+1}), \ldots, w_2(x_n))$ \Rightarrow two code words at distance exactly n - k
- \implies minimum distance $d_{\min} = n k$

Hence the unique decoding condition:

$$< \frac{n-k}{2}$$

e

Unique decoding problem

Unique decoding of Reed-Solomon codes

Input:

 x_1, \ldots, x_n the *n* distinct evaluation points in \mathbb{K} , *k* the degree bound, *e* the error-correction radius, (y_1, \ldots, y_n) the received word in \mathbb{K}^n

Unique decoding assumption: $e < \frac{n-k}{2}$

Output:

The polynomial w in $\mathbb{K}[X]$ such that

 $\deg w \leqslant k \qquad \text{and} \qquad \#\{i \mid w(x_i) \neq y_i\} \leqslant e.$

Key equations (unique decoding)

Define the interpolation polynomial

R(X) such that $R(x_i) = y_i$,

and the error-locator polynomial

 $\Lambda(X) = \prod_{i \mid \text{error}} (X - x_i).$

 $\Lambda(X)$ is an unknown polynomial with deg $\Lambda \leqslant e$

Key equations

for every *i*,
$$\Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i)$$

Quadratic equations in the unknown coefficients of w and Λ ...

Modular key equation (unique decoding)

Recall the interpolation and error-locator polynomials

$$R(x_i) = y_i, \qquad \Lambda(X) = \prod_{i \mid \text{error}} (X - x_i)$$

Key equations

for every *i*,
$$\Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i)$$

i.e. for every i, $\Lambda(X)R(X) = \Lambda(X)w(X) \mod (X - x_i)$

Modular key equation (unique decoding)

Recall the interpolation and error-locator polynomials

$$R(x_i) = y_i, \qquad \Lambda(X) = \prod_{i \mid \text{error}} (X - x_i)$$

Key equations

for every
$$i$$
, $\Lambda(x_i)R(x_i) = \Lambda(x_i)w(x_i)$

i.e. for every i, $\Lambda(X)R(X) = \Lambda(X)w(X) \mod (X - x_i)$ Define the master polynomial

 $G(X) = \prod_{1 \leq i \leq n} (X - x_i)$

Modular key equation

$$\Lambda(X)R(X) = \Lambda(X)w(X) \mod G(X)$$

Reduction to rational reconstruction

Modular key equation:

 $\Lambda R = \Lambda w \mod G$

where $R(x_i) = y_i$, $G(X) = \prod_{1 \le i \le n} (X - x_i)$, $\Lambda(X) = \prod_{i \mid \text{error}} (X - x_i)$.

 $\implies \lambda = \Lambda, \omega = \Lambda w$ form a solution of the rational reconstruction problem

$$\begin{cases} \lambda R = \omega \mod G, \\ \deg(\lambda) \leqslant e, \quad \deg(\omega) < n - e, \quad \lambda \bmod c. \end{cases}$$

(since deg $\Lambda w \leq e + k < n - e$ by the unique decoding assumption) [Modern Computer Algebra, von zur Gathen - Gerhard, 2003]

Berlekamp-Welch(-like) algorithm for unique decoding

 $\lambda = \Lambda, \omega = \Lambda w$ form a solution of the rational reconstruction problem

$$\left\{ egin{array}{ll} \lambda R = \omega & ext{mod} \ G, \ \deg(\lambda) \leqslant e, & \deg(\omega) < n-e, & \lambda ext{ monic.} \end{array}
ight.$$

 \implies unique rational solution ω/λ , which has to be $\frac{\Lambda w}{\Lambda} = w$!

This solution is computed using the extended Euclidean algorithm in $\mathcal{O}^{\sim}(n)$ operations in \mathbb{K}

Conclusion:

unique decoding in quasi-linear time via an approximation problem

Outline

- List-decoding Reed-Solomon codes
 - List-decoding
 - The interpolation step (previous work)
- List-decoding via approximation
 - From interpolation to approximation
 - Solving the approximation problem using structured matrices
 - Extension to the multivariate case (folded Reed-Solomon codes)

Non-unique decoding

How to "decode" when more errors?

transmission with $\leq e$ errors where $e \geq d_{\min}/2$

Non-unique decoding

How to "decode" when more errors?

transmission with $\leqslant e$ errors where $e \ge d_{\min}/2$

possibly two (or more) code words at the same distance...

the closest code word is not necessarily the one which was sent. . .

List-decoding

Non-unique decoding

How to "decode" when more errors?

transmission with $\leq e$ errors where $e \ge d_{\min}/2$

possibly two (or more) code words at the same distance...

the closest code word is not necessarily the one which was sent...

 \Rightarrow Return a list of all code words at distance $\leq e$ (called list-decoding)

Problem

For convenience, we use the agreement parameter t = n - e

List-decoding Reed-Solomon codes

Input:

- *n* points $\{(x_i, y_i)\}_{1 \le i \le n}$ in \mathbb{K}^2 , with the x_i 's distinct
- k the degree constraint, t the agreement

List-decoding assumption: $t^2 > kn$ [Guruswami - Sudan 1999]

Output:

all polynomials w in $\mathbb{K}[X]$ such that

deg $w \leq k$ and $\#\{i \mid w(x_i) = y_i\} \geq t$.

Problem also called Polynomial Reconstruction

Polynomial Reconstruction (1/2)

Figure: Polynomial reconstruction (Lagrange interpolation)

List-decoding

Polynomial Reconstruction (1/2)

Figure: Polynomial reconstruction

Polynomial Reconstruction (1/2)

Figure: Polynomial reconstruction (all solutions)

Why the interpolation step (1/3)

Consider one solution w_1 ; we still have the modular key equation

 $\Lambda_1 R = \Lambda_1 w_1 \mod G$

where

 $R(x_i) = y_i, \quad G(X) = \prod_{1 \le i \le n} (X - x_i), \quad \Lambda_1(X) = \prod_{i \mid \text{error}} (X - x_i).$

But possibly,

$$\deg(\Lambda_1) + \deg(\Lambda_1 w_1) \ge n = \deg G$$

 \implies no uniqueness of a rational solution ω_1/λ_1 to the linearized problem $\Lambda_1 R = \omega_1 \mod G$ with deg $\omega_1 \leq e+k$ (more unknowns than equations)

Why the interpolation step (2/3)

Note that

$$\Lambda_1(R-w_1) = 0 \mod G$$

Now consider two solutions w_1, w_2 . We have the modular key equation

$$\Lambda(R - w_1)(R - w_2) = 0 \mod G$$

where $\Lambda = \prod_{i \mid error_{1 \wedge 2}} (X - x_i) = gcd(\Lambda_1, \Lambda_2).$

 \implies w_1, w_2 are Y-roots of the bivariate polynomial

$$Q(X,Y) = \Lambda(Y-w_1)(Y-w_2)$$

Why the interpolation step (3/3)

Consider two solutions w_1, w_2 , then $\Lambda(R - w_1)(R - w_2) = 0 \mod G$ and w_1, w_2 are Y-roots of

$$Q(X, Y) = \Lambda(Y - w_1)(Y - w_2) = \Lambda w_1 w_2 - \Lambda(w_1 + w_2)Y + \Lambda Y^2$$

Similar remark when considering all ℓ solutions w_1, \ldots, w_ℓ

Properties of Q(X, Y):

- the unknown degree in Y of Q(X, Y) is the number of solutions ℓ
- the unknown coefficients in X of Q(X, Y) have small degree
- we have the modular identity Q(X, R) = 0 mod G or equivalently, for every i, Q(x_i, y_i) = 0

Guruswami-Sudan algorithm

It consists of two main steps,

- Interpolation step
 compute Q(X, Y) such that: w(X) solution ⇒ Q(X, w(X)) = 0
- Root-finding step

find all Y-roots of Q(X, Y), keep those that are solutions

Here we are interested in the interpolation step

 \Rightarrow leads to a problem of Interpolation with Multiplicities.

A problem of Interpolation with multiplicities

Interpolation With Multiplicities

Input:

n points $\{(x_i, y_i)\}_{1 \le i \le n}$ in \mathbb{K}^2 , with the x_i 's distinct *k* the degree constraint, *t* the agreement ℓ the list-size, *m* the multiplicity $(m \le \ell)$

Output:

a polynomial Q in $\mathbb{K}[X, Y]$ such that

(i) Q is nonzero, (ii) $\deg_Y Q(X, Y) \leq \ell$, (list-size condition) (iii) $\deg_X Q(X, X^k Y) < mt$, (weighted-degree condition) (iv) $\forall i, Q(x_i, y_i) = 0$ with multiplicity m. (vanishing condition)

Algorithms based on structured linear systems

[Roth - Ruckenstein, 2000] [Zeh - Gentner - Augot, 2011] Write

 $Q(X, Y) = \sum_{0 \le j \le \ell} Q_j(X) Y^j$ (list-size condition)

where deg $Q_j(X) < mt - jk$. (weighted-degree condition)

Then, rewrite the vanishing condition so that a solution Q(X, Y) can be retrieved as a nontrivial solution of a homogeneous mosaic-Hankel linear system (the unknown being the coefficient vector of Q(X, Y)).

Complexity bound for this method:

$\mathcal{O}(\ell m^4 n^2)$

using a modified Feng-Tzeng's linear system solver [Feng - Tzeng, 1991].

Algorithms based on polynomial lattices

[Alekhnovich, 2002] [Reinhard, 2003] [Beelen - Brander, 2010] [Bernstein, 2011] [Cohn - Heninger, 2011]

Build a polynomial lattice ${\boldsymbol{\mathcal L}}$ such that

 $Q(X, Y) \in \mathcal{L} \quad \Leftrightarrow \quad (\text{list-size condition}) + (\text{vanishing condition}).$

Then, a solution to Interpolation With Multiplicities can be retrieved as a short vector in \mathcal{L} (weighted-degree condition).

Complexity bound for this method:

 $\mathcal{O}(\ell^{\omega} mn)$

using an efficient polynomial lattice basis reduction algorithm: [Giorgi - Jeannerod - Villard, 2003] (probabilistic) or [Gupta - Sarkar - Storjohann - Valeriote, 2012]

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

New approach for the interpolation step

- Based on a approximation problem
- Solved using structured linear systems
- Improved complexity bound

 $\mathcal{O}(\ell^{\omega-1}m^2n)$

② Extension to the multivariate case (folded Reed-Solomon codes)

- Based on the same approximation problem
- Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Outline

List-decoding via approximation

- From interpolation to approximation
- Solving the approximation problem using structured matrices
- Extension to the multivariate case (folded Reed-Solomon codes)

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

New approach for the interpolation step

- Based on a approximation problem
- Solved using structured linear systems
- Improved complexity bound

 $\mathcal{O}(\ell^{\omega-1}m^2n)$

② Extension to the multivariate case (folded Reed-Solomon codes)

- Based on the same approximation problem
- Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Reduction to an approximation problem (1/2)

Assume that Q satisfies the list-size condition:

$$Q = \sum_{j \leqslant \ell} Q_j(X) Y^j$$

for some unknown polynomials Q_0, \ldots, Q_ℓ

The vanishing condition can be rewritten as a set of modular equations

$$\forall i \in \{1, \dots, n\}, \ Q(x_i, y_i) = 0 \text{ with multiplicity } m$$
$$\iff \forall i < m, \quad \sum_{i \leq j \leq \ell} Q_j(X) {j \choose i} R(X)^{j-i} = 0 \mod G(X)^{m-i}$$

where $G(X) = \prod_{1 \leq i \leq n} (X - x_i)$ and R(X) such that $\forall i, R(x_i) = y_i$.

Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition

$$\forall i < m, \qquad \sum_{i \leq j \leq \ell} \frac{Q_j(X)}{\sum_{i \in I_{i,j}(X)} \frac{\binom{j}{i} R(X)^{j-i}}{F_{i,j}(X)}} = 0 \pmod{\frac{G(X)^{m-i}}{P_i(X)}}$$

Cost for computing $F_{i,j}$ and P_i :

- computing n(m-i) coefficients of $F_{i,j}$ for every i,j \approx computing nm coefficients of $R(X)^j$ for $0 \le j \le \ell$ $\rightsquigarrow \mathcal{O}^{\sim}(\ell m^2 n)$ operations $\in \mathcal{O}(\ell^{\omega-1}m^2 n)$
- computing P_i for every i
 - = computing the *m* polynomials $G(X), G(X)^2, \ldots, G(X)^m$ $\rightsquigarrow \mathcal{O}^{\sim}(\mathbf{m}^2\mathbf{n})$ operations $\in \mathcal{O}(\ell^{\omega-1}m^2n)$

Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition + weighted-degree condition

$$\forall i < m, \qquad \sum_{i \leq j \leq \ell} \frac{Q_j(X)}{Q_j(X)} \underbrace{\binom{j}{i}}_{F_{i,j}(X)} R(X)^{j-i} = 0 \pmod{\underbrace{G(X)^{m-i}}_{P_i(X)}}$$

with the degree constraints $\deg Q_j(X) < mt - jk$ for $j \leq \ell$

Cost for computing $F_{i,j}$ and P_i :

- computing n(m-i) coefficients of $F_{i,j}$ for every i,j \approx computing nm coefficients of $R(X)^j$ for $0 \le j \le \ell$ $\rightsquigarrow \mathcal{O}^{\sim}(\ell m^2 n)$ operations $\in \mathcal{O}(\ell^{\omega-1}m^2 n)$
- computing P_i for every i
 - = computing the *m* polynomials $G(X), G(X)^2, \ldots, G(X)^m$ $\rightsquigarrow \mathcal{O}^{\sim}(\mathbf{m}^2\mathbf{n})$ operations $\in \mathcal{O}(\ell^{\omega-1}m^2n)$

The approximation problem

$$\forall i < m, \qquad \sum_{i \leq j \leq \ell} Q_j(X) \underbrace{\binom{j}{i} R(X)^{j-i}}_{F_{i,i}(X)} = 0 \pmod{\underbrace{G(X)^{m-i}}_{P_i(X)}}$$

with the degree constraints $\deg Q_j(X) < mt - jk$ for $j \leq \ell$

Simultaneous Polynomial Approximations

Input:

Parameters: ℓ the list-size, m the number of equations Moduli: $P_i \in \mathbb{K}[X]$ monic of degree M_i , for every i < mPolynomials: $F_{i,j} \in \mathbb{K}[X]$ of degree less than M_i , for i < m and $j \leq \ell$ Degree bounds: N_j a positive integer, for every $j \leq \ell$

Simultaneous approximations via a structured system (1/3)

Write $Q_j(X) = \sum_{r < N_j} Q_j^{(r)} X^r$, then the equations are

$$\forall i < m, \qquad \sum_{i \leq j \leq \ell} \sum_{r < N_j} Q_j^{(r)} X^r F_{i,j}(X) = 0 \pmod{P_i(X)}$$

Define the companion matrix

$$\mathcal{C}(P_i) = \begin{bmatrix} 0 & 0 & \cdots & 0 & -P_i^{(0)} \\ 1 & 0 & \cdots & 0 & -P_i^{(1)} \\ 0 & 1 & \cdots & 0 & -P_i^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -P_i^{(M_i-1)} \end{bmatrix} \in \mathbb{K}^{M_i \times M_i}$$

Key property: multiplication by $C(P_i)$ on the left is multiplication by X modulo $P_i(X)$

Vincent NEIGER (ENS de Lyon) List-decoding Reed-Solomon codes using structured matrix computations SMD 2014 (Limoges) 31 / 42

Simultaneous approximations via a structured system (2/3)

where the block $A_{i,j} \in \mathbb{K}^{M_i \times N_j}$ is defined by its first column

$$c^{(0)} = \begin{bmatrix} F_{i,j}^{(0)} \\ \vdots \\ F_{i,j}^{(M_i-1)} \end{bmatrix}$$
 and

and the subsequent columns $c^{(r+1)} = C(P_i) \cdot c^{(r)}$

Simultaneous approximations via a structured system (3/3)

Let $M = M_0 + \cdots + M_{m-1}$ (number of linear equations), and $N = N_0 + \cdots + N_\ell$ (number of linear unknowns) Define

$$\mathcal{Z}_{M} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{bmatrix} \in \mathbb{K}^{M \times M}$$

Fact: $A - \mathcal{Z}_M A \mathcal{Z}_N^T$ has rank $\leq m + \ell + 1$

the displacement operator $A \mapsto A - \mathcal{Z}_M A \mathcal{Z}_N^T$ corresponds to a Toeplitz structure

Conclusion:

the matrix of the system is Toeplitz-like with displacement rank $\leqslant 2\ell$

Complexity bound for this approach

Solving the structured linear system [Bitmead - Anderson, 1980] [Morf, 1980] [Kaltofen, 1994] [Pan, 2001] [Bostan - Jeannerod - Schost, 2007] Two main operations:

• computing generators

 \approx computing the first and last column of each block $\rightsquigarrow \mathcal{O}^{\sim}(\ell m^2 n)$

+ computing the first row of each block $\rightsquigarrow \mathcal{O}(\ell m^2 n)$

- $\rightsquigarrow \mathcal{O}(\ell m^2 n)$ operations
- solving the system

at most $\ell + 1$ blocks on each row or column, the number of equations is $\sum_i n(m-i) = \mathcal{O}(m^2 n)$ $\rightsquigarrow \mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$ operations

Complexity bound:

 $\mathcal{O}(\ell^{\omega-1}m^2n)$

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

New approach for the interpolation step

- Based on a approximation problem
- Solved using structured linear systems
- Improved complexity bound

 $\mathcal{O}(\ell^{\omega-1}m^2n)$

② Extension to the multivariate case (folded Reed-Solomon codes)

- Based on the same approximation problem
- Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

New approach for the interpolation step

- Based on a approximation problem
- Solved using structured linear systems
- Improved complexity bound

 $\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$

② Extension to the multivariate case (folded Reed-Solomon codes)

- Based on the same approximation problem
- Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Multivariate Interpolation with Multiplicities

Multivariate Interpolation With Multiplicities

Input:

s the number of variables

n points $\{(x_i, y_{i1}, \dots, y_{is})\}_{1 \leq i \leq n}$ in \mathbb{K}^{s+1} , with the x_i 's distinct

k the degree constraint, t the agreement

 ℓ the list-size, m the multiplicity

Output: a polynomial Q in $\mathbb{K}[X, Y_1, \ldots, Y_s]$ such that

(i) Q is nonzero,

(ii) $\deg_Y Q(X, Y_1, \dots, Y_s) \leq \ell$, (list-size condition)

- (iii) deg_X $Q(X, X^k Y_1, ..., X^k Y_s) < mt$, (weighted-degree condition)
- (iv) $\forall i, Q(x_i, y_{i1}, \dots, y_{is}) = 0$ with multiplicity *m*. (vanishing condition)

Application: list-decoding of folded Reed-Solomon codes

Reduction to an approximation problem (1/2)

Assume that Q satisfies the list-size condition:

$${oldsymbol Q} = \sum_{|oldsymbol j| \leqslant \ell} {oldsymbol Q}_{oldsymbol j}(X) Y^{oldsymbol j}$$

for some unknown polynomials $\{Q_j, |j| \leq \ell\}$

The vanishing condition can be rewritten as a set of modular equations.

for
$$i \in \{1, ..., n\}$$
: $Q(x_i, y_{i1}, ..., y_{is}) = 0$ with multiplicity m
 \iff for $i = (i_1, ..., i_s), |i| < m$:

$$\sum_{i \preccurlyeq j, |j| \leqslant \ell} Q_j(X) {j_1 \choose i_1} R_1(X)^{j_1 - i_1} \cdots {j_s \choose i_s} R_s(X)^{j_s - i_s} = 0 \mod G(X)^{m - |i|}$$

where $G(X) = \prod_{1 \leq i \leq n} (X - x_i)$ and

 $R_1(X), \ldots, R_s(X)$ such that $R_1(x_i) = y_{i1}, \ldots, R_s(x_i) = y_{is}$

Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition

$$\sum_{\boldsymbol{i} \preccurlyeq \boldsymbol{j}, |\boldsymbol{j}| \leqslant \ell} Q_{\boldsymbol{j}}(\boldsymbol{X}) \underbrace{\binom{j_1}{i_1} R_1(\boldsymbol{X})^{j_1 - i_1} \cdots \binom{j_s}{i_s} R_s(\boldsymbol{X})^{j_s - i_s}}_{F_{\boldsymbol{i}, \boldsymbol{j}}(\boldsymbol{X})} = 0 \mod \underbrace{\mathcal{G}(\boldsymbol{X})^{m - |\boldsymbol{i}|}}_{P_{\boldsymbol{i}}(\boldsymbol{X})}$$

for
$$m{i} = (m{i}_1, \dots, m{i}_m)$$
 such that $|m{i}| < m$,

Instance of Simultaneous Polynomial Approximations

- list-size $\binom{s+\ell}{s}$
- number of linear equations $mn \binom{s+m-1}{s}$

Reduction to an approximation problem (2/2)

Vanishing condition + list-size condition + weighted-degree condition

$$\sum_{\boldsymbol{i} \prec \boldsymbol{j}, |\boldsymbol{j}| \leq \ell} Q_{\boldsymbol{j}}(\boldsymbol{X}) \underbrace{\binom{j_1}{i_1} R_1(\boldsymbol{X})^{j_1 - i_1} \cdots \binom{j_s}{i_s} R_s(\boldsymbol{X})^{j_s - i_s}}_{F_{i,j}(\boldsymbol{X})} = 0 \mod \underbrace{\mathcal{G}(\boldsymbol{X})^{m-|\boldsymbol{i}|}}_{P_{\boldsymbol{i}}(\boldsymbol{X})}$$

for $i = (i_1, \ldots, i_m)$ such that |i| < m, with the degree constraints deg $Q_j(X) < mt - |j|k$ for $|j| \le \ell$

Instance of Simultaneous Polynomial Approximations

- list-size $\binom{s+\ell}{s}$
- number of linear equations $mn \binom{s+m-1}{s}$

Complexity bound in the multivariate case

 \rightsquigarrow Complexity bound in the multivariate case

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Improves on [Busse, 2008], [Brander, 2010] and [Nielsen, 2014]

Further extends to

- weight specific to each variable deg_X Q(X, X^{k₁}Y₁,..., X^{k_s}Y_s) < mt
- multiplicity specific to each point $Q(x_i, y_{i1}, \dots, y_{is}) = 0$ with multiplicity m_i

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

New approach for the interpolation step

- Based on a approximation problem
- Solved using structured linear systems
- Improved complexity bound

 $\mathcal{O}^{\sim}(\ell^{\omega-1}m^2n)$

② Extension to the multivariate case (folded Reed-Solomon codes)

- Based on the same approximation problem
- Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$

Contributions

[Chowdhury - Jeannerod - Neiger - Schost - Villard, 2014]

New approach for the interpolation step

- Based on a approximation problem
- Solved using structured linear systems
- Improved complexity bound

 $\mathcal{O}(\ell^{\omega-1}m^2n)$

② Extension to the multivariate case (folded Reed-Solomon codes)

- Based on the same approximation problem
- Improved complexity bound

$$\mathcal{O}^{\sim}\left(\binom{s+\ell}{s}^{\omega-1}mn\binom{s+m-1}{s}\right)$$